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1. Introduction 

Traumatic brain injury (TBI) is a serious concern for the military and the general 
civilian population. Blast-related TBI has been prevalent in recent military conflicts 
(Gupta and Przekwas 2013). During Operation Iraqi Freedom, a study of casualties 
requiring level V care at Walter Reed Army Medical Center reported that 29% of 
those that were screened had a TBI. Blasts and explosions were the most common 
causes, accounting for 78% of those found to have a TBI (Traumatic Brain Injury 
Task Force 2007). Understanding TBI also has significant relevance for the civilian 
population. Approximately 1.4 million people within the United States sustain a 
TBI each year. Of that number 50,000 die, 235,000 are hospitalized, and 1.1 million 
are evaluated, treated and released from emergency departments (Langlois et al. 
2006). When one also considers concussions (often called mild TBI) it is possible 
the largest proportion of patients are not even seen in an emergency department. 
TBI is even more concerning due to its residual effects. It is estimated that at least 
5.3 million Americans, almost 2% of the population, have current long-term or 
lifelong disabilities as a result of TBI (Defense and Veterans Brain Injury Center 
2014). 

TBI associated with closed head injuries, also referred to as nonpenetrating head 
injuries, can be caused by blast, blunt-force impact, or sudden acceleration. In cases 
such as these, diffuse axonal injury is one particular injury mechanism that has been 
cited as a signature injury of TBI neural damage (Taber et al. 2006; Gupta and 
Przekwas 2013). Deformation of the brain tissue can induce misalignment in the 
cytoskeletal network or axolemma permeability, inducing a cascade of subcellular 
events culminating in the severance of the axon (Christman et al. 1994; Smith et al. 
2003). It is these axon fiber bundles that make up the structural network that allows 
neurons to communicate with one another. Injury to the axons leads to degraded 
structural connectivity, which may be responsible for the cognitive deficits that are 
characteristic of mild, moderate, and severe cases of TBI (Vettel et al. 2010). 
Concussion, or mild TBI, is thought to be a less severe type of diffuse axonal injury 
where axons are damaged to a minor extent from stretching. Postmortem studies of 
brains with concussions have found axonal damage; however, because of other 
factors, such as restricted blood flow, it is not possible to isolate the cause of this 
damage and solely link it to concussions. 

While substantial work has already been performed by the Soldier Protection 
Sciences Branch to investigate axonal injury, another aspect of TBI, hemorrhage 
and other forms of vascular injury, has not been represented within the numerical 
models. In 2006 a study of head injury sustained by Soldiers in Operation Iraqi 
Freedom was completed by Dr Rocco Armonda. Of the patients in the study, 82% 
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suffered blast injury and 14% were injured by a gunshot wound. Of the entire group, 
injury to the cerebral vasculature was seen in a significant number of patients. The 
data indicate that  47% had vasospasm, 35% had a pseudoaneurysm, 12% had a 
subarachnoid hemorrhage, 3.5% had an epidural hematoma, 16% had a subdural 
hematoma, 11% had an intraventricular hemorrhage, and 14% had mixed 
hemorrhages (Armonda et al. 2006). In order for our numerical models to better 
predict the extent of injury to the Solider, a method to include the cerebral 
vasculature must be implemented. This report details one such approach, which 
builds upon existing simulation work within the Soldier Protection Sciences 
Branch, and through a postprocessing algorithm, determines the strains within the 
cerebral vascular network. 

2. Procedure 

The following approach to modeling injury to the cerebral vasculature takes 
advantage of an existing head and brain model developed within the Soldier 
Protection Sciences Branch (Kraft et al. 2010; Kraft and Dagro 2011; Kraft et al. 
2012; Dagro et al. 2013; McKee et al. 2013). The algorithm will use the results 
from those simulations to calculate the deformation and strain within a cerebral 
vascular network. The intention is to leave the existing head and brain mesh 
untouched and create an overlapping beam mesh of the cerebral vasculature 
(Fig. 1). The proposed algorithm would serve as a link between the 2 meshes such 
that deformation and strain could be mapped from the full finite element simulation 
of the head and brain onto vascular elements. Thus, the vascular model would not 
constitute a full finite element simulation on its own but rather a postprocessing of 
the results from an already existing finite element model. The deformation data 
mapped onto the vascular network can then be fed into a damage model selected by 
the user to identify the locations at greatest risk for injury. 
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Fig. 1 A 3-dimensional representation of the cerebral vasculature showing larger arteries. 
Smaller capillaries are not pictured but can also be included. 

