Quantification of Roller Sliding Energy in Wind Turbine Gearbox High-Speed Shaft Bearings

Yi Guo, Jonathan Keller, and Shawn Sheng
Drivetrain Reliability Collaborative Meeting
National Renewable Energy Laboratory
February 19, 2019

NREL/PR-5000-73320
1 Background
2 Roller Sliding Measurement and Modeling
3 Bearing and Roller Loads Measurement and Modeling
4 Energy Accumulation and Reliability Assessment
5 Summary and Ongoing Research
Gearbox Bearing Axial Cracking—Dominant Drivetrain Failure Mode

What turbine operational conditions result in critical contact conditions?

Cumulative frictional energy is considered a potential failure metric for axial cracking.

\[E = \mu N \Delta V t \]

Cumulative Frictional Energy
E Quantification

Measure ΔV

Model $\Delta V, \mu$

Measure N

Model N

Frictional Energy E

Wind Plant E

Model validated by experiments for a 1.5-MW turbine

Apply models for wind plants

This Photo by Unknown Author is licensed under CC BY-SA
1 Background

2 Roller Sliding Measurement and Modeling

3 Bearing and Roller Loads Measurement and Modeling

4 Energy Accumulation and Reliability Assessment

5 Summary and Ongoing Research
Roller dynamics model (analytical):
- Harris roller dynamics model

Lubricant hydrodynamics model based on:
- Bercea cage friction model
- Dowson and Higginson lubricant model

Primary Governing Equations
\[
\begin{align*}
F_i - F_o - F_v + Q_{cg} &= 0 \quad \text{Tangential} \\
Q_i - Q_o + F_c &= 0 \quad \text{Radial} \\
M_i - M_o + \frac{1}{2} \mu_{cg} DQ_{cg} &= J\omega_c \frac{d\omega_r}{d\phi} \quad \text{Torsional}
\end{align*}
\]

Analytical Model Predicts Roller and Cage Sliding

High-Speed Shaft Bearings and Load Zone

NU 2326 (Bearing A)
NU 232 (Bearing B)
• Rollers slide even at rated torque
• Sliding affected by lubricant temperature and clearance

1 Background

2 Roller Sliding Measurement and Modeling

3 Bearing and Roller Loads Measurement and Modeling

4 Energy Accumulation and Reliability Assessment

5 Summary and Ongoing Research
High-speed shaft bearing loads derived from the measured shaft-bending moments and torque through force and moment balance.

Bearing loads distributed among rollers using the Harris approach.

Semi-Experimental Approach—Strain Gaging

Bearing Ring Not Needed

Simple Analytical Model Calculates Bearing Loads

- Three degrees of freedom lumped-parameter model calculates bearing loads
- Bearing loads distributed among rollers using the Harris approach.

Governing Equation

\[M \ddot{q} + C \dot{q} + K(q, t)q = f(q, t) \]

- \(M \): Mass
- \(C \): Damping
- \(K \): Stiffness
- \(q \): Displacement
- \(f \): Applied loads
1 Background

2 Roller Sliding Measurement and Modeling

3 Bearing and Roller Loads Measurement and Modeling

4 Energy Accumulation and Reliability Assessment

5 Summary and Ongoing Research
• Accumulates most sliding energy at the load zone entry
• Rollers slide most outside the load zone
 – No frictional energy generated

\[
\Delta V \quad \mu \quad N \quad = \quad \frac{E}{t}
\]

Frictional Energy Varies with Power and Temperature

Cold operations at low power generate more frictional energy than warm operations at high power.

Frictional Energy: Startup Event

- Normal startup
- Energy accumulates during the runup once grid is connected

\[
\Delta V \quad \mu \quad N \quad t = E
\]

Frictional Energy: Emergency Stop Event

- Emergency stop—induced from tower base
- Limited energy accumulation
 - But many torque oscillations and reversals \rightarrow contact stress up to 2 GPa

$$\Delta V \quad \mu \quad N \quad t = E$$

Energy Accumulation Comparison

• Compare total sliding energy between turbine operations
• Transients vs. 10-minute projections of normal power
 – Normal power contributes more energy
 – RS (A) has more energy than generator-side inboard (GS-in or B)

• Nearly 200 wind turbines with multiple gearbox suppliers
• Investigate high-speed and intermediate-speed stage bearings
• Correlate energy accumulation with failure records

What are other contributors to WECs? Higher-resolution SCADA?

Summary and Ongoing Research

- Up-tower testing campaign investigated major contributors to WECs
 - Roller sliding and frictional energy accumulation
- Newly developed analytical tools calculate roller loads and sliding
 - Can simulate a variety of turbines and plants
 - Validated by experiments
- Frictional energy accumulated the most during power production
 - Transient events contribute less energy
- Lubricant temperature greatly affects energy generation
 - Lubricant heater/cooler function improvement?
- Relate frictional energy with plant failure records (ongoing)
- Reliability assessment during early design phase (ongoing)
- Prediction of remaining useful life (ongoing)
Recent References

- T. A. Harris, *An analytical method to predict skidding in high speed roller bearing*, ASLE Transaction, 1966
Thank You!
Flender Corporation,
SKF GmbH, and SKF USA

Acknowledgments

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office and CRADAs 17-694 with Flender Corporation and 16-608 with SKF GmbH. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.