High-Performance Systems Biology and Associated Combinatorial Scientific Computing Problems

David Alber

Materials and Computational Science Center
National Renewable Energy Laboratory

June 11, 2008
Project Participants and Funding

Collaborators:
- NREL SCG: Chris Chang, Peter Graf, and Kwiseon Kim*
- NREL Photobiology: Mike Seibert*
- Summer Student from CU Boulder: David Biagioni

Participating institutions:
- National Renewable Energy Laboratory
- Colorado School of Mines
- Stanford University

Funding through SciDAC (OASCR and OBER)
Metabolism

- Chemical reactions occurring in living cells
- Reactions catalyzed by enzymes
- Metabolic species (e.g., glucose, pyruvate) produced and consumed

Reaction Modeling

- Several models
- Michaelis-Menten kinetics
High-Performance Systems Biology

In a nutshell

- Model complete metabolism of *Chlamydomonas reinhardtii*
- Develop high-performance software to explore metabolism kinetics

Example problems

- Parameter estimation (data fitting)
- Sensitivity minimization
- Parameter space characterization
Metabolic Model

For metabolic reaction:

\[\frac{dy}{dt} = f(y, k, E) \]

- \(y \) – vector of metabolite concentrations
- \(k \) – vector of kinetic parameters
- \(E \) – vector of enzyme concentrations
Metabolic Model

For metabolic reaction:

\[\frac{dy}{dt} = f(y, k, E) \]

- \(y \) – vector of metabolite concentrations
- \(k \) – vector of kinetic parameters (mostly unknown)
- \(E \) – vector of enzyme concentrations
Metabolic Model

For metabolic reaction:

\[\frac{dy}{dt} = f(y, k, E) \]

- \(y \) – vector of metabolite concentrations
- \(k \) – vector of kinetic parameters (mostly unknown)
- \(E \) – vector of enzyme concentrations

Kinetic parameters:
- Time consuming to determine experimentally
- Essential to understanding metabolic kinetics
Find set of k such that species concentrations match target values

Expressed as optimization problem:

$$\min_k g(k),$$

where $g(k) = \|r\|^2_2$ and r is vector of differences between target and simulated values
- Find set of k to minimize *sensitivity*
- Applies to organism engineering issues and general “nature of life” questions
- Objective function to minimize:

\[
h(k) = \| J_y(k) \|_F^2 = \sum_{i=1}^{n} \sum_{j=1}^{m} \left(\frac{\partial y_i}{\partial k_j} \right)^2
\]
Gradient-based Optimization

Parameter estimation:

\[g(k) = \sum_{i=1}^{n} (y_i - \bar{y}_i)^2 \]

Single entry of \(\nabla g \):

\[\frac{\partial g}{\partial k_j} = 2 \sum_{i=1}^{n} (y_i - \bar{y}_i) \frac{\partial y_i}{\partial k_j} \]

No problems computing \(\nabla g \) (adjoint sensitivity analysis)

\(y_i \): simulated metabolite concentration
\(\bar{y}_i \): target concentration

David Alber CSCAPES Workshop 2008 9/18
Parameter estimation:

\[g(k) = \sum_{i=1}^{n} (y_i - \bar{y}_i)^2 \]

Single entry of ∇g:

\[\frac{\partial g}{\partial k_j} = 2 \sum_{i=1}^{n} (y_i - \bar{y}_i) \frac{\partial y_i}{\partial k_j} \]

No problems computing ∇g (adjoint sensitivity analysis)
Parameter estimation:

\[g(k) = \sum_{i=1}^{n} (y_i - \bar{y}_i)^2 \]

Single entry of \(\nabla g \):

\[\frac{\partial g}{\partial k_j} = 2 \sum_{i=1}^{n} (y_i - \bar{y}_i) \frac{\partial y_i}{\partial k_j} \]

No problems computing \(\nabla g \) (adjoint sensitivity analysis)
Gradient-based Optimization

Parameter estimation:

\[g(k) = \sum_{i=1}^{n} (y_i - \bar{y}_i)^2 \]

Single entry of \(\nabla g \):

\[\frac{\partial g}{\partial k_j} = 2 \sum_{i=1}^{n} (y_i - \bar{y}_i) \frac{\partial y_i}{\partial k_j} \]

No problems computing \(\nabla g \) (adjoint sensitivity analysis)

Sensitivity minimization:

\[h(k) = \sum_{i=1}^{n} \sum_{j=1}^{m} \left(\frac{\partial y_i}{\partial k_j} \right)^2 \]