This approach would require no alternations to the existing simulation. However, 
once the algorithm has determined the linkages between the 2 meshes, it is possible 
to use the information regarding the location and orientation of the vascular 
segments to generate an updated material model for the elements within the brain. 
The presence of the vasculature running through the brain provides an increased 
stiffness to its mechanical response. In most simulations this is not directly 
modeled, instead the stiffness of the brain tissue is increased to account for the 
vascular presence. Unfortunately, such an approach fails to capture the directional 
nature of the vascular network. Therefore, by using the location of the vasculature 
and its orientation a more accurate anisotropic material model can be employed in 
the initial head and brain simulation. As before, this would still be separate from 
the vascular model, only with new material properties defined for the elements 
containing vascular segments. 

Thus, this project will provide both a pre- and a postprocessing algorithm built 
around the linking of a solid element brain mesh with a beam network mesh for the 
cerebral vasculature. The following subsections will begin by detailing the linking 
of the 2 independent meshes, the common core of the algorithm, before moving on 
to the pre- and postprocessing portions of the code. 

2.1 Reading Mesh Information and Output Data 

To determine the links between the solid element brain mesh and the vascular 
network mesh, and manipulate the deformation data produced by the finite element 
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simulation, the proposed algorithm must be able to interface with the files generated 
by the meshing programs and the results produced by finite element codes such as 
SIERRA. Reading keyword format input files such as those used in commercial 
codes like LS-DYNA is relatively straightforward and can be done using the 
standard input and output libraries for C/C++. However, other finite element codes, 
including SIERRA, use the EXODUS II file format for both mesh data and output 
data. The EXODUS II file format was developed at Sandia National Laboratories 
specifically to store and retrieve data for finite element analyses. To interface with 
the files in the EXODUS II format, special libraries and commands are required 
that are not included in standard C/C++ packages. 

The files necessary to generate the EXODUS II libraries are available and can be 
retrieved from sites like SourceForge.net. The user manual is included in 
Appendix A. A sample input file is provided in Appendix B and alternate format 
for postprocessing data is provided in Appendix C.  A list of useful EXODUS II 
commands is included in Appendix D. 

2.2 Relating Vessel Locations to Brain Mesh 

Since the initial locations of the nodes and elements associated with the brain mesh 
are independent of the location of the nodes and elements associated with the 
vascular mesh, an algorithm is needed to relate the 2. It is necessary to know which 
solid (brain) element contains a given beam (vascular) element to calculate the 
strains in the vascular mesh, and use the orientation of the vasculature to inform the 
anisotropic response of the surrounding brain tissue. However, because most of the 
calculations are done in an element reference domain, as opposed to the physical 
(x, y, z) domain, it is also necessary to relate a given point on a beam element 
(x, y, z) to the reference coordinates (𝜉𝜉, 𝜂𝜂, 𝜁𝜁) for the surrounding solid element as 
shown in Fig. 2. 
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Fig. 2 Mapping from the current domain (x, y, z-space) to the element domain (𝝃𝝃,𝜼𝜼, 𝜻𝜻-
space) 

Mapping a point from the element domain to the physical domain can be done with 
the element shape functions, 𝑁𝑁𝑎𝑎, and the location of the nodes in the physical 
domain, 𝑋𝑋�𝑎𝑎, using the following equation: 

  (1) 

where NEN is the number of nodes and shapes functions associated with that 
element. For a typical simulation of the brain and head, the solid elements will be 
either trilinear hexahedral elements or linear tetrahedral elements. The shape 
functions for a trilinear hexahedral element are 

 𝑁𝑁𝑎𝑎(𝜉𝜉, 𝜂𝜂, 𝜁𝜁) = 1
8

(1 + 𝜉𝜉𝑎𝑎𝜉𝜉)(1 + 𝜂𝜂𝑎𝑎𝜂𝜂)(1 + 𝜁𝜁𝑎𝑎𝜁𝜁), (2) 

where the parameters for the shape functions are given in Table 1. 

