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Conversion Factors

Multiply By To obtain
Length
inch (in.) 2.54 centimeter (cm)
inch (in.) 25.4 millimeter (mm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)
Area
acre 4,047 square meter (m?)
acre 0.4047 hectare (ha)
acre 0.004047 square kilometer (km?)
square foot (ft?) 0.09290 square meter (m?)
square mile (mi?) 2.590 square kilometer (km?)
Flow rate

gallon per minute (gal/min) 0.06309 liter per second (L/s)
foot per day (ft/d) 0.3048 meter per day (m/d)
inch per year (in/yr) 25.4 millimeter per year (mm/yr)

Transmissivity*

foot squared per day (ft*/d) 0.09290 meter squared per day (m?%d)

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:
°C=(°F-32)/1.8.

Vertical coordinate information is referenced to the National Geodetic Vertical Datum of 1929
(NGVD 29).

Horizontal coordinate information is referenced to the North American Datum of 1983
(NAD 83).

*Transmissivity: The standard unit for transmissivity is cubic foot per day per square foot
times foot of aquifer thickness [(ft3/d)/ft?lft. In this report, the mathematically reduced form,
foot squared per day (ft¥d), is used for convenience.
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Abstract

Recently (2004) adopted legislation in Nebraska requires
a sustainable balance between long-term supplies and uses
of surface-water and groundwater and requires Natural
Resources Districts to understand the effect of groundwater
use on surface-water systems when developing a groundwater-
management plan. The South Platte Natural Resources District
(SPNRD) is located in the southern Nebraska Panhandle and
overlies the nationally important High Plains aquifer. Declines
in water levels have been documented, and more stringent
regulations have been enacted to ensure the supply of ground-
water will be sufficient to meet the needs of future genera-
tions. Because an improved understanding of the hydrogeo-
logic characteristics of this aquifer system is needed to ensure
sustainability of groundwater withdrawals, the U.S. Geologi-
cal Survey, in cooperation with the SPNRD, Conservation and
Survey Division of the University of Nebraska-Lincoln, and
the Nebraska Environmental Trust, began a hydrogeologic
study of the SPNRD to describe the lithology and thickness of
the High Plains aquifer. This report documents these charac-
teristics at 29 new test holes, 28 of which were drilled to the
base of the High Plains aquifer.

Herein the High Plains aquifer is considered to include all
hydrologically connected units of Tertiary and Quaternary age.
The depth to the base of aquifer was interpreted to range from
37 to 610 feet in 28 of the 29 test holes. At some locations,
particularly northern Kimball County, the base-of-aquifer
surface was difficult to interpret from drill cutting samples and
borehole geophysical logs. The depth to the base of aquifer
determined for test holes drilled for this report was compared
with the base-of-aquifer surface interpreted by previous
researchers. In general, there were greater differences between
the base-of-aquifer elevation reported herein and those in pre-
vious studies for areas north of Lodgepole Creek compared to
areas south of Lodgepole Creek. The largest difference was at
test hole 5-SP-11, where an Ogallala-filled paleovalley previ-
ously had been interpreted based on relatively sparse test-hole
data west of 5-SP-11. The base of aquifer near test hole 5-SP-
11 reported herein is approximately 230 ft higher in elevation

than previously interpreted. Among other test holes that are
likely to have been drilled in Ogallala-filled paleovalleys, the
greatest difference in the interpreted base of aquifer was for
test hole 7-CC-11, northeast of Potter, Nebraska, where the
base of aquifer is 180 feet deeper than previously interpreted.
Interpretation of test-hole and borehole geophysical data
for 29 additional test holes will improve resource managers’
understanding of the hydrogeologic characteristics, including
aquifer thickness. Aquifer thickness, which is related to total
water in storage, is not well quantified in the north and south
tablelands. The additional hydrostratigraphic interpretations
provided in this report will improve the hydrogeologic frame-
work used in current (2014) and future groundwater models,
which are the basis for many water-management decisions.

Introduction

Recently (2004) adopted legislation in Nebraska requires
a sustainable balance between long-term water supplies and
uses of surface- and groundwater (Ostdiek, 2009) and requires
Natural Resources Districts (NRDs) to understand the effect
of groundwater use on surface-water systems when develop-
ing a groundwater-management plan. The South Platte Natural
Resources District (SPNRD) is located in the southern part of
the Nebraska Panhandle and overlies the nationally important
High Plains aquifer (fig. 1). Within its borders, the SPNRD
manages groundwater use in three distinct but hydrologi-
cally connected geologic units within the High Plains aquifer.
Declines in water levels have been documented (McGuire,
2013), and more stringent regulations have been enacted to
ensure the supply of groundwater will be sufficient to meet the
needs of future generations (South Platte Natural Resources
District, 2009). An improved understanding of the hydro-
geologic characteristics of these aquifers is needed to ensure
that current management plans are adequate to sustain future
groundwater withdrawals.

The U.S. Geological Survey (USGS), in cooperation with
the SPNRD, Conservation and Survey Division of the Uni-
versity of Nebraska-Lincoln, and the Nebraska Environmental
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Trust, began in 2011 a hydrogeologic study of the SPNRD to
describe the lithology and thickness of the High Plains aquifer
underlying the SPNRD. This study included drilling 29 test
holes, 28 of which were drilled to the base of the High Plains
aquifer. The hydrostratigraphic interpretation of the additional
test-hole information will improve the geologic framework
used in current (2014) and future groundwater models, which
are the basis for many water-management decisions.

Purpose and Scope

This report documents the methods of data collection
and analysis, and presents test-hole and borehole geophysical
logs and interpretations used to improve the knowledge of the
hydrostratigraphy in the study area. The geologic and borehole
geophysical data collected from the test holes are intended to
refine interpretations in the base-of-aquifer elevation being
used for groundwater models and to improve interpretations
of geophysical data collected using airborne electromagnetic
(AEM) surveys (Abraham and others, 2012; U.S. Geological
Survey Crustal Geophysics and Geochemistry Science Center,
2014). The generalized lithologic logs and borehole-geophys-
ical logs from 29 newly drilled test holes are included in this
report.

Previous Investigations

Many geologic and groundwater investigations have
included all or parts of the study area including Darton (1903
and 1905), Meinzer (1923), Bjorklund (1957), Lowry (1966),
Barrash and Morin (1987), Diffendal (1990), Swinehart and
Diffendal (1997), and Condon (2005). Bjorklund (1957)
studied the groundwater and surface-water resources of the
lower Lodgepole Creek valley and included water-level maps,
geologic maps, and geologic cross-sections. Within the study
area, Bjorklund (1957) also reported that a permeable zone
underlies parts of Lodgepole Creek valley but pinches out near
the valley walls. Lowry (1966) provided a map of these highly
permeable zones in western Nebraska and eastern Wyoming.
Barrash (1986) studied the hydraulic properties of the frac-
tured part of the Brule Formation of the White River Group
beneath Sidney Draw in Cheyenne County. Sibray and Zhang
(1994) modeled the hydraulic behavior of a fracture zone in
three dimensions. Steele and others (2007) completed a com-
prehensive investigation of groundwater movement, age, and
quality near the city of Sidney, Nebraska. In this area, the three
separate geologic units within the High Plains aquifer were
determined to be hydrologically connected.

