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Fuel co-products are integral to biorefinery economics

Amount of Conversion Cost Product Value
Biomass Carbon
to Product
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Biomass Constituents for Selected Plant Resources

*Typical aromatic |
polymer containing:

24-33 45-52 9-13 | Syringyl ©
2.3 we s o "1 < Lignin constitutes a large
| fraction of biomass
i O ~15-30% of biomass
31 a7 18 A oen
mass
T d ~40% of biomass carbon
16-22 42-48 21-27 ¢

IF-”!
e
0
Depending on the
bioresource and
= L isolation method-
24:28 b e ology, molecular
weights for native
lignin have been
reported from
78,400 [in spruce
(718)] to 8300 [in
Miscanthus (779)]
g mol*, which are
23 9 e derived from C9
monclignols as
described in Fig. 2. |

Source: Ragauskas, et al., Science, 344 (2014) http://science.sciencemag.org/content/344/6185/1246843 full
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Biomass Grand Challenge: Complex Functionality
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Multi-functional catalysts are required to convert biomass into fuels
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Lignin: Fuel vs. Feedstock
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Potential Market Applications for Lignin and Lignin-Derived

Products

low volume - high value market 10000 €/t

i 7 ‘ ; - specialty chemicals
- for foed, fragrance
and pharmaceuticals

Example of an oligomeric fragment from the pyrolysis of lignin

bio-resins for wood-adhesives

. : ) | - alkylphenols
additives for flooring material B
OH OH
activated carbon, carbon-fibres ‘Q @ catechols
and carbon-black ? OH OH
OH OH

fuel-additives
/@ guaiacols
(o]
- 0
. ?OH|OH?0H|OH
o 0
| bio-char for soil improvement N
| - syringols
) o 0 o 0 00 0
boow | oH ! 1 on!

bio-fuel for CHP A
high volume - low value market 100 €/t
Selection of 12 major monomeric phenols from the pyrolysis of lignin

Source: De Wild, et al., Biofuels, Bioprod. Bioref. 8, 645-657 (2014).
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Lighin Valorization Pathways

Biological Route
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Thermochemical Route
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Using a “funneling” pathway inherent in nature, NREL
researchers show that lignin can be converted into
renewable fuels, chemical, and materials.

Source: Linger, et al. Proc. Natl. Acad. Sci., 2014.




Selective oxidation of lignin showing some potential co-products and

their markets. The focus of this study is phenol, shown in red.

Goal: Convert lignin to valuable phenolic compounds
Lignin pyrolysis = partial oxidation of lignin to remove methoxy side chains - create “simple phenols”

(phenols with no methoxy groups)
Scope: Preliminary TEA and LCA evaluation

Cresols

Chemicals, Pharmaceuticals, Resins

N/
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Oxidation / \ Unsaturated Polyester Resins :
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Specialty Chemicals - / \
lllustration of simple phenols as L. . . .
intermediates to various chemical Adipic Acid R AR Terephthalic Acid
HO, /—\ 0
products... PET and Polyesters IaSa
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Hydrocarbon production via lipid pathway, with valorization of lignin through

the fast pyrolysis and subsequent gas phase selective oxidation to phenols.

For TEA and LCA, we have developed and modeled this hybrid process:

1) biochemically converting C5/C6 sugars from biomass to a hydrocarbon blendstock, and
2) thermochemically converting lignin from biomass, via selective partial oxidation of lignin
pyrolysis vapor, to phenols.
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Oxidative removal of lignin-chains for co-products
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Conversion Technology Assessment

** Techno-economic analysis (TEA)

 Assess the technical and economic viability of new processes and
technologies (MFSP)

% Life-cycle assessment (LCA)

U Estimate the environmental impacts (GHGs)

Plant Model in Equipment and
Aspen Plus Raw Material
Accounting
Feedstock Composition S
Flo : I
. A W, 2 al
Operating Conditions Ateg ’ \ _ JJ ?‘-\ge--. g

Conversion Yields

B'\oiue\ yiel UFECveLEODEL [N
gal

*Biorefinery upstream and downstream processes not shown here.
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TEA Methodology & Assumptions

Discounted Cash Flow Analysis Parameters

10%
General plant depreciation 7-year MACRS schedule? Chemical Engineering’s
Steam plant depreciation 20-year MACRS schedule*? Plant Cost Index
Federal tax rate 35%
40% equity 600
10-year loan at 8% APR A ?
o A 550 A"
Construction period 3 years /l
First 12 months’ expenditures 8% 500
Next 12 months’ expenditures 60% /
Last 12 months’ expenditures 32% 420
Working capital 5% of fixed capital investment 200 f
e
Start-up time 6 months g
Revenues during startup 50% 350
Variable costs incurred during startup 75% 1985 1990 1995 2000 2005 2010 2015 2020

Fixed costs incurred during startup 100%

a https://www.irs.gov/pub/irs-pdf/p946.pdf
b For the case with no electricity selling, the steam plant is depreciated using the 7-yr basis instead of 20-yr basis.