Table 1 Hexahedral shape function parameters 

a 𝝃𝝃𝒂𝒂 𝜼𝜼𝒂𝒂 𝜻𝜻𝒂𝒂 
1 –1 –1 1 
2 1 –1 1 
3 1 1 1 
4 –1 1 1 
5 –1 –1 –1 
6 1 –1 –1 
7 1 1 –1 
8 –1 1 –1 

 
  

𝑋𝑋 = �𝑁𝑁𝑎𝑎𝑋𝑋�𝑎𝑎
𝑁𝑁𝑁𝑁𝑁𝑁

𝑎𝑎=1

, 
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The shape functions for the linear tetrahedral elements are as follows: 

 𝑁𝑁1(𝜉𝜉, 𝜂𝜂, 𝜁𝜁) = 𝜉𝜉 , (3) 

 𝑁𝑁2(𝜉𝜉, 𝜂𝜂, 𝜁𝜁) = 𝜂𝜂 ,  (4) 

 𝑁𝑁3(𝜉𝜉, 𝜂𝜂, 𝜁𝜁) = 𝜁𝜁 , and (5) 

 𝑁𝑁4(𝜉𝜉, 𝜂𝜂, 𝜁𝜁) = 1 − 𝜉𝜉 − 𝜂𝜂 − 𝜁𝜁 . (6) 

While the shape functions are a convenient way to map from (𝜉𝜉, 𝜂𝜂, 𝜁𝜁) to (x, y, z), 
what is required here is the reverse mapping (x, y, z) to (𝜉𝜉, 𝜂𝜂, 𝜁𝜁). While this can be 
derived for a linear tetrahedral element, a solution cannot be simply written for a 
general trilinear hexahedral element. Instead we must employ a solution technique 
such as Newton’s method to solve the nonlinear system of equations. Because this 
approach is computationally intensive, the search algorithm is broken up into an 
initial coarse search, which is inexpensive to perform, followed by a fine search 
where Newton’s method is employed. For large meshes, the reduction in 
computational time can be significant. 

Prior to initiating the coarse search, the location of centroid, 𝑋𝑋𝑐𝑐, for each solid 
element is calculated 

 . (7) 

Following that, the radius of the smallest sphere containing all points within a given 
element and centered at the element’s centroid is calculated (Fig. 3). 

 

Fig. 3 The centroid of the element and sphere just large enough to contain all of the points 
within the element 

To perform the coarse search, the distance from the centroid of each solid element 
to a given point in the vascular mesh is calculated. If that distance is less than or 
equal to the previously calculated radius associated with that solid element, then 

𝑋𝑋𝑐𝑐 =
1

𝑁𝑁𝑁𝑁𝑁𝑁
� 𝑋𝑋�𝑎𝑎
𝑁𝑁𝑁𝑁𝑁𝑁

𝑎𝑎=1
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the element potentially contains that point and a fine level search is required. If the 
distance to the point is greater than the radius, then the point cannot fall within the 
element, and the fine level search is unnecessary. 

The fine level search will determine whether the point truly falls within the element, 
like point p2 in Fig. 4, or if it is still outside, like point p1. To do this we must solve 
the following system of equations for 𝜉𝜉, 𝜂𝜂, 𝜁𝜁: 

 , (8) 

where 𝑋𝑋�𝑎𝑎 are the nodal positions for the given element and 𝑋𝑋 is the location of the 
vascular point in the physical domain, both known quantities. To begin we rewrite 
this as a function, 𝑓𝑓 �𝜉𝜉� = �∑ 𝑁𝑁𝑎𝑎 �𝜉𝜉�𝑋𝑋�𝑎𝑎𝑁𝑁𝑁𝑁𝑁𝑁

𝑎𝑎=1 � − 𝑋𝑋 = 0, where the coordinates 
𝜉𝜉, 𝜂𝜂, 𝜁𝜁 have been rewritten as the vector 𝜉𝜉. Without knowing the value of 𝜉𝜉 that 
satisfies the equation, we can make an initial guess, 𝜉𝜉0, and Taylor expand about it 

 
.
 (9) 

 

Fig. 4 Points contained within the sphere can also be contained by the element, although it 
is not necessarily so 

Dropping higher order terms, we can solve for 𝜉𝜉1. This new solution can be 
substituted for the previous guess and process repeated, giving us the following 
equation: 

 𝜉𝜉𝑛𝑛+1 = 𝜉𝜉𝑛𝑛 − �
𝜕𝜕𝑓𝑓�𝜉𝜉𝑛𝑛�

𝜕𝜕𝜉𝜉
�
−1

∙ 𝑓𝑓 �𝜉𝜉𝑛𝑛�. (10) 

