Rolling Element Bearing Dynamics in Wind Turbines

Yi Guo and Jonathan Keller
National Renewable Energy Laboratory
American Society of Mechanical Engineers International Design Engineering Technical Conferences Meeting
Quebec City, Canada
August 29, 2018

NREL/PR-5000-72185
Wind Turbine Drivetrain Reliability Challenges

- Predominant drivetrain failure modes are:
 - Not accounted for in design standards
 - Not attributable to material deficiencies or quality control
 - Complex and independent of the component supplier

- Conduct testing and analysis to enable:
 - Improvement of inherent reliability
 - Increase of availability with less effort and drama
 - Reduction in wind plant operation and maintenance costs.
Most Frequent Failures

- High & intermediate speed stage bearings contribute 62% of total drivetrain failures.
- A planet bearing failure is more costly.

Source: S. Sheng, GRC Failure Database, 2018
Note: HSS = high-speed shaft; IMS = intermediate-speed shaft; LSS = low-speed shaft
Uptower Experiment Objectives

What turbine operations and grid conditions result in critical contact conditions for high-speed shaft and main bearings?

Gearbox Bearing Axial Cracking

Main Bearing Failure

Load impacts on component reliability addressed properly?

• **Winery PEAB 4410.4 gearbox and SKF cylindrical roller bearings**
 o Instrumentation focused on high-speed shaft, bearings, and lubricant
 - Shaft speed
 - Cage speed
 - Roller speed
 - Shaft torque and bending
 - Stray current
 - Bearing temperatures
 - Air temperature and humidity
 - Lubricant temperatures and moisture content
 - LogiLube and Poseidon lubricant monitoring and routine oil samples
 - SKF IMx-8 system.
Modeling of Bearing Loads & Stresses

- Lumped-parameter dynamics model
 - Transmission error
 - Bearing clearance
 - Nontorque loads
 - Gravity

- Simulate normal operation and transient events efficiently
- Failure modes, such as planet bearing fatigue, can be included
- Validation on loads will be performed during DRC 1.5 uptower testing.

Nonlinear, Time-Dependent Equations of Motion

\[M\ddot{q} + D\dot{q} + \left[K(q, t) + B \right]q = f(q, t) \]

- Gear mesh stiffness
- PCL nonlinearity
- Bearing stiffness

Illustration from [2]
Model Development: Roller Dynamics

- **Roller dynamics model (analytical) based on:**
 - Harris roller dynamics model [3,4]

- **Lubricant hydrodynamics model based on:**
 - Bercea cage friction model [5]
 - Dowson and Higginson lubricant model [6]

Forces and speeds of a roller

\[Q_{ij} - Q_{o_j} + F_{c_j} = 0 \]
(1)
\[F_{ij} - F_{o_j} + F_v - Q_{cg_j} = 0 \]
(2)
\[M_{ij} - M_{o_j} + \frac{1}{2} \mu_{cg} D Q_{cg_j} = F_\omega M \frac{d\omega_{rj}}{d\psi} \]
(3)
\[\sum_{j=1}^{z} Q_{ij} \cos\psi_j - F_r = 0 \]
(4)
\[d_m \sum_{j=1}^{z} Q_{cg_j} - D_{cr} F_{cl} = 0 \]
(5)

Force balance of a single roller
Model Validation: Roller Speed Zone

• Good agreement between model & experiments
• Outside the load zone, the roller speed is less than its theoretical value for pure rolling conditions.
Roller Speed Statistics

- Good correlation between model and experimental results
- Roller speed less than theoretical at low wind speed
 - Indicates significant roller sliding

Note: GS-in = inboard generator side; rpm = revolutions per minute; m/s = meters per second
Roller Sliding During Startup

- Significant sliding present between 110 & 220 seconds
 - Related to controller settings
- Sliding occurred because of high speed with no load
 - Roller/raceway wear could occur.

![Graph showing operating condition and cage speed with sliding highlighted at specific time intervals](image)

Note: kW = kilowatt; kNm = kilonewton-meter

Note: GS-in = generator side inboard
Roller Sliding During Emergency Stop

- No significant sliding occurred
 - Limited roller sliding present only when braking started
- Strong impact loading initiated by the braking
- Maximum torque exceeded 169% of rated.

![Operating Condition](image1)

![Cage Speed](image2)

Note: kW = kilowatt; kNm = kilonewton-meter

Note: GS-in = generator side inboard
Roller Sliding During Normal Stop

- Sliding occurs when generator disconnected at 75 seconds
- High sliding risks under high-speed & low to zero load.

Operating Condition

- Active Power (kW)
- Main Shaft Torque (kNm)
- HSS Speed (rpm)

Cage Speed

- Measured
- Pure Rolling
- Model

Sliding

Note: kW = kilowatt; kNm = kilonewton-meter

Note: GS-in = generator side inboard
Conclusions

• Unique experimental results on bearing roller and cage speed presented
• Analytic model for calculating bearing speed described
 o Model validated through uptower experiments
• Bearing speed affected by drivetrain load and speed
• Bearing sliding widely present during regular turbine operations
• Significant sliding occurs during transient events
 o Can lead to bearing failures or shortened life
 o Risks of sliding-induced failures to be quantified in the future.
Acknowledgments

This work was funded by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory and cooperative research and development agreement 17-694 with Flender Corporation, and 16-608 SKF GmbH. Funding for this work was provided by the DOE Office of Energy Efficiency and Renewable Energy, Wind Energy Technologies Office.

Contacts:

yi.guo@nrel.gov
jonathan.keller@nrel.gov

Photo by Dennis Schroeder, NREL 49418
References