Groundwater models that encompass the entire study
area have been used to address questions related to ground-
water management and sustainability. As part of the Platte
River Cooperative Hydrology Study (COHY ST, http://cohyst.
dnr.ne.gov/), the Western Model unit (Luckey and Cannia,
2006) was developed to support regulatory and management
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decisions for much of western Nebraska. Cannia and others
(2006) developed a hydrostratigraphic framework and char-
acterized underlying aquifers of the SPNRD and surrounding
areas that was used in COHYST groundwater-flow models.
To address concerns about future groundwater development,
Luckey and others (1988) constructed a groundwater model
that covered the entire High Plains aquifer. Work is ongo-
ing (Qi and Christenson, 2010) to improve the earlier model
(Luckey and others, 1988) and focuses on the entire High
Plains aquifer using additional data and improved modeling
techniques. As part of this recent modeling work, Stanton
and others (2011) created a water budget for the High Plains
aquifer and provided estimates of groundwater recharge and
water use across the region, which includes the entire study
area, and Houston and others (2013) released a compilation of
geodatabases of hydrogeologic, remote-sensing, and water-
budget-component data.

Study Area Description

The study area is located in the southern part of the
Nebraska Panhandle (fig. 1), includes all of Kimball,
Cheyenne, and Deuel Counties, and covers approximately
2,600 square miles (mi?). The study area is located within the
High Plains section of the Great Plains physiographic prov-
ince (Fenneman, 1946) and borders Wyoming to the west and
Colorado to the south. Lodgepole Creek separates the north
and south tablelands in the study area. The tablelands have
nearly flat to gently rolling topography. The tablelands to the
north, called the Cheyenne Tablelands, are more extensive,
reaching the south edge of the Pumpkin Creek valley.

Land use in the study area is dominated by agriculture.
Of the 1.66 million total acres of the study area, approximately
29 percent is rangeland and nonagricultural uses, 33 percent
is nonirrigated (dry-land) crops, 8 percent is irrigated crop-
land, 21 percent is summer fallow or idle cropland, and
9 percent is enrolled in the Conservation Reserve Program and
planted with native warm season grasses (South Platte Natural
Resources District, 2009). In general, the amount of rangeland
decreases and cropland increases from west to east (Center for
Advance Land Management Information Technology, 2007).
Irrigation demands are predominantly supplied with ground-
water; however, some surface-water irrigation is present in
southeastern Deuel County. The Western Irrigation District
operates and maintains the Western Canal (fig. 1), which sup-
plies approximately 23,900 acres, most of which are located
outside the study area to the east (Luckey and Cannia, 2006).
Historically, there have been surface-water diversions from
Lodgepole Creek (Darton, 1903), though no diversion data
were reported by Luckey and Cannia (2006).

The climate in the study area is characterized by cold
winters and warm summers typical of continental mid-latitude
locations (Luckey and Cannia, 2006). From 1908 to 2013 the
mean monthly high temperatures ranged from 39.3 degrees
Fahrenheit (°F) to 88.9 °F, whereas mean monthly lows ranged


http://cohyst.dnr.ne.gov/
http://cohyst.dnr.ne.gov/

4 Hydrostratigraphic Interpretation of Test-Hole and Borehole Geophysical Data, Nebraska, 2011-12

from 12.0 °F to 57.6 °F, for January and July, respectively
(High Plains Regional Climate Center, 2013). During the same
period, the mean annual precipitation was 16.8 inches (in.)

at the Sidney 6 NNW weather station (fig. 1) (High Plains
Regional Climate Center, 2013). Seasonality of precipitation is
strong, with the greatest precipitation falling during the spring
and summer months. Luckey and Cannia (2006) reported
annual lake evaporation rates of about 47 in. that do not vary
much throughout the study area.

Lodgepole Creek is the main watercourse that flows
through the study area from west to east before emptying into
the South Platte River in Colorado (fig. 1). Flow in Lodgepole
Creek is typically ephemeral or intermittent (Bjorklund, 1957;
Steele and others, 2007). Some reaches of Lodegpole Creek
have sustained flow, especially during the nonirrigation season
(October to April) (Steele and others, 2007). The tributaries
of Lodgepole Creek, including Sidney Draw, are ephemeral
streams and only provide flow after times of intense rainfall
(Bjorklund, 1957). A major surface-water divide crosses the
study area in Cheyenne and Kimball Counties, where the north
half drains into Rush Creek and other tributaries that lead to
the North Platte River (fig. 1).

Most groundwater recharge in the study area is focused
along Lodgepole Creek and its tributaries and occurs after
intense precipitation (Bjorklund, 1957); however, the author
did not quantify amounts. Using the SWASP soil-water
simulation program, Dugan and Zelt (2000) estimated the
nonirrigated potential recharge at 0.5 to 1.0 inch per year (in/
yr). Using the Soil-Water-Balance model, Stanton and others
(2011) estimated recharge to average 0.1 to 0.5 in/yr for 1940
to 1949 and 2000 to 2009 for all land uses.

Geologic Setting and Hydrogeology

The study area overlies the High Plains aquifer (fig. 1).
For the purposes of this report, the High Plains aquifer is
considered to include all hydrologically connected geologic
units of Tertiary and Quaternary age (table 1). According to
Gutentag and others (1984), within the study area, these rocks
are the fractured parts of the upper units of the Oligocene-age
Brule Formation of the White River Group, the Miocene- to
Oligocene-age Arikaree Group, the Miocene-age Ogallala
Formation, and Quaternary-age alluvial deposits. The frac-
tured Oligocene-age Brule Formation of the White River
Group underlies parts of Sidney Draw and Lodgepole Creek
(Bjorklund, 1957; Lowry, 1966). Within the study area, either
the unfractured Brule Formation of the White River Group or
undifferentiated Cretaceous deposits form the base of the aqui-
fer. Some of the nomenclature used in this report is commonly
used by the Conservation and Survey Division of the Univer-
sity of Nebraska-Lincoln (Korus and Joeckel, 2011). Unless
noted in table 1, all other names for geologic and hydrostrati-
graphic units are used by the USGS.

The oldest geologic units relevant to this report are
Cretaceous in age. The Pierre Shale is a gray to black marine

shale that serves as a regional confining unit within the study
area. Overlying the Pierre Shale is the Fox Hills Formation, a
Cretaceous-age fine to medium-grained sandstone and shale.
The Fox Hills Formation forms an aquifer in extreme south-
western Kimball County that is typically only used for domes-
tic or stock purposes (Korus and Joeckel, 2011) when no other
sources of water are available (Cannia and others 2006).

The Eocene-age Chadron Formation of the White River
Group (referred to herein as the Chadron) is the oldest Tertiary
unit in the study area and represents the oldest deposition
following the retreat of the Western Interior Seaway (Condon,
2005). The upper part of the Chadron is a claystone and
mudstone that may contain bentonitic shales that serve as a
confining unit to separate the unconfined zones of the High
Plains aquifer from the underlying confined aquifers. This
confining layer, which is typically 50 to 60 feet (ft) thick in the
study area, overlies a basal sandstone that is typically 15 to
20 ft thick (Abraham and others, 2012). The total thickness
of the Chadron can be more than 300 ft thick in some paleo-
valleys. Swinehart and others (1985) indicate that this basal
sandstone occurs in the eastern half of the study area and
is restricted to several Eocene paleovalleys in Kimball and
western Cheyenne Counties. Other researchers have reclassi-
fied and renamed the basal sandstone as the Chamberlain Pass
Formation (Evans and Terry, 1994; Terry and Evans, 1994).
The basal sandstone is a water-bearing unit though rarely used
in the study area because of its depth and poor water quality
(Cannia and others, 20006).