The gradient of 𝑓𝑓 �𝜉𝜉� can be calculated from the shape functions and the nodal 
positions 

�� 𝑁𝑁𝑎𝑎(𝜉𝜉, 𝜂𝜂, 𝜁𝜁)𝑋𝑋�𝑎𝑎
𝑁𝑁𝑁𝑁𝑁𝑁

𝑎𝑎=1

� − 𝑋𝑋 = 0 

0 = 𝑓𝑓 �𝜉𝜉0� + �
𝜕𝜕𝑓𝑓 �𝜉𝜉0�
𝜕𝜕𝜉𝜉

� �𝜉𝜉1 − 𝜉𝜉0� + … 
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 . (11) 

This is a 3 × 3 second order tensor and can be easily inverted as long as the elements 
are convex. The error is defined as 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �𝑓𝑓 �𝜉𝜉𝑛𝑛��
2

= �𝑓𝑓 �𝜉𝜉𝑛𝑛� ∙ 𝑓𝑓 �𝜉𝜉𝑛𝑛� . (12) 

For the given problem, this method typically converges to an error of less than 1 ×
10−6 within 1–3 iterations. 

The coordinates of the vascular point in the element reference domain can then be 
compared with the bounds of the element. For the hexahedral element, the 
coordinates must fall between –1 and 1: 

 −1 ≤ (𝜉𝜉, 𝜂𝜂, 𝜁𝜁) ≤ 1 . (13) 

And for the tetrahedral element the coordinates must fall between 0 and 1: 

 0 ≤ (𝜉𝜉, 𝜂𝜂, 𝜁𝜁) ≤ 1. (14) 

If the coordinates fall within that range, then the point is contained in the current 
element, and the search can terminate. If any of the coordinates for the vascular 
point are outside of that range, the point is not within the current element, and the 
search algorithm moves on to the next element and continues with the coarse 
search. 

2.3 Preprocessing Algorithm 

In addition to the goal of linking the solid element head/brain model with the beam 
element vascular model to predict the strains and potential damage to the 
vasculature, the vascular model can also be used to improve the accuracy of the 
head/brain model. The vascular structure within the brain and along its surface 
provides a stiffening effect and will influence its deformation. In most numerical 
models the vascular structure is not included. Instead the brain matter and 
vasculature are merged into a single homogenous material with properties stiffer 
than white or grey matter would have on their own. Although this approximation is 
commonly used, it does not take into account the structured nature of the 
vasculature, and the effect is applied as an isotropic increase in stiffness instead of 
the more appropriate anisotropic increase in stiffness. The presence of the 
vasculature can be included as an additional anisotropic term in the constitutive 
model for the brain tissue based on the direction of the vessels embedded within a 

𝜕𝜕𝑓𝑓 �𝜉𝜉�
𝜕𝜕𝜉𝜉

= �� 𝑋𝑋�𝑎𝑎
𝑁𝑁𝑎𝑎 �𝜉𝜉�
𝜕𝜕𝜉𝜉

𝑁𝑁𝑁𝑁𝑁𝑁

𝑎𝑎=1

� 
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given element. However, let us begin by looking at the material model for the brain 
prior to the inclusion of the vasculature term. 

In many biological tissues, fibers or bundles of cells are aligned in uniform 
directions. As a result, isotropic materials models are insufficient for capturing the 
mechanical behavior. For the white matter within the brain, axon bundles form 
complex fiber tracts as they connect and facilitate communicate between different 
regions in the brain. These axonal fiber tracts have been reported to be 
approximately 3 times stiffer than the surrounding matrix material and thus play an 
important role in the mechanical response of the brain (Arbogast and Margulies 
1999). To model the white matter we will use a transversely isotropic hyperelastic 
material, where the fiber tract directions are determined from diffusion tensor 
imaging (DTI) data (Kraft and Dagro 2011). 

