A Definition of Resilience

The ability to **anticipate**, **prepare for**, and **adapt** to changing conditions and **withstand**, **respond** to, and **recover** rapidly from disruptions through adaptable and holistic planning and technical solutions.

Sequence of the NIAC Resilience Construct

Prior to an Event
- Robustness: The ability to absorb shocks and keep operating.

During an Event
- Resourcefulness: The ability to manage a disruption as it unfolds.

After an Event
- Rapid Recovery: The ability to get back to normal as quickly as possible.

Adaptability/Lessons Learned
- The ability to absorb new lessons after a disaster.

“**A Framework for Establishing Critical Infrastructure Resilience Goals,”**
National Infrastructure Advisory Council, October 19, 2010
Grid Modernization Laboratory Consortium

GMLC Co-Leads

- Institutional Support
- Devices and Integrated System
- Sensing and Measurement
- System Operations and Control
- Planning and Design Tools
- Security and Resilience

87 projects, $220M over 3 years
GMLC Framework for Security and Resilience
Based on NIST Cybersecurity Framework

Identify:
- Develop understanding of threats, vulnerabilities, and consequences to all hazards
 Outcome: Improved risk management and streamlined information sharing

Protect:
- Inherent system-of-systems grid resilience
 Outcome: Increase the grid’s ability to withstand malicious or natural events

Detect:
- Real-time system characterization of events and system failures
 Outcome: Accelerated state awareness and enhanced event detection

Respond:
- Maintain critical functionality during events and hazards
 Outcome: Advanced system adaptability and graceful degradation

Recover:
- Real-time device management and transformer mobilization
 Outcome: Timely post-event recovery of grid and community operations
Example GMLC Resilience Projects

- Grid Resilience & Intelligence Platform (GRIP) – SLAC, LBNL
- Resilient Alaskan Distribution system Improvements using Automation, Network analysis, Control, and Energy storage (RADIANCE) – INL, PNNL, SNL
- Increasing Distribution System Resiliency using Flexible DER and Microgrid Assets Enabled by OpenFMB – PNNL, ORNL, NREL
- Integration of Responsive Residential Loads into Distribution Management Systems – ORNL, PNNL
- CleanStart DERMS- LLNL, PNNL, LANL
- Designing Resilient Communities: A consequence-based approach for grid investment - SNL
Changes to the electricity mix:

Natural gas and renewable energy generated nearly 50% of U.S. electricity in 2016, up from 30% in 2007

Natural gas increased from 22% to 34%

Renewable energy climbed from 8% to 16%
Why Renewable Energy for Resilient Systems

- Diesel sensitivity to fuel supply chains
 - especially in extreme weather events, which along with outages are increasing.
- Diesel back-up often neglected
 - high probability of failure; single point of failure
- RE systems have additional grid-connected benefits
 - diesel usually precluded due to air quality impacts.

Figure source: Kate Anderson et al. Quantifying and Monetizing Renewable Energy Resiliency. Sustainability, 10(4), 933, 2018, https://doi.org/10.3390/su10040933
Key Challenge 1: Control Systems

With advanced, autonomous control systems we can:

- **provide grid support services,**
- **meet critical loads during outages,**
- and reduce operating costs for system owners.

![Graph showing Frequency Regulation Signal](pjm.com)

![Graph showing kW dispatch during outage from REopt.nrel.gov/tool](REopt.nrel.gov/tool)

![Bar chart showing NPV](BarChart)

- **Benefits** include Energy Savings and Demand Charge Savings.
- **Costs** include CapEx and O&M.
Key Challenge 2: the Value of Resilience

Perspective
What matters to you?

Metric
How you quantify resilience

Value
How do you assign value?

Perspective from Gary Larson.

Example of quantifying resilience from materials science (image credit: engineeringarchives.com)
Step 1: Perspective

What matters to you?

Global and interdependent energy systems

What is critical to...

• Keeping my business open
• Health care facilities
• Emergency response
• National security
• Global energy markets
Step 2: Metrics for Resilience

Many metrics have been proposed, but no agreement on the best measures.

A few examples:

Utility perspective
- Customer-hours of outages
- Customer energy not served
- Avg (or %) customers experiencing an outage during a specific time period
- Cost of damages

Community perspective
- Critical services without power after backup fails
- Key military facilities w/o power

Business perspective
- Lost revenues, assets, and/or perishables

Credit to: Caitlin Murphy at NREL for summary of existing metrics (only a cross-sample shown here).
See https://gridmod.labworks.org/sites/default/files/resources/GMLC1%20Reference_Manual_2%20final_2017_06_01_v4_wPNLNo_1.pdf for more.
Step 3: Value of Resilience

How do you value what matters to you?

Macroscopic example

\[
\text{Outage Cost} \left(\frac{\$}{kWh} \right) = \frac{\text{GNP (or GDP) in $}}{\text{Total Annual Energy Consumption in kWh}}
\]

Microscopic example

Note the time varying value – currently integrating into REopt

Key Challenge 2: the Value of Resilience

We made this problem tractable by considering:

1. **Perspective** = commercial building
2. **Metric** = unmet critical load [kWh]
3. **Value** = **Value of Lost Load** (VoLL) [$/kWh] ~willingness-to-pay

(And addressed the control challenge using REopt)
Balance cost of system with grid-connected benefits ...

Balance cost of system with grid-connected benefits ...

... and resiliency benefits.

The maximum islandable premium is the difference of the Net Present Values (NPV).

\[I_{\text{max}} = \text{NPV}_{\text{resilient}} - \text{NPV} \]
In some cases, valuing resilience can make PV and storage cost effective where it was not before.

Ongoing work

How can we **monetize** the Value of Resilience?

Banking, Insurance
- lower rates for lower risk assets

Government incentives
- ITC could include islandable premium
Thank you

NREL/PR-7A40-72884
Methods for Determining VoLL

Direct (survey)
- Blackout studies
 - record real damage costs after event
- Willingness to pay for avoidance
- Direct costs
 - from hypothetical scenarios

Indirect
- Production function
 - estimate costs from lost production (commercial/industrial) or lost time (residential, using household income)
- Revealed preferences
 - equivocate outage costs with money spent on mitigation measures, such as backup power supply and interruptible supply contracts