The Brule Formation of the White River Group (referred
to herein as the Brule) underlies the entire study area and in
most locations forms the base of the principal aquifer. The
Brule underlies Quaternary-age undifferentiated deposits of
alluvial, colluvial, and eolian origin in modern valleys and the
Ogallala Formation beneath the tablelands. The Brule is com-
posed of a thick sequence of siltstone and mudstone that in
places can exceed 600 ft (Steele and others, 2007). Although
rare, the Brule may contain fluvial sand and gravel deposits
that may yield moderate amounts of water to wells (Cannia
and others, 2006). Steele and others (2007) described and
mapped one paleochannel deposit north of Sidney that was
roughly 0.5 mile (mi) wide and traceable for approximately
6 mi.

In places, the upper Brule can be fractured and is capable
of supplying large amounts of water to wells. Bjorklund
(1957) reported the existence of a horizontal permeable zone,
roughly 10 to 15 ft thick, underlying parts of Lodgepole
Creek valley that served as an important water source for
large capacity wells. Sibray and Zhang (1994) reported that
although the fracture zones can yield large amounts of water
to wells, the storage coefficient is very low. Because of this,
water levels can fluctuate substantially, which can often result
in insufficient water yield to high-capacity wells during times
of prolonged drought (Steele and others, 2007). Barrash
and Ralston (1991) reported that the horizontal hydraulic
conductivity of the fractured Brule west of Sidney ranged
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from 3,000 to 11,000 feet per day (ft/d), derived by analytical
modeling of drawdown data. In a later aquifer test, Sibray and
Zhang (1994) examined the same area and estimated a hydrau-
lic conductivity value of 20,000 ft/d using a finite-difference
three-dimensional numerical groundwater model (McDon-

ald and Harbaugh, 1988). The aquifer test led by Sibray and
Zhang (1994) also included additional wells completed above
and below the fractured zone. The wells completed below the
fracture zone indicated a slower response, indicating a lack of
vertical fractures at depth.

The Arikaree Group (herein referred to as the Arikaree)
is a very-fine to fine-grained sandstone. Deposition of this unit
was fluvial and eolian. This unit typically has been eroded
away within the study area but outcrops and subcrops have
been noted in extreme northern Kimball County (Swinehart
and others, 1985; Cannia and others, 2006). This unit, a sub-
unit of the High Plains aquifer, is considered an unconfined,
water-bearing unit capable of yielding moderate amounts of
water to wells and is typically not a suitable supply for high-
capacity wells (Cannia and others, 2006).

The Ogallala Formation (referred to herein as the Ogal-
lala) underlies the entire study area with the exception of the
lower Lodgepole Creek valley and Sidney Draw, where the
unit has been eroded away (Bjorklund, 1957). The Ogallala
is the principal geologic unit in the High Plains aquifer and
can reach a thickness of nearly 600 ft beneath the study area
(University of Nebraska-Lincoln, Conservation and Survey
Division, 2013). The Ogallala is composed of a poorly sorted
mixture of sand, silt, clay, and gravel (Condra and Reed,
1943). The Ogallala is largely the result of fluvial deposition,
but other depositional environments including eolian and
lacustrine have been discussed by other researchers (Diffendal,
1982; Helland and Diffendal 1993; Swinehart and Diffendal,
1989). The Ogallala generally is unconsolidated or weakly
consolidated but contains layers of sandstone cemented by
calcium carbonate. Previous researchers have proposed subdi-
visions of this unit within the study area, but those have since
been abandoned because of the difficulty correlating lithologic
units (Diffendal, 1990). Much of the Ogallala was deposited
by aggrading streams that filled paleovalleys eroded into older
rocks (Swinehart and others, 1985). The location of Ogallala-
filled paleovalleys has been proposed by previous research-
ers (Swinehart and others, 1985), but may represent only a
fraction of the drainage systems that existed during Miocene
time. Much of the deposition was restricted to valleys along
drainage systems originating from mountains in Wyoming and
Colorado (Swinehart and others, 1985). Borchert (1976) docu-
mented the presence of several Ogallala paleovalleys immedi-
ately west of Kimball County. These paleovalleys trended to
the east and most likely cut across the northern part of Kimball
County.

The Ogallala part of the High Plains aquifer supplies all
wells in the Cheyenne Tablelands and south tablelands within
the study area. Wells completed in the Ogallala can yield up
to 2,200 gallons per minute (gpm) (Steele and others, 2007)

and average 860 gpm (Bjorklund, 1957). Yields to wells are
highly variable depending on the local geology. Water levels
in the Ogallala range from near land surface within the upper
Lodgepole Creek valley to greater than 250 ft in the Chey-
enne Tablelands. To the south of Lodgepole Creek, the base
of the Ogallala is higher in elevation and supports far fewer
high-capacity wells because of insufficient saturated thickness
(Steele and others, 2007).

Within the Ogallala aquifer, properties such as hydraulic
conductivity and specific yield can vary greatly. Steele and
others (2007) cited a report completed by Bishop-Brogden
and Associates, Inc., that estimated the aquifer properties of
an unconsolidated channel sand north of Sidney, where the
transmissivity was estimated as 27,000 square feet per day
(ft/d) and hydraulic conductivity was 600 ft/d. The specific
yield was estimated between 0.20 and 0.25. Within the study
area, the Ogallala can contain unconsolidated sand, but is gen-
erally a mix of unconsolidated and consolidated deposits of
very fine-grained sand, silt, and clay (Steele and others, 2007).
Typical values for hydraulic conductivity and specific yield
are likely to be closer to those reported by Irons and others
(2012) for the Ogallala in central Nebraska. Based on aquifer
tests completed approximately 170 miles east of Sidney, Nebr.,
Irons and others (2012) reported a range in hydraulic conduc-
tivity from 4.8 to 18 ft/d for individual wells. Houston and
others (2013) reported estimates of aquifer properties for the
entire High Plains aquifer using an approach similar to Guten-
tag and others (1984) by estimating aquifer properties based
on lithologic descriptions of test holes. The more recent study
(Houston and others, 2013) included test holes drilled in Kim-
ball County, which are presented in this report. Excluding the
test holes where the Ogallala was absent, the median hydraulic
conductivity was estimated as 49 ft/d, and the specific yield
was 0.17 for all test holes in the study area.

The youngest aquifer within the study area is the Lodge-
pole Creek alluvium, which is also a subunit of the High
Plains aquifer. The alluvial deposits consist of a heterogeneous
mixture of sand, silt, clay, and gravel. This aquifer is generally
thin throughout much of the study area and is not considered a
major water source for high-capacity wells (Steele and others,
2007). This aquifer serves an important function by captur-
ing overland runoff and facilitating recharge to high-capacity
wells completed in the underlying Brule. The alluvium can
become dry during the irrigation season (May to September)
when high-capacity irrigation wells are pumped from the
underlying Brule (Steele and others, 2007).

Groundwater flow is generally to the east and toward
Lodgepole Creek or the South Platte River and its tributaries.
A groundwater divide in the Cheyenne Tablelands, south of
Rush Creek, separates flow to Lodgepole Creek from flow to
the North Platte River (Steele and others, 2007) (fig. 1). The
depth to groundwater ranges from near land surface in the
Lodgepole Creek and South Platte River valleys to greater
than 250 ft in the Cheyenne Tablelands (Abraham and others,
2012).



Methods

Test-Hole Drilling and Borehole Geophysics

The generalized lithologic descriptions and borehole
geophysical logs for 29 test holes drilled in the study area are
presented in the “Hydrostratigraphic Interpretation of Test-
Hole and Borehole Geophysical Data” section and at the back
of the report. Original copies of the lithologic logs of each
test hole are filed at the USGS, Lincoln, Nebr. All borehole
geophysical logs are archived in accordance with USGS
protocol (U.S. Geological Survey, written commun., 2009). At
the present time (2014), complete stratigraphic interpretations
have not been assigned. Consequently, the stratigraphic units
comprising the High Plains aquifer are undifferentiated, and
generally only the base of the High Plains aquifer at each test
hole has been reported.