To describe the material model we must first define some basic kinematic concepts. 
The deformation gradient is defined as 

 𝐹𝐹 = 𝑑𝑑𝑥𝑥
𝑑𝑑𝑋𝑋

 , (15) 

where 𝑋𝑋 is the position of a material point in the reference (undeformed) 
configuration and 𝑥𝑥 is the position of the same material point in the current 
(deformed) configuration. The reference configuration refers to the undeformed 
physical domain, not the element’s reference domain. The ratio of the deformed 
volume to the undeformed volume is given by the Jacobian, the determinant of the 
deformation gradient 

 𝐽𝐽 = 𝑑𝑑𝑑𝑑𝑑𝑑 �𝐹𝐹� . (16) 

It is often beneficial to perform a multiplicative decomposition of 𝐹𝐹 into volume-

changing (dilatational) and volume-preserving (distortional) parts to separate the 
bulk and the shear response. To accomplish this, a deviatoric deformation gradient 
in which the volume change is eliminated is defined as 

 𝐹𝐹 = 𝐽𝐽−1/3𝐹𝐹 . (17) 

We can then define a modified right Cauchy-Green tensor 

 𝐶𝐶 = 𝐹𝐹
𝑇𝑇
𝐹𝐹 . (18) 

The modified principle invariants of the right Cauchy-Green deformation tensor are 
defined as 

 𝐼𝐼1 = 𝑡𝑡𝑡𝑡𝐶𝐶 ,  (19) 
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 𝐼𝐼2 = 1
2
��𝑡𝑡𝑡𝑡𝐶𝐶�

2
− 𝑡𝑡𝑡𝑡 �𝐶𝐶

2
�� ,  (20) 

and  

 𝐼𝐼3 = 𝑑𝑑𝑑𝑑𝑑𝑑𝐶𝐶 = �𝑑𝑑𝑑𝑑𝑑𝑑𝐹𝐹�
2

= 1 . (21) 

For the modified right Cauchy-Green tensor, because the volume change has been 
eliminated, the third principle invariant will always be one. To capture the 
anisotropic nature of the white matter we introduce a unit vector 𝑎𝑎0, assigned using 
DTI data that describes the direction of the fiber in the undeformed reference 
configuration. We can then define 2 additional invariants based on the fiber 
direction 

 𝐼𝐼4 = 𝑎𝑎0 ∙ 𝐶𝐶 𝑎𝑎0 ,  (22) 

 𝐼𝐼5 = 𝑎𝑎0 ∙ 𝐶𝐶
2
𝑎𝑎0 ,  (23) 

where 𝐼𝐼4 and 𝐼𝐼5 arise from the anisotropy and describe the deformation of the fiber 
family. It should be noted that 

 𝐼𝐼4 = 𝑎𝑎0 ∙ 𝐶𝐶 𝑎𝑎0 = 𝐽𝐽−2/3𝑎𝑎 ∙ 𝑎𝑎 = 𝐽𝐽−2/3𝜆𝜆2 , (24) 

where 𝑎𝑎 = 𝐹𝐹 𝑎𝑎0 is the direction of the fiber in the current configuration and 𝜆𝜆 is the 

stretch in the fiber bundle. Thus, 𝐼𝐼4 will also be useful in evaluating strain based 
injury criteria for the axon fiber bundles (Kleiven 2007). To take into account the 
presence of the vasculature we define 2 more invariants 

 𝐼𝐼6 = 𝑏𝑏0 ∙ 𝐶𝐶 𝑏𝑏0 ,  (25) 

 𝐼𝐼7 = 𝑏𝑏0 ∙ 𝐶𝐶
2
𝑏𝑏0 , (26) 

where 𝑏𝑏0 is the direction associated with the vasculature in the undeformed 
configuration. 

The strain energy, Ψ, of the transversely isotropic hyperelastic material can be 
written as a function of the modified principle invariants along with the Jacobian, 
which describes the change in volume. Assuming that the responses of the fibers 
and the matrix material are not strongly coupled, we can choose to separate the 
strain energy into a linear combination of the isotropic and anisotropic components 

 Ψ�𝐼𝐼1, 𝐼𝐼2, 𝐽𝐽, 𝐼𝐼4, 𝐼𝐼5� = Ψiso�𝐼𝐼1, 𝐼𝐼2, 𝐽𝐽� + Ψaniso�𝐼𝐼4, 𝐼𝐼5�, (27) 

where Ψiso�𝐼𝐼1, 𝐼𝐼2, 𝐽𝐽� describes the response of the isotropic matrix and 
Ψaniso�𝐼𝐼4, 𝐼𝐼5� describes the directional contribution of the reinforcing fiber 
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bundles. We can then select an appropriate isotropic strain energy function for the 
matrix component such as a Neo-Hookean or Mooney-Rivlin material model. For 
the anisotropic response it is suggested to select a Fung material model that includes 
the exponential behavior characteristic of most soft tissues 

 Ψaniso�𝐼𝐼4� = 𝑘𝑘1 �𝑒𝑒𝑒𝑒𝑒𝑒 �𝑘𝑘2�𝐼𝐼4 − 1�� − 𝐼𝐼4�, (28) 

where 𝑘𝑘1 and 𝑘𝑘2 are material constants obtained from a parameter fit to 
experimental data. This is purely a simple example of a Fung material. Depending 
on the available data a more complex constitutive model for the fibers may be 
preferred (Weiss et al. 1996; Holzapfel 2000; Ning et al. 2006). 