_ _ Scaled Capacity\"
Scaled Equipment Cost = Base Equipment Cost ( _ )
Base Capacity

Total Installed Cost (TIC) = finstauation * TOtal Purchased Equipment Cost (TPEC)

2014 Cost Index Value )

Cost in 2014$ = Base Cost (Base Year Cost Index Value

Costs in 2014S
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Capital cost breakout

Lignin to Heat & Power
(no coproduct)

Direct Installed Capital Cost Distribution

Pretreatment,
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Utilities, 3% e
nditioning, 9%

~_
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8% On-site Enzyme

Production, 3%
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+ Upgrading, 6%

Costs in 2014S
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Preliminary TEA Results

17% MFSP improvement from valorization of lignin Costs in 20145
Phenols coproduct value: $1,981/tonne (2010-2014 5-yr average from IHS)

10.0
8.0 m Capital Charges & Taxes
6.0 -
ey Coproduct Credits
)
E 4.0 -
N B Operating Costs
-4
o 2.0 -
=
0.0 B Feedstock
-2.0 = MFSP
-4.0 T .
Lignin To Lignin To Phenols
Heat/Power

Note: The $7.80/GGE MFSP number for the pathway (via lipids) was presented in the DOE Bioenergy Technologies Office
(BETO) 2017 Project Peer Review (March 7, 2017, Denver, CO)
(https://www.energy.gov/sites/prod/files/2017/05/f34/Biochemical%20Platform%20Analysis%20Project 0.pdf, see slide 11).
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LCA Methodology & Assumptions

1. Goal
* Preliminary life cycle GHG intensity assessment
« Compare the base case, lignin used for heat and power generation, with the
case with lignin valorization (producing coproduct)
* Notintended to be used in comparative assertions

2. Scope
* Functional unit: 1 MJ of RDB
* System boundary: “field-to-wheel”
* Allocation: coproduct displacement Technosphere |
* |Impact assessment method: :
v’ Single attribute LCA
v' IPCC 2013 GWP 100a

Bioenergy Supply Chain

3. Life Cycle Inventory
e Biorefinery — Aspen Plus process model
e Upstream & downstream — GREET
* Others — USLCI, EIO, Ecoinvent
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Preliminary LCA Results

Lignin valorization potentially lowers life cycle carbon intensity (16% improvement)

100
Feedstock Production
80 —
B Feedstock Preprocessing
— 60 +— E@% e . .
= ;ﬁﬁ ﬁ% Feedstock Transportation
ppm— . N
9 E;fﬁ;ﬁ fﬁ; m Biorefinery
= 20 - fﬁf’ %F M Electricity Import
o
5 i?ﬁfa ?ﬁ?’
0 - : Coproduct Credits
-20 —— M Fuel Distribution
40 , . mFuelUse
Lignin To Lignin To Phenols 5 Total GHG
Heat/Power = ot

Petroleum-based phenols (Hock process) GHG intensity: 4.14 kg CO2e/kg
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LCA — Coproduct Allocation Sensitivity

Modeling and Analysis dBiOfpr Allocation Product / Lignin To Heat & Lignin To Allocation
Life-cycle analysis of integrated Methods Coproduct Units Power Coproduct Factor
a
biorefineries with co-production of Mass RDB kg/hr 8603 8603 74.2%
0,

biofuels and bio-based chemicals: COE‘E’;”“ Mkl\%lg}r 74021 7229; é?g;’

co-product handling methods and p yr - - SO

o Fl’ications 9 LGN Coproduct MMS/yr 0.00 46.77 38.7%
P Corbon efficion RDB % 19.8% 19.8% 76.4%

:i}JM";"““["T'“"“ . ) " y Coproduct % 0% 6.1% 23.6%

:L.'ITAIIVI e T R T T e ? RDB: Renewable Diesel Blendstock

Reference: Cai, et al., Biofuels, Bioprod. Bioref. ® System-level allocation. RDB at $3.00/GGE. Coproduct (phenols) at $1981/tonne.

12, 815-833(2018).
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Lignin To Coproduct Mass-based Market value- Carbon efficiency- #WTW GHG
Heat/Power Displacement based based
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Summary

o0

NREL has developed a vapor phase selective oxidation process for the
conversion of insoluble lignin streams from the biological biofuels production
into phenols.

As illustrated using an NREL's biological conversion of C5/C6 sugars to
renewable diesel blendstock via lipid upgrading, lignin valorization has
improved the economics by 17%.

Lignin valorization has also had the potential to lower the life cycle carbon
intensity of the biofuel (16% improvement) when coproduct (phenols) is
handled using displacement approach (a.k.a system expansion).

Coproduct displacement is the default coproduct handling approach under the
current policy framework that allows the biorefinery to be credited for
producing chemical coproducts with fewer GHG emissions than their
petroleum counterparts.

Coproduct handling approach sensitivity analysis has revealed that the life-
cycle GHG emissions readily vary with the coproduct handling method. This
should be examined at the interpretation phase of the LCA study.
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