Test-Hole Drilling Method and Procedure

Test-hole drilling with mud-rotary drilling equipment
has been an integral part of groundwater and geologic stud-
ies in Nebraska for many years (Diffendal, 2000). Mud-rotary
test-hole drilling and sampling required the use of drilling
fluid suitable for the geologic conditions. As the drill stem was
advanced, typically in 5-ft increments, the time required to
advance each increment was recorded along with the drilling
action. Drill cuttings were circulated to the surface, col-
lected, examined immediately, and lithologically described.
Described samples were bagged, labeled, and provided to
the Conservation and Survey Division of the University
of Nebraska-Lincoln (CSD) for further examination under
a petrographic microscope before the final assignment of
stratigraphic intervals and their inclusion in the state test-hole
database (University of Nebraska-Lincoln, Conservation and
Survey Division, 2013). Although the precise contacts of
certain hydrostratigraphic units have not been determined,
logged lithologic characteristics can provide information on
the hydrostratigraphic units sampled. For example, in many
test-hole logs published by CSD (Diffendal, 1999, 2000;
Smith, 2000a, 2000b; University of Nebraska-Lincoln, Con-
servation and Survey Division, 2013), the Ogallala is indicated
by presence of siliceous plant roots (rootlets). Other lithologic
characteristics are summarized in table 1. The location of each
test hole is shown in figure 1, and test-hole locations and dates
drilled are listed in table 2.

Borehole Geophysical Data Collection

Borehole geophysical data were collected within the
mud- or drilling-fluid-filled hole. A suite of borehole logs were
collected on a single run with a multiparameter, galvanic resis-
tivity logging tool. Borehole logs were collected using either
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the Century 8144 Multi-Parameter electrical-log tool (Century
Geophysical Corp., 2011) or the Mount Sopris 2PEA-250

tool (Mount Sopris Instruments, 2011). The Century 8144
tool measured long-normal (64 in.) and short-normal (16 in.)
electrical resistivity, natural gamma radiation, spontaneous
potential, and fluid resistivity. The Mount Sopris 2PEA-250
resistivity tool was threaded onto the 2PGA-250 tool (Mount
Sopris Instruments, 2011) to create a multiparameter log-

ger comparable to the Century 8144 electric-log tool. The
Mount Sopris tool measured resistivity using an 8-, 16-, 32-,
and 64-in. electrode spacing as well as natural gamma and
spontaneous potential (Mount Sopris Instruments, 2011). The
types of geophysical logs collected are briefly described in the
following paragraphs. Further information regarding borehole
geophysics can be found in reports such as Keys (1990).

Normal-resistivity logs measure the electrical resistiv-
ity of sediment, rocks, and water surrounding the borehole.
Depending on the logging system used, the electrode spacing
ranged from 8 in. to 64 in., each with a different volume of
investigation. Short-normal logs have a smaller volume of
investigation and, therefore, are affected more by the resistiv-
ity of the drilling fluid and the invaded zone that develops on
the borehole wall. Correspondingly, long-normal logs have a
larger volume of investigation and are less affected by drilling
fluid. Intervals where these two logs diverge indicate areas of
high permeability where drilling fluid has invaded the forma-
tion (Anderson and others, 2009).

Natural gamma logs measure natural gamma radiation
being emitted by the formation surrounding the borehole
(Keys, 1990). Clay tends to accumulate radioisotopes through
adsorption and ion-exchange processes. Most clays, particu-
larly illites, have high gamma activity because of the presence
of potassium in their crystal structure. Therefore, zones of
high gamma activity typically are interpreted as being clay-
rich. Volcanic ash, organic shale, and feldspathic or arkosic
sandstones also can produce higher gamma responses (Ander-
son and others, 2009).

Spontaneous-potential logs (often referred to as self-
potential or SP) measure differences in the electrical poten-
tials that develop in a borehole at lithologic or water-quality
interfaces (Anderson, 2009). Differences in electrical potential
often are caused by differences between the salinity of the
borehole fluid and that of the formation fluid (Keys, 1990).
When the borehole fluid is fresher than the formation fluid,
electric current flow is such that SP will deflect in a negative
direction; conversely, when the formation fluid is fresher than
the borehole fluid, electric current flow is such that SP will
deflect in a positive direction (Stanton and others, 2007).

Caliper logs were collected in 2012 for all test holes in
Deuel County. The caliper log measures the borehole diameter
with a spring loaded, three-arm probe. Changes in borehole
diameter are affected by drilling procedure, the competency of
the geologic units, and the presence of fractures (Keys, 1990).



Amyua) 8LI C1oT/v/6 1'168°¢ 87S8°¢ 10L9%¥°C01- 600L0CT 1Y D00A TS MSPI NETL 108%79CCOISILOTY ¢1-0d-$
sudog 3N (143 10T/67/8 L'1¥9°€ €Er9°e 609¢60°C01- CILYEIT 1Y q9dd STS MTrY NvIL 10LESOTOI8Y601Y 1-0d-¥
sudog 3N 09¢ CI0T/LT/8 €76S°€ 8°€65°¢C 860CS0CO1- 818L£00 T VVVV TS MTHd NTIL 1080€0C0I#10011 ¢1-0da-¢

Amue) LE r07/€T/8 voer'e 6°0t1'€ 66LSTTTOT- €616700° 11 D0dd 91S MEV NTIL 10€€CTTOI8I001Y T1-0da-t
sudog 3N 0¢1 roT/1e/8 9'LTLE T6TLE €0699¥°C01- 1096¥00° 11 aDDD 91S MSHA NTIL 1010820181001+ 1-0a-1

Awunog [anag
stdog 3N ¥8I1 110T/1T/6 0LLTY 6'8LTY L9LST6'TOT- 6195700 1+ adadda LIS Mevd NTIL 10€€SST0191001¥ 11-00-01
stdog 3N 44 110T/61/6 6111y LEIT'Y 9LYI9L7CO01- €9SLLYO 1 vddVv ¢S M8V NCIL [101¥S¥C01CSTOlY [1-20-6
sudog IN 0cl 110T/S1/6 6'TCEY 0'sTey €CSTTe0l- S6I8IIT 1Y D0VA 1 S MTSINVIL 101ECICOIEPTIIY 11-00-8
sudog 3N 06 110T/T1/6 9615y LTSy I16£YT €01~ °6090LT 1Y 004D €IS MTSANSIL 108EPICOIPIONTY 11-20-L
sudog IN 69¢ 1102/8/6 1209t €09y GELROECOL- 61811CE 1Y DAV 7€S MTSI NIIL 10ZE€8TE0T9I61TY [1-2079

Amyua) S9¢ 1102/9/6 9'6TF Y L'1Ery LOS8ST €01~ SPECIeEr Iy VVvVVvdad €S MISY NLIL 101€60€01TSSTIY 11-00-¢

Amyua) 8747 110T/1¢/8 €Ty R ANY LSYT08'CT01- SICILEC Y dVVV LTS MSPY NIIL 10808¥CO1¥10CIY 11-20+%

Amuo) 68% 1102/97/8 0'SLIY 0081t 1129L8°C01- PSLLSEC 1Y 004dd 0€S MSYA NIILL 10S€TST01600C 11 [1-20-¢

Amyua) £6¢ 1102/¥T/8 0'S00‘t 6900t $6999°C0T1- TES898E 1Y D04dD I S MLYI NITL 10000+C01S0ETTY 11-00-C

Amyua) 944 1102/TT/8 0°LLS'E 8'8L8°C 76099901~ €Se819T 1Y 49049 TS MLYI NSTL 108S6£COTEYSTIY 11-00-1

Awunoq auuahayy

Kmyua) 454 1102/91/¢ I'1¥6'Y SEv6'y 6L11¥99°¢01- 8LYT90° 1 addd 0€S MSSI NETL 10IS6EC0ISYEOTY 11-dS-11