As with the axonal fibers, the direction of the vessels embedded within a given 
element can be used to add an anisotropic component to the constitutive equation. 
In the case where only a single vessel segment is contained in the element, the 
direction is simply determined from the position of the vessel segment’s 2 end 
points. However, there will often be cases where multiple segments are contained 
within a single element. In those cases a single average direction must be 
determined. This can be done by adding the directions of the segments and then 
normalizing to create a unit vector. However, the ordering of the nodes within a 
segment can cause the direction of the jth segment to be either 𝑑𝑑𝑖𝑖 or –𝑑𝑑𝑖𝑖, since  

 𝑑𝑑𝑖𝑖 = 𝑥𝑥2
𝑗𝑗 − 𝑥𝑥1

𝑗𝑗,  (29) 

where 𝑥𝑥1
𝑗𝑗and 𝑥𝑥2

𝑗𝑗 are the locations of the nodes on either end of the jth segment. Two 
parallel segments of a vessel could potentially cancel each other out depending on 
the number of the nodes (Fig. 5). To prohibit this from happening, an additional 
term is included in the vector sum to flip the directions as needed. The average 
vessel direction is calculated with the following equation: 

  (30) 

where 𝑠𝑠𝑖𝑖 is a sign term (𝑠𝑠𝑖𝑖 = ±1) described by the equation 

 
𝑠𝑠𝑖𝑖 = 1; 𝑖𝑖 = 1

𝑠𝑠𝑖𝑖 =
𝑑𝑑𝑖𝑖∙�∑ 𝑠𝑠𝑗𝑗𝑑𝑑𝑗𝑗𝑖𝑖−1

𝑗𝑗=1 �

�𝑑𝑑𝑖𝑖∙�∑ 𝑠𝑠𝑗𝑗𝑑𝑑𝑗𝑗𝑖𝑖−1
𝑗𝑗=1 ��

; 𝑖𝑖 > 1 . (31) 

For the initial segment 𝑠𝑠1 = 1, and for all the following segments 𝑠𝑠𝑖𝑖 is used to 
determine whether or not to flip the ith segment based on the sum of the preceding 
segment directions. 

𝑏𝑏0 =
∑ 𝑠𝑠𝑖𝑖𝑑𝑑𝑖𝑖𝑛𝑛
𝑖𝑖=1

�∑ 𝑠𝑠𝑖𝑖𝑑𝑑𝑖𝑖𝑛𝑛
𝑖𝑖=1 �
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Fig. 5 Depending on order of the nodes in each vessel element, 2 parallel vessel segments 
could have opposite directions. In the vector sum these will cancel, so the direction segment 
must therefore be flipped. 

Using the average vessel direction, we can calculate our 6th invariant (𝐼𝐼6 = 
𝑏𝑏0 ∙ 𝐶𝐶 𝑏𝑏0) and use it to create an additional term within the anisotropic portion on 

the constitutive equation. As with the response of the fiber tracts, we employ a 
simple exponential Fung type material model 

Ψaniso�𝐼𝐼4, 𝐼𝐼6� = 𝑘𝑘1 �𝑒𝑒𝑒𝑒𝑒𝑒 �𝑘𝑘2�𝐼𝐼4 − 1�� − 𝐼𝐼4� + 𝑘𝑘3 �𝑒𝑒𝑒𝑒𝑒𝑒 �𝑘𝑘4�𝐼𝐼6 − 1�� − 𝐼𝐼6�. (32) 

The calculation for the average direction works well when summing multiple 
segments that are close to parallel. However, when segments are nearly 
perpendicular an average direction does not have much physical significance. Take 
the example of an element containing 3 perpendicular fiber segments of equal 
length. For the sake of simplicity, let those sections be aligned with the x, y, and z 
axes. The average direction would be the sum of these vectors: 

