NREL Comparison Between Absolute Cavity Pyrgeometers and Pyrgeometers Traceable to World Infrared Standard Group and the InfraRed Integrating Sphere

Ibrahim Reda,¹ Mike Dooraghi,¹ Afshin Andreas,¹ Julian Gröbner,² and Christian Thomann²

¹ National Renewable Energy Laboratory
² Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC)
NREL Comparison Between Absolute Cavity Pyrgeometers and Pyrgeometers Traceable to World Infrared Standard Group and the InfraRed Integrating Sphere

Ibrahim Reda,¹ Mike Dooraghi,¹ Afshin Andreas,¹ Julian Gröbner,² and Christian Thomann²

¹ National Renewable Energy Laboratory
² Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC)

Suggested Citation
NOTICE

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy’s, Solar Energy Technologies Program and the Atmospheric Radiation Measurement (ARM) Research Facility. The views expressed herein do not necessarily represent the views of the DOE or the U.S. Government.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via www.OSTI.gov.

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097, NREL 46526.

NREL prints on paper that contains recycled content.
Acknowledgments

We sincerely appreciate the support of Solar Radiance Research Laboratory (SRRL) staff and National Renewable Energy Laboratory (NREL) management, the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy/Solar Energy Technologies Program, Environmental Research/Atmospheric Radiation Measurement Program, and NREL’s Environment, Safety, Health, & Quality center (ESH&Q).
Table of Contents

1 Introduction ... 1
2 Instrument List ... 2
3 Measurement Equations ... 3
4 Results ... 4
List of Figures

Figure 1. ACPs’ irradiance ... 4
Figure 2. Average ACPs’ irradiance minus the irradiance measured by each ACP 5
Figure 3. Average ACPs’ irradiance vs irradiance measured by PIR and KZ 6
Figure 4. Average of ACPs’ irradiance minus irradiance measured by PIR and KZ vs PWV 7

List of Tables

Table 1. Average ACPs’ irradiance minus the irradiance measured by each ACP 5
Table 2. Average ACPs’ irradiance minus the irradiance measured by the PIR and KZ 7
1 Introduction

The comparison of the absolute cavity pyrgeometers (ACPs) with a precision infrared radiometer (PIR) pyrgeometer traceable to the World Infrared Standard Group (WISG) and a Kipp & Zonen (KZ) pyrgeometer traceable to the InfraRed Integrating Sphere Radiometer (IRIS) was held during the National Renewable Energy Laboratory (NREL) Pyrheliometer Comparison (NPC-2018) from September 24 to October 5, 2018. Data from all instruments was collected during nighttime clear sky conditions only. The irradiance measured by the ACPs and the PIR pyrgeometer traceable to the WISG were collected every 10 seconds during the ACPs’ self-calibration and every 30 seconds during the measurement runs. The measurement runs lasted for two hours, while the calibration runs lasted for 6 minutes. The KZ pyrgeometer collected irradiance measurements every 30 seconds. During the comparison, the average (av) irradiance difference measured by three ACPs varied from 0.2 W/m² to -0.5 W/m², with a standard deviation (sd) from 0.5 W/m² to 0.8 W/m². The average irradiance difference measured by the three ACPs minus the irradiance measured by the PIR was 4.3 W/m² and sd 4.2 W/m², and the average irradiance difference measured by the KZ was 2.3 W/m² and sd 3.5 W/m².
2 Instrument List

- Absolute Cavity Pyrgeometer (ACP): 57F3, 95F3, and 96F3.
- PIR pyrgeometer: 31197F3
- KZ pyrgeometer: CGR4 110390
3 Measurement Equations

ACP

\[W = \frac{K_1 \cdot V_{tp} + (2-\epsilon) \cdot K_2 \cdot W_r - (1+\epsilon) \cdot W_c}{\tau} \]

Where,

- \(W \) is the atmospheric longwave irradiance (W.m\(^{-2}\)).
- \(K_1 \) is the reciprocal of the ACP’s responsivity (W.m\(^{-2}.uV^{-1}\)).
- \(V_{tp} \) is the thermopile output voltage (uV).
- \(\epsilon \) is the gold emittance.
- \(K_2 \) is the emittance of the black receiver surface.
- \(W_r \) is the receiver irradiance (W.m\(^{-2}\)).
- \(W_c \) is the concentrator irradiance (W.m\(^{-2}\)).
- \(\tau \) is the ACP’s throughput.