Amuo) 823 110T/S1/€ ¥'L10°S 6'610°S LOLSE8 €01~ 129S1€C 1Y addyv LT S MLSINIILL 10600S€01PS611Y [1-dS-01

Amua) 019 110T/T1/¢ 0'6L1‘S 9'181°S 69%0€6°¢€01- YLOESSE 1Y addD 1S MBS NIILL 100SSSE0TLOETTY I1-dS-8

Amyua) 90¢ 1102T/01/¢ 1'689F 7169 9106 €01~ 68STICI 1Y AdDD 9 S MEST NETLL 109S9T€0191L0TY I1-dS-L
sudog 3N LL 1102/S/€ €099 S99y LY069S €01~ 819608¢ 11 avad 1 S MSSI NILL 1060¥€€01CSTCLY 11-dS-9

Amyua) LET 110T/v/€ 6'8YLYy I'ISLY 9TS987° €01~ cloLoLE 1Y addd TS MrSI NIILL 10TT6CE0ILYCCIY [1-dS-$

Kmyua) 00¢ 1102/T/€ 9919t 8819 86€96¢°¢01- PSICI8T 1Y VVVV OIS MESI NSIL 109%€CE01TSOT T [1-dS-¥

Amua) LEY 110¢2/8¢/T LOvLY 0€rLy 886L61'¢€01- 19LESST 1Y DOOV OIS MYSA NSIL 10€S6CEOTLOLITY 11-dS-¢

Amua) 81y 1102/€T/T 9ILLY 8ELLY €6v879°¢€01- 8LS699T 1Y 24D LIS MSSA NST.L 10SS8ECOTTO9 I [1-dS-C

Amua) AN 1102/TC/T S'8SLY 8°09LY 1E€CIOL €01~ €8Y99ST 11 d4dD TS M9SI NSI.L 100CrE0 TSIy 11-dS-1

Auno) jlequiy
pasn aJepns puej 62 AADN 88 AAVN saaibap saaifap (+aquinu
1afifio]  mojaqieajur  pajup anoqe )aa} anoqe a9} uoneaynuapi paubisse aweu
ajoyaioq ‘1apinbe jo ajeq ul‘uoneA3[d Ul ‘UONIBA3|d _uE_uau ul __.mE_ua_. u uonduasap 6o Aaning jeaifiojoay "gn) P18y
joadAl  aseq o) ydag uiod jospuoy  juiod josuon opmybuoy apmhel Jaquinu ayg

Hydrostratigraphic Interpretation of Test-Hole and Borehole Geophysical Data, Nebraska, 2011-12

[1omorreys oq Aew 1351nbe Jo aseq 03 Ydap 2)edIpul SIIqUINU P[Oq {PAYdeal Jou I1Jinbe Jo aseq YN un 19318 JXouU Y] JO Io)Ienb JSLAYINOS SI ( PUB ISOMIYINOS ST D) ISIMUYIIoU
SI g JSEOU}IOU STy 91oym ‘A[9Anoadsar ‘(] pue ) ‘g “y suonoss 1o)enb-1oy1enb-1o1enb-1o1renb pue ‘uonoss 1oprenb-1o1renb-1o1renb ‘uonoes 193enb-1oyrenb ‘uonoss 191enb oy 103 SOPOd ‘DY (UONIAS G Isom
A\ 98uBI “y ‘yptou ‘N dIysumo) I $100J © JO Jud} 1SILAU O 0} ‘6761 JO WNJB(J [BINISA O1IOPOAN) [eUOneN ‘67 AADN £100J © JO JIud) 1SaI8dU o) 03 ‘886 | JO WNje(] [BONIOA UBOLIOWY YHUON ‘88 AVN]

"Z1-110Z ‘@yselgap ‘sanunog janaq pue ‘auuaiay) ‘jequury| ‘sajoy 1sa1 1o} exep Buijjuip paloa|as pue ‘uoneso| alydesboab ‘sisiynuapl 8US 'z ajqel



9

Methods

Amyua) 0cl c1oz/cl/6 9'1¥9°¢ TEr9‘e L¥€98TC01- 68£€€0’ 1y addd I S MPrd NTIL T0TTL120100201% c1-0d-6
sudog IN sol C10T/T1/6 S0€6°€ TTE6'E €6Er1S 01~ €CI0co1' 1Y q94d4d LTS MSYI NVIL 10TS0ETOTPETTTY ¢1-04-8
Amua) 0¥¢ C102/9/6 v9EL'E 0'8€L°€E LIYLIETOT- §89T6Y1 1Y D0dD STS MPPd NY1L 10€0612018S801Y 1-0a-L
Amua) PEl C10T/5/6 6'8L8°C 9°088°¢ E1E8EY 0T~ SYLOVI 1Y addad 9zs MSYI NyIL 10819CC016S801Y 1-0a-9
panunuoj—Ajunog |anag
pasn adeuns pue| 6¢ GAIN 88 GAVN soaifiap saaufiap (+aquinu
1abbo]  mojaglaajur  pajjup anoqe 133} anoqe 139} uoneaynuapi paubisse aweu
\ , , |ewioap ui |ewoap ul uonduosap jefia] e
ajoyaioq 19jinbe jo ajeq Ul ‘UCIBA3|d Ul ‘UOIBA3|d , s Kaning jeaifiojoan ' n) p1ay4
apnybuoy apnyjeq
joadA] aseq o) ydag juiod jospuoy  juiod josuon Jaquinu ayg

[1omoreys oq Aew 1931nbe Jo aseq 03 Ydap 2edIpul SIIqUINU P[Oq {PAYILal Jou I1dJInbe Jo aseq YN un 19318 JXou Y] JO JoyIenb JSLAYINOS SI (] PUL ISOMYINOS ST D) ISIMUYII0U
SI g “ISeaylIou SI v a1dym ‘A[oandadsar ‘g pue ) ‘g vy suonods 12yenb-1ayrenb-1oyrenb-1a1renb pue ‘uonosas 1oyrenb-1openb-1011enb ‘uonoss 1oyrenb-1orenb ‘uonods 191enb dy) 10§ S9p0d ‘{OHFYV UONIAS G fIsam
A\ 93ueI “y ‘yptou ‘N (dIysumo) I $100J © JO Jud) 1SILAU o) 03 ‘6761 JO WNB(] [BINISA O1IOPOAN) [eUOnEN ‘67 AADN £100] © JO U9} 1SIeU o) 03 ‘886 | JO WNjB(] [BONIOA UBOLIOWY YUON ‘88 AVN]

panuiuo)—g|—1 10z ‘@yselqa ‘sanunos janaqg pue ‘auusiay) ‘jjequury ‘sajoy 1sa1 1o} exep Buijjuip palosjas pue ‘uoneso| alydesboab ‘sisiynuapl 8US 'z ajqel



10 Hydrostratigraphic Interpretation of Test-Hole and Borehole Geophysical Data, Nebraska, 2011-12

Global Positioning System Survey

After all test holes were completed, locations were sur-
veyed with a survey-grade global positioning system (GPS).
Horizontal and vertical coordinates were established through
the use of the Global Navigation Satellite Systems (GNSS).
Static GNSS surveying refers to collecting positioning data by
setting up a GNSS receiver antenna over a single point, and
allowing measurements to be collected from positioning satel-
lites for an extended period of time (Rydlund and Densmore,
2012). The GNSS data collected during static surveys were
later post-processed with data collected from nearby control
stations to correct atmospheric interference errors and to pro-
duce survey-grade solutions.