 𝑒𝑒𝑥𝑥 + 𝑒𝑒𝑦𝑦 + 𝑒𝑒𝑧𝑧 = �
1
0
0
� + �

0
1
0
� + �

0
0
1
� = �

1
1
1
�. (33) 

And that sum is then normalized to calculate the directional vector associated with 
that element: 

 𝑏𝑏0 = 1
√3
�
1
1
1
�. (34) 

However, because these vectors making up the sum are perpendicular, other vectors 
would be equally valid as the segment vectors could be defined as ± 𝑒𝑒𝑖𝑖 and thus 

 𝑏𝑏0 = ± 1
√3
�
−1
1
1
�,  𝑏𝑏0 = ± 1

√3
�

1
−1
1
�,  𝑏𝑏0 = ± 1

√3
�

1
1
−1

� (35) 
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are also possible solutions. In truth, there should be no preferred direction for this 
element. So we introduce a scale factor to allow the user to take this into account 
when creating the material model. This scaling factor is defined as the sum of the 
absolute values of the dot product of the segments, 𝑑𝑑𝑖𝑖, with the previously 
calculated directional vector, 𝑏𝑏0, divided by the sum of the lengths of the segment 
vectors 

 𝑓𝑓 = ∑ �𝑏𝑏0∙𝑑𝑑𝑖𝑖�𝑛𝑛
𝑖𝑖=1
∑ �𝑑𝑑𝑖𝑖�𝑛𝑛
𝑖𝑖=1

 . (36) 

This allows the length of each directional vector to act as a weight in the sum. The 
maximum value for the scaling factor, when all of the segments are aligned, is 
therefore one. For the special case where there are 3 segment vectors of equal length 
but perpendicular to one another, the scale factor would be 1

√3
 or 0.57735. As a 

result we expect our scaling factor to have a range of  1
√3
≤ 𝑓𝑓 ≤ 1. We can adjust 

that range by defining a new scaling factor 

 𝑓𝑓 = 3+√3
2

�∑ �𝑏𝑏0∙𝑑𝑑𝑖𝑖�𝑛𝑛
𝑖𝑖=1
∑ �𝑑𝑑𝑖𝑖�𝑛𝑛
𝑖𝑖=1

− 1
√3
� , (37) 

such that 0 ≤ 𝑓𝑓 ≤ 1. This scaling factor is a measure of the correlation between 
fiber directions and can be considered a measure of the anisotropy introduced by 
the presence of the vasculature. Highlight-aligned vasculature will leave to a 
scaling factor of close to 1 and have a highly anisotropic effect on the overall 
response. Conversely, evenly distributed perpendicular vessels will lead to a scaling 
factor of close to zero and have a more isotropic effect on the overall response. The 
preprocessing algorithm reports the scaling factor for each element along with the 
directional vector, 𝑏𝑏0. It is suggested that the updated scaling factor, 𝑓𝑓, be used to 
weight the anisotropic portion of the constitutive equation that corresponds to the 
vascular structure 

Ψaniso�𝐼𝐼4, 𝐼𝐼6� = 𝑘𝑘1 �𝑒𝑒𝑒𝑒𝑒𝑒 �𝑘𝑘2�𝐼𝐼4 − 1�� − 𝐼𝐼4� + 𝑓𝑓𝑘𝑘3 �𝑒𝑒𝑒𝑒𝑒𝑒 �𝑘𝑘4�𝐼𝐼6 − 1�� − 𝐼𝐼6� .  
  (38) 

To account for the isotropic stiffening effect of perpendicularly aligned vessels 
(cases where 𝑓𝑓 is close to zero), the isotropic component of constitutive equation 
can also be updated 

 Ψ�𝐼𝐼1, 𝐼𝐼2, 𝐽𝐽, 𝐼𝐼4, 𝐼𝐼5� = �1 + κ∗�1 − 𝑓𝑓��Ψiso�𝐼𝐼1, 𝐼𝐼2, 𝐽𝐽� + Ψaniso�𝐼𝐼4, 𝐼𝐼5� . (39) 

Here the material constant, κ∗, represents the traditional artificial isotropic 
stiffening of the brain tissue due to the presence of the vessels. As the vessels are 
more uniformly aligned, that term goes to zero and the anisotropic term takes over. 
If the vessels are randomly oriented and 𝑓𝑓 approaches zero, the additional 
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anisotropic term vanishes and isotropic stiffness is increased. This code merely 
provides a calculation for the average vessel direction and the scale factor. The 
decision on whether or not to use this data to alter the material model and how it is 
used within the constitutive equation, is left to the end user. 