PIR

\[W = K_0 + K_1 \cdot V_{tp} + K_2 \cdot W_r + K_3 \cdot (W_d - W_r) \]

Where,

- \(K_0, K_1, K_2, \) and \(K_3 \) are the calibration coefficients.
- \(W_d \) is the dome irradiance, in W/m\(^2\).

KZ

\[W = \frac{V_{tp}}{C} + K_2 \cdot W_c \]

Where \(C \) and \(K_2 \) are the calibration coefficients and \(W_c \) is the case irradiance.
4 Results

Figure 1 shows the irradiance of ACPs 57F3, 95F3, and 96F3; and Figure 2 shows the difference between the three ACPs’ average irradiance and the irradiance measured by each ACP. Table 1 shows that the difference varied from 1.0 W/m² to 1.7 W/m², with a 95% confidence level.

Figure 3 shows the ACPs’ average irradiance vs that of the PIR and KZ, as well as the PIR output thermopile voltage (Vtp). The Vtp is correlated to the net longwave irradiance, i.e., Vtp approaches zero when the sky gets cloudier. As is illustrated in the figure, the average irradiance of the ACPs is larger than that of the pyrgeometers when Vtp is less than -300 µV (i.e., during clear sky conditions), and smaller than irradiance measured by the pyrgeometers when Vtp is more than -300 µV (i.e., thin clouds). This behavior might be correlated to the spectral response of the pyrgeometers and the estimated precipitable water vapor (PWV), yet more comparisons and data might help in resolving this issue.

Figure 4 shows the estimated PWV vs the difference between the ACPs’ average irradiance and the irradiance measured by the PIR pyrgeometer with traceability to WISG and the KZ pyrgeometer with traceability to the IRIS. As is shown in Table 2, the difference is 9.3 W/m² for the PIR and 7.3 W/m² for the KZ, with a 95% confidence level.
Figure 2. Average ACPs’ irradiance minus the irradiance measured by each ACP

Table 1. Average ACPs’ irradiance minus the irradiance measured by each ACP

<table>
<thead>
<tr>
<th></th>
<th>WavACPs - W(95F3)</th>
<th>WavACPs - W(57F3)</th>
<th>WavACPs - W(96F3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>av</td>
<td>0.3</td>
<td>0.2</td>
<td>-0.5</td>
</tr>
<tr>
<td>sd</td>
<td>0.6</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>U95</td>
<td>1.2</td>
<td>1.0</td>
<td>1.7</td>
</tr>
<tr>
<td>nrdg</td>
<td>1754</td>
<td>1754</td>
<td>1754</td>
</tr>
</tbody>
</table>
Figure 3. Average ACPs’ irradiance vs irradiance measured by PIR and KZ
Figure 4. Average of ACPs’ irradiance minus irradiance measured by PIR and KZ vs PWV

Table 2. Average ACPs’ irradiance minus the irradiance measured by the PIR and KZ

<table>
<thead>
<tr>
<th></th>
<th>WavACPs - W(PIR)</th>
<th>WavACPs - W(KZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>av</td>
<td>4.3</td>
<td>2.3</td>
</tr>
<tr>
<td>sd</td>
<td>4.2</td>
<td>3.5</td>
</tr>
<tr>
<td>U95</td>
<td>9.3</td>
<td>7.3</td>
</tr>
<tr>
<td>nrdg</td>
<td>1754</td>
<td>1754</td>
</tr>
</tbody>
</table>