Trimble R8 GNSS receivers (Trimble Navigation Lim-
ited, 2009) were used to collect static positioning data at each
test-hole location. Since each test hole was completed as a
monitoring well, a GNSS receiver was set up directly above a
survey control point at each monitoring well. The survey con-
trol point was established in each concrete well pad by drilling
a small hole with a masonry bit and gluing a nail in place. A
6.6-ft fixed-height tripod was centered atop the nail set in the
well pad. Each receiver was configured to record position-
ing data every 15 seconds for at least 4 hours, after which
the logged data were downloaded and the receiver moved to
another test-hole location.

After each static-survey session, the logged data file was
sent to the Online Positioning User Service (OPUS; www.
ngs.noaa.gov/OPUS/) to determine the exact position of the
surveyed test hole. OPUS is a quality-assured service pro-
vided by the National Geodetic Survey (NGS), where users
can process single-base GNSS data through an online-user
interface. OPUS processes logged data using continuously
operating reference stations (CORS). For more information on
static GNSS surveying, the reader is referred to Rydlund and
Densmore (2012).

The geographic coordinates, control-point elevations, and
other test-hole information are presented in table 2. Elevations
received from OPUS are referenced to the North American
Vertical Datum of 1988 (NAVD 88). The elevations were
converted using the program CORPSCON, version 6.0 (http://
www.agc.army.mil/Missions/Corpscon.aspx), to the National
Geodetic Vertical Datum of 1929 (NGVD 29) to match the
vertical datum used in previous reports, such as Abraham and
others (2012).

The accuracy of the solutions was reported as peak-to-
peak errors, which represent the difference between maximum
and minimum value of the coordinates obtained from the
three baseline solutions (Rydlund and Densmore, 2012). For
all position solutions received from OPUS, greater than
80 percent of the logged observations were used, greater than
80 percent of ambiguities were fixed, and the vertical peak-to-
peak errors were less than 1 in., indicating that coordinates for
all surveyed points met the criteria for USGS Level II single-
base Online Positioning User Service-Static (OPUS-S) survey
accuracy (Rydlund and Densmore, 2012).

Hydrostratigraphic Interpretation of
Test-Hole and Borehole Geophysical
Data

Generalized lithologic descriptions and selected borehole
geophysical logs for all test holes are presented in figures
2-30. An example test-hole with generalized lithologic
description and borehole geophysical logs is shown in figure 2.
Logs from all other test holes can be found at the back of the
report. Borehole geophysical logs include data for short- and
long-normal resistivity (16 and 64 in. collected for Century
and Mount Sopris tools; 8 and 32 in. normal for logs collected
additionally with Mount Sopris tool), natural gamma activity,
and spontaneous potential.

Shortly after each test hole was drilled, a monitoring
well was installed within the existing borehole. The well was
constructed to have the screened interval typically in the most
productive zone of the aquifer. Water levels, measured by
SPNRD staff shortly after well installation, are depicted on
figures 230 to aid in the interpretation of the resistivity logs.
In the case of test hole 9-DC-12, water levels from wells com-
pleted in Brule sand and the Chadron aquifer are also depicted
(fig. 30).

The depth to the interpreted base of aquifer is given in
table 2. Within the study area, the base of the High Plains
aquifer typically coincides with the base of the Ogallala,
which unconformably overlies the Brule Formation. In some
areas, the Brule can contain minor amounts of fine sand or the
overlying Ogallala may contain silt, making interpretations of
the base-of-aquifer surface difficult. The Arikaree, although
rare within the study area, is included in the High Plains
aquifer (Gutentag and others, 1984; Korus and Joeckel, 2011)
and has similar lithologic characteristics to lower parts of the
Ogallala and upper parts of the Brule, which in some cases can
further complicate interpretations.

In most cases, resistivity logs were used to interpret the
base of the High Plains aquifer. The long- and short-normal
resistivity logs can indicate the base of the principal aquifer
by sharp contrasts in resistivity between the Brule Formation
and the overlying units. Examining the long- and short-normal
resistivity, the sediments overlying the Brule Formation have
resistivities that range from less than 50 to greater than
250 ohm-meters (ohm-m). Resistivity for the Ogallala (units
containing rootlets) typically ranged between 75 to 150 ohm-
m, but can extend from 50 to 200 ohm-m, with higher resistiv-
ity values indicating the presence of coarser deposits or a
greater degree of cementation of the sandstone units. Coarse
sand and gravel deposits typically had resistivity ranges of
150 ohm-m to 250 ohm-m or greater. In contrast, the resistiv-
ity of the Brule Formation typically was less than 25 ohm-m
and, in many cases, was less than 15 ohm-m.

With the exception of 1-SP-11 (fig. 2), every test hole
reached the base of the primary aquifer. The base of the
aquifer was not reached in test hole 1-SP-11 because of a very
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Figure 2. Composite of generalized lithologic description and geophysical logs for test hole 1-SP-11, Kimball County, Nebraska.

hard sandstone that could not be drilled through and refusal
was declared. Test hole 9-DC-12 (fig. 30) was drilled through
the basal sand and sandstone of the Chadron to the top of the

Cretaceous-age Pierre Shale.

At times, there were problems while collecting borehole
geophysical logs. Communication problems between the lap-
top computer and the borehole logging system prevented
the collection of an entire log from the base of aquifer to
land surface for test holes 3-CC-11 (fig. 14) and 4-DC-12
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(fig. 25). At times, the Century logging system produced
erratic long-normal resistivity data with respect to what was
recorded with the short-normal resistivity and known geology.
For these cases, the long-normal resistivity was omitted from
the composite geophysical logs.

With the exception of test hole 1-SP-11 (fig. 2), the base
of aquifer has been interpreted for all test holes (figs. 3-30;
table 2). At some locations, particularly northern Kimball
County, the base-of-aquifer surface was difficult to interpret
based on drill cutting samples and borehole geophysical logs.
Here, the overlying Ogallala has been described to be similar
in character to the upper part of the Brule Formation or pos-
sibly an outlier of the Arikaree. Another possible interpretation
is that as streams flowed eastward, pieces of the Brule were
eroded, transported, and deposited at the same time the Ogal-
lala was deposited. A more likely interpretation is that simi-
larities in the lithologic character between the Ogallala and
the underlying Brule are due to similarities in the depositional
environments. To ensure that the top of the Brule was reached,
special attention was paid to the drilling action recorded at
each 5-ft interval. Firm, competent Brule typically drills qui-
etly and smoothly with an even rate of penetration. Communi-
cation between the on-site geologist and the driller was critical
in making this determination. Test holes where the base of
aquifer was interpreted within a gradational boundary include
5-SP-11, 1-CC-11, 2-CC-11, 8-CC-11, 9-CC-11, 1-DC-12,
and 2-DC-12 (figs. 6, 12, 13, 19, 20, 22, and 23, respectively).
In the cases of test holes 1-CC-11 and 2-CC-11 (figs. 12 and
13), the borehole geophysical logging system produced some
erratic values on the long- and short-normal resistivity curves,
making interpretation difficult.