Single entry of \(\nabla h \):

\[\frac{\partial h}{\partial k_\ell} = 2 \sum_{i,j} \frac{\partial y_i}{\partial k_j} \frac{\partial^2 y_i}{\partial k_j \partial k_\ell} \]

Computing second derivative term expensive
Gradient-based Optimization

Parameter estimation:

\[g(k) = \sum_{i=1}^{n} (y_i - \bar{y}_i)^2 \]

Single entry of \(\nabla g \):

\[\frac{\partial g}{\partial k_j} = 2 \sum_{i=1}^{n} (y_i - \bar{y}_i) \frac{\partial y_i}{\partial k_j} \]

No problems computing \(\nabla g \) (adjoint sensitivity analysis)

Sensitivity minimization:

\[h(k) = \sum_{i=1}^{n} \sum_{j=1}^{m} \left(\frac{\partial y_i}{\partial k_j} \right)^2 \]

Single entry of \(\nabla h \):

\[\frac{\partial h}{\partial k_{\ell}} = 2 \sum_{i,j} \frac{\partial y_i}{\partial k_j} \frac{\partial^2 y_i}{\partial k_j \partial k_{\ell}} \]

Computing second derivative term expensive
Parameter estimation:

\[g(k) = \sum_{i=1}^{n} (y_i - \bar{y}_i)^2 \]

Single entry of \(\nabla g \):

\[\frac{\partial g}{\partial k_j} = 2 \sum_{i=1}^{n} (y_i - \bar{y}_i) \frac{\partial y_i}{\partial k_j} \]

No problems computing \(\nabla g \) (adjoint sensitivity analysis)

Sensitivity minimization:

\[h(k) = \sum_{i=1}^{n} \sum_{j=1}^{m} \left(\frac{\partial y_i}{\partial k_j} \right)^2 \]

Single entry of \(\nabla h \):

\[\frac{\partial h}{\partial k_{\ell}} = 2 \sum_{i,j} \frac{\partial y_i}{\partial k_j} \frac{\partial^2 y_i}{\partial k_j \partial k_{\ell}} \]

Computing second derivative term expensive
Second Derivative Computation
CSC Problem Slide #1

- Finite differences
- Automatic differentiation
- Collaboration with Paul Hovland
- Collaboration with Radu Serban (formerly at LLNL):
 - Combines adjoint sensitivity analysis and AD (via Tapenade)
 - Parallelized
 - Received code two weeks ago (i.e., nothing yet to show)
Approximately 1000 dimension parameter space (ultimately)

Each evaluation of $h(k)$ is inexpensive (similar to cost of ∇g)

Evaluation cost of ∇h adds up
The hierarchical parallelism in this application generates load balance issues.

- More of the scheduling problem variety
- Want to hear more on this
Kinetics Complications

- Many gaps to fill regarding metabolic kinetic rates
- Requires much experimentally-obtained data
- Relevant experimental data difficult (tedious?) and expensive to generate
- Switch gears and discuss another systems biology (metabolomics) problem
Stoichiometric Matrix

- Stoichiometry refers to numbers in chemical formulae

\[2A + B \rightarrow C + 3D \]

\[C + 2E \rightarrow F \]

- Stoichiometric matrix stores stoichiometry for all reactions

\[
S = \begin{pmatrix}
-2 & 0 \\
-1 & 0 \\
1 & -1 \\
3 & 0 \\
-2 & 0 \\
0 & 1
\end{pmatrix}
\]
Previously said \(\frac{dy}{dt} = f(y, k, E) \)

Can now also say

\[
\frac{dy}{dt} = Sv,
\]

where \(v \) is vector of reaction velocities

No kinetic parameters to get in the way!

At steady state, \(\frac{dy}{dt} = 0 \) (almost)

Now looking at \(Sv = 0 \)
Problem Definition

- Say we want to maximize concentration of species y_i:

$$\max_v y_i$$

- This problem trivial without constraints
- Possible constraints:
 - Thermodynamics (an arbitrarily large reaction rate not possible)
 - $Sv = 0$ at steady state (almost)
 - All $v_i \geq 0$ (reactions do not happen in reverse – not exactly true)
Add Another Layer

- Suppose goal is to dispose of some reactions or pathways
- Which pathways are more critical?
- Conceptual connections to electrical grid modeling?
Application:
- Study function of CBH I enzyme in “digesting” crystalline cellulose
 - Processivity?

Challenges:
- CHARMM does not scale well, has everything needed for application
- Other packages scale well, do not have everything needed
- If CHARMM: load balancing