In some instances, test holes from previous studies were
used to aid in hydrostratigraphic interpretations. Test hole
8-SP-11 was drilled in northwest Kimball County (figs. | and
9). Lithologic descriptions of test hole 7-B-69 (Smith, 2000a;
approximately 1.4 miles to the northwest; not shown on map)
indicated that 461 ft of Ogallala sediments overlie the top
of the White River Group. Smith (2000a) was unsure if the
overlying White River Group sediments were the “Brown Silt-
stone Beds” (Swinehart and others, 1985) of the White River
Group. The lithologic descriptions and the resistivity curve on
the borehole geophysical log for test hole 7-B-69 indicate no
clear distinction between the overlying Ogallala and the White
River Group sediments; however, there is a deflection to the
left on the spontaneous-potential log (University of Nebraska-
Lincoln, Conservation and Survey Division, 2013). Smith
(2000a) indicates that silt and siltstone were reached at a depth
of 630 ft (4,513 ft above NGVD 29). The lithologic descrip-
tion of test hole 8-SP-11 indicates that firm, competent Brule
Formation was drilled at a depth of 610 ft (4,569 ft above
NGVD 29) (fig. 9). Above this interface, the normal resistivity
log (fig. 9) displayed a similar character to the normal resistiv-
ity of test hole 7-B-69 because there is no obvious indication
of the interface between the base of the Ogallala and the top of
the Brule. The generalized lithologic log of test hole 8-SP-11
indicates the presence of siltstone mixed in with very fine to

fine sand and sandstone. The base-of-aquifer surface in this
case is interpreted to be at the top of the lower interval of firm
siltstone at 610 ft (4,569 ft above NGVD 29), although it is
possible the Brule was reached at a shallower depth.

Test hole 10-SP-11 was drilled in northern Kimball
County approximately 6 mi southeast of test hole 8-SP-11
(fig. 1). At test hole 10-SP-11, the base of aquifer is interpreted
at 541 ft below land surface at the top of a 59-ft interval of
greenish-gray, well-cemented very fine grained sandstone
(fig. 10) that is interpreted to be the Fox Hills Formation. The
resistivity of this unit was about 25 ohm-m, and the recorded
rate of penetration was slow, which is characteristic of this
geologic unit. At this location, it seems that the Brule has
been completely eroded away. Approximately 1.6 mi to the
northwest of test hole 10-SP-11 is test hole 10-ANB-70 (not
shown on map). Smith (2000b) did not provide an interpreta-
tion for the bottom of the Ogallala at this location; however, it
was noted that beds below 545 ft (4,545 ft above NGVD 29)
may be older than the Ogallala. Below 545 ft the lithology was
described as sandstone, siltstone, and clay before a chert was
reached at 614 ft (4,476 ft above NGVD 29). No geophysical
logs were collected for test hole 10-ANB-70. In places where
the Brule has been eroded away, Cannia and others (2006)
interpreted the base of aquifer at the top of the Cretaceous
units. The base of aquifer for test hole 10-SP-11 is interpreted
at 541 ft below land surface (4,476 ft above NGVD 29).

The depth to the base of aquifer determined for test holes
drilled for this report were compared with the base-of-aquifer
surface interpreted by Abraham and others (2012). In general,
there were greater differences in the reported base-of-aquifer
elevation north of Lodgepole Creek compared to areas south
of Lodgepole Creek. The largest difference was noted at test
hole 5-SP-11 where an Ogallala-filled paleovalley previously
had been interpreted based on relatively sparse test-hole data
west of 5-SP-11. The base of aquifer near test hole 5-SP-11
reported herein is approximately 230 ft higher in elevation
than that interpreted by Abraham and others (2012). Other
test holes are likely to have been drilled in Ogallala-filled
paleovalleys, including test holes 3-SP-11, 4-SP-11, 8-SP-11,
10-SP-11, 1-CC-11, and 7-CC-11. The greatest difference in
base-of-aquifer elevation was noted for test hole 7-CC-11,
which was drilled in a buried paleovalley northeast of Potter,
Nebr. (fig. 1). Here the base of aquifer (top of Brule; fig. 18)
was drilled 180 ft deeper than previously interpreted by Abra-
ham and others (2012).

Summary

Recently (2004) adopted legislation in Nebraska requires
a sustainable balance between long-term water supplies and
uses of surface-water and groundwater and requires Natu-
ral Resources Districts (NRDs) to understand the effect of
groundwater use on surface-water systems when developing
a groundwater-management plan. The South Platte Natural



Resources District (SPNRD) is located in the southern part

of the Nebraska Panhandle and overlies the nationally impor-
tant High Plains aquifer. Declines in water levels have been
documented, and more stringent regulations have been enacted
to ensure the supply of groundwater will be sufficient to meet
the needs of future generations. The U.S. Geological Survey
(USGS), in cooperation with the SPNRD, Conservation and
Survey Division of the University of Nebraska-Lincoln, and
the Nebraska Environmental Trust, began a hydrogeologic
study of the SPNRD to describe the lithology and thickness

of the High Plains aquifer underlying the SPNRD. This study
included drilling 29 test holes, 28 of which were drilled to the
base of the High Plains aquifer. The additional hydrostrati-
graphic interpretations provided in this report will improve the
hydrogeologic framework used in current (2014) and future
groundwater models, which are the basis for many water-
management decisions.

The study area is located in the southern part of the
Nebraska Panhandle and includes all of Kimball, Cheyenne,
and Deuel Counties. The study area is located within the High
Plains section of the Great Plains physiographic province
and borders Wyoming to the west and Colorado to the south.
Lodgepole Creek separates the north and south tablelands in
the study area. Land use in the study area is dominated by
agriculture. In general, the amount of rangeland decreases and
cropland increases from west to east. Irrigation demands are
predominantly supplied with groundwater; however, some sur-
face-water irrigation is present in southeastern Deuel County.
Lodgepole Creek is the main watercourse that flows through
the study area from west to the east before emptying into the
South Platte River in Colorado. Flow in Lodgepole Creek is
typically ephemeral or intermittent. Some reaches of Lodeg-
pole Creek have sustained flow, especially during certain times
of the nonirrigation season (October to April). The tributaries
of Lodgepole Creek, including Sidney Draw, are ephemeral
streams and only provide flow after times of intense rainfall.

The study area overlies the High Plains aquifer. For the
purposes of this report, the High Plains aquifer is considered
to include all hydrologically connected geologic units of Ter-
tiary and Quaternary age. Within the study area, these rocks
are the fractured upper parts of the Oligocene-age Brule For-
mation of the White River Group, the Miocene- to Oligocene-
age Arikaree Group, the Miocene-age Ogallala Formation, and
Quaternary-age alluvial deposits.

The Ogallala Formation (referred to herein as the Ogal-
lala) underlies the entire study area with the exception of the
lower Lodgepole Creek valley and Sidney Draw, where the
unit has been eroded away. The Ogallala is the principal geo-
logic unit in the High Plains aquifer and can reach a thickness
of nearly 600 feet (ft) beneath the study area. The Ogallala is
composed of a poorly sorted mixture of sand, silt, clay, and
gravel. The Ogallala is largely the result of fluvial deposi-
tion, but other depositional environments including eolian and
lacustrine have been discussed by other researchers. The Ogal-
lala generally is unconsolidated or weakly consolidated but
contains layers of sandstone cemented by calcium carbonate.

Summary 13

The Ogallala part of the High Plains aquifer supplies all

wells in the north and south tablelands within the study area.
Wells completed in the Ogallala can yield up to 2,200 gallons
per minute (gpm) and average 860 gpm. Yields to wells are
highly variable depending on the local geology. Water levels
in the Ogallala range from near land surface within the upper
Lodgepole Creek valley to greater than 250 ft in the Cheyenne
Tablelands.

The depth to the base of aquifer was interpreted to range
from 37 to 610 ft in 28 of the 29 test holes. At some locations,
particularly northern Kimball County, the base-of-aquifer
surface was difficult to interpret based on drill cutting samples
and borehole geophysical logs. In those areas, the overlying
Ogallala has been described to be similar in character to the
upper part of the Brule Formation or possibly an outlier of
the Arikaree Group. A likely interpretation is that similari-
ties in the lithologic character between the Ogallala and the
underlying Brule are due to similarities in the depositional
environments.

In some instances, test holes from previous studies were
used to aid in hydrostratigraphic interpretations. Lithologic
descriptions of test hole 7-B-69 (approximately 1.4 miles
northwest from test hole 8-SP-11) indicated that at least
461 ft of Ogallala sediments overlie the top of the White River
Group. The base-of-aquifer surface at test hole 8-SP-11 is
interpreted to be at the top of the lower interval of firm silt-
stone at 610 ft (4,569 ft above the National Geodetic Vertical
Datum of 1929 [NGVD 29]), although it is possible that the
Brule was reached at a shallower depth.

Test hole 10-SP-11 was drilled in northern Kimball
County approximately 6 miles southeast of test hole 8-SP-

11. At test hole 10-SP-11, the base of aquifer is interpreted

at 541 ft below land surface at the top of a 59-ft interval of
greenish-gray, well-cemented very fine grained sandstone that
is interpreted to be the Fox Hills Formation. The resistivity of
this unit was around 25 ohm-m and the recorded rate of pen-
etration was very slow, characteristic of this geologic unit. At
this location the Brule apparently has been completely eroded
away. Approximately 1.6 miles to the northwest of test hole
10-SP-11 is test hole 10-ANB-70, where previous researchers
noted that beds below 545 ft (4,545 ft above NGVD 29) may
be older than the Ogallala. In places where the Brule has been
eroded away, previous researchers interpreted the base of aqui-
fer at the top of the Cretaceous units. The base of aquifer for
test hole 10-SP-11 is interpreted at 541 ft below land surface
(4,476 ft above NGVD 29).

The depth to the base of aquifer determined for test holes
drilled for this report were compared with the base-of-aquifer
surface interpreted by previous researchers. In general, there
were greater differences in the reported base-of-aquifer eleva-
tion north of Lodgepole Creek compared to areas south of
Lodgepole Creek. The largest difference was noted at test hole
5-SP-11 where an Ogallala-filled paleovalley previously had
been interpreted based on relatively sparse test-hole data west
of 5-SP-11. The base of aquifer near test hole 5-SP-11 reported
herein is approximately 230 ft higher in elevation than
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previously interpreted. Among other test holes that are likely
to have been drilled in Ogallala-filled paleovalleys, includ-
ing test holes 3-SP-11, 4-SP-11, 8-SP-11, 10-SP-11, 1-CC-11,
and 7-CC-11, the greatest difference in the interpreted base of
aquifer was noted for test-hole 7-CC-11, northeast of Pot-

ter, Nebraska, where the base of aquifer is 180 ft deeper than
previously interpreted.
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Figure 3. Composite of generalized lithologic description and geophysical logs for test hole 2-SP-11, Kimball County, Nebraska.
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Figure 4. Composite of generalized lithologic description and geophysical logs for test hole 3-SP-11, Kimball County, Nebraska.
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Figure 5. Composite of generalized lithologic description and geophysical logs for test hole 4-SP-11, Kimball County, Nebraska.
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Figure 6. Composite of generalized lithologic description and geophysical logs for test hole 5-SP-11, Kimball County, Nebraska.
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Figure 7.

Composite of generalized lithologic description and geophysical logs for test hole 6-SP-11, Kimball County, Nebraska.
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Figure 8. Composite of generalized lithologic description and geophysical logs for test hole 7-SP-11, Kimball County, Nebraska.
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Figure 9. Composite of generalized lithologic description and geophysical logs for test hole 8-SP-11, Kimball County, Nebraska.
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Figure 10. Composite of generalized lithologic description and geophysical logs for test hole 10-SP-11, Kimball County, Nebraska.
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Figure 11. Composite of generalized lithologic description and geophysical logs for test hole 11-SP-11, Kimball County, Nebraska.
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Figure 12. Composite of generalized lithologic description and geophysical logs for test hole 1-CC-11, Cheyenne County, Nebraska.
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Figure 13. Composite of generalized lithologic description and geophysical logs for test hole 2-CC-11, Cheyenne County, Nebraska.
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Figure 14. Composite of generalized lithologic description and geophysical logs for test hole 3-CC-11, Cheyenne County, Nebraska.
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Figure 15. Composite of generalized lithologic description and geophysical logs for test hole 4-CC-11, Cheyenne County, Nebraska.
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Figure 16. Composite of generalized lithologic description and geophysical logs for test hole 5-CC-11, Cheyenne County, Nebraska.
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Figure 17. Composite of generalized lithologic description and geophysical logs for test hole 6-CC-11, Cheyenne County, Nebraska.
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Figure 18. Composite of generalized lithologic description and geophysical logs for test hole 7-CC-11, Cheyenne County, Nebraska.
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Figure 19. Composite of generalized lithologic description and geophysical logs for test hole 8-CC-11,
Cheyenne County, Nebraska.
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Figure 20. Composite of generalized lithologic description and geophysical logs for test hole 9-CC-11, Cheyenne County, Nebraska.
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Figure 21. Composite of generalized lithologic description and geophysical logs for test hole 10-CC-11, Cheyenne County, Nebraska.
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Figure 22. Composite of generalized lithologic description and geophysical logs for test hole 1-DC-12, Deuel County, Nebraska.
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Figure 23. Composite of generalized lithologic description and geophysical logs for test hole 2-DC-12, Deuel County, Nebraska.



Figures 3-30 39

Depth, Caliper Gamma Spontaneous potential Normal resistivity (8 inches) Generalized lithology
in feet f i 1
0 Inches 10 0 Counts per second 150500 Millivolts 8000 Ohm-meters 400
Normal resistivity (16 inches)
| |
I 1
0 Ohm-meters 400
Normal resistivity (32 inches)
I 1
0 Ohm-meters 400
Normal resistivity (64 inches)
1 1
0 0 Ohm-meters 400
Topsoil, coarse sand to fine gravel,
é much fines at bottom
L% £ 7
Coarse sand to fine gravel, some
pebbles
100 ; } W’?% Silt, much stiff clay, some marl, trace
150 iﬁ % 5 &i}
Clayey silt, with much very fine sand,
some medium sand in parts,
calcareous
N o= L
250 4% é&oundwater level— K{ }
300 % % % g
[
Base of aquifer 360 feet,
interbedded very fine sand, trace
Brule Formation, stiff silty clay,
400 marl
2 % é Brule Formation, silt/siltstone,
% g interbedded sands, clay at bottom
) 5 =
i - ‘

Figure 24. Composite of generalized lithologic description and geophysical logs for test hole 3-DC-12, Deuel County, Nebraska.
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Figure 25.

Composite of generalized lithologic description and geophysical logs for test hole 4-DC-12, Deuel County, Nebraska.
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Figure 26. Composite of generalized lithologic description and geophysical logs for test hole 5-DC-12, Deuel County, Nebraska.
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Figure 27. Composite of generalized lithologic description and geophysical logs for test hole 6-DC-12, Deuel County, Nebraska.
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Figure 28. Composite of generalized lithologic description and geophysical logs for test hole 7-DC-12, Deuel County, Nebraska.
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Figure 29. Composite of generalized lithologic description and geophysical logs for test hole 8-DC-12, Deuel County, Nebraska.
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Figure 30. Composite of generalized lithologic description and geophysical logs for test hole 9-DC-12, Deuel County, Nebraska.
The groundwater levels depicted were measured in the High Plains aquifer, Brule sand aquifer, and the Chadron aquifer.
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