2.4 Postprocessing Algorithm 

To calculate the potential damage in the vascular structure we must be able to map 
to the deformation from the results of the brain simulation onto the vascular mesh. 
The algorithm described in Section 2.2 has determined the solid element containing 
each vessel segment. It has also determined the corresponding coordinates in the 
element’s reference domain. Combining this information with the output data from 
the simulation of the brain simulation will allow us to determine the strains within 
the vascular network. Although the initial locations of the vascular nodes are not 
related to the nodes in the brain mesh, the vascular nodes are treated as material 
points within the brain mesh. Thus, as the brain mesh deforms, so too do the 
vascular nodes. It is that deformation which the postprocessing algorithm will 
determine. 

The finite element simulation produces an approximate solution, 𝑢𝑢ℎ, for the 
displacement, which is a function of the degrees of freedom, 𝑢𝑢�𝑖𝑖, and the shape 
functions, 𝑁𝑁𝑖𝑖. Both of these correspond to specific nodes within the descritized 
finite element mesh. 

 . (40) 

While the displacement is a function of the position within the mesh, the 𝑢𝑢�𝑖𝑖’s are 
constants. For a given element, only the shape functions corresponding to nodes 
within that element have nonzero values. So, to determine the deformation we only 
need to sum over the 𝑢𝑢�𝑖𝑖 and 𝑁𝑁𝑖𝑖 values corresponding to nodes within that element. 
To determine the gradient of the displacement we take advantage of the fact that 
the 𝑢𝑢�𝑖𝑖’s are constants and move the 𝑑𝑑

𝑑𝑑𝑋𝑋
 within the sum. Thus the gradient of the 

displacement is just the sum of those constants times the gradient of the 
corresponding shape function at the current coordinate 

 . (41) 

However, in practice the shape functions are written in terms of the element 
reference domain’s coordinates, so 𝑁𝑁�𝑖𝑖 �𝜉𝜉�, and not the physical domain’s 
coordinates, 𝑁𝑁𝑖𝑖�𝑋𝑋�. The gradient of the shape functions with respect to the physical 

𝑢𝑢�𝑋𝑋� ≈ 𝑢𝑢ℎ�𝑋𝑋� = � 𝑢𝑢�𝑖𝑖𝑁𝑁𝑖𝑖�𝑋𝑋�
𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖=1

 

𝑑𝑑𝑢𝑢
𝑑𝑑𝑋𝑋

= � 𝑢𝑢�𝑖𝑖
𝑑𝑑𝑑𝑑𝑖𝑖�𝑋𝑋�
𝑑𝑑𝑋𝑋

𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖=1
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coordinates can be rewritten as the gradient with respect to the reference domain’s 
coordinates multiplied by the derivative of the reference coordinate with respect to 
the physical coordinate 

 𝑑𝑑𝑁𝑁𝑖𝑖�𝑋𝑋�
𝑑𝑑𝑋𝑋

=
𝑑𝑑𝑁𝑁�𝑖𝑖�𝜉𝜉�

𝑑𝑑𝜉𝜉

𝑑𝑑𝜉𝜉

𝑑𝑑𝑋𝑋
 . (42) 

For general trilinear hexahedral elements it is not possible to write a simple 
expression for 𝜉𝜉 in terms of 𝑋𝑋; however, there is a simple expression for 𝑋𝑋 as a 
function of 𝜉𝜉 

  (43) 

where 𝑁𝑁�𝑖𝑖 are the same shape functions as before and 𝑋𝑋�𝑖𝑖 are the coordinates of the 
element’s nodes in the physical domain. This can then be easily differentiated to 
give us 

 . (44) 

The resulting 3 × 3 tensor can then be inverted to provide the gradient of 𝜉𝜉 with 
respect to 𝑋𝑋 

 
𝑑𝑑𝜉𝜉

𝑑𝑑𝑋𝑋
= �𝑑𝑑𝑋𝑋

𝑑𝑑𝜉𝜉
�
−1

. (45) 

With the gradient of the descritized displacement determined, we can calculate the 
strain at the desired location in the brain mesh. This is the strain that the 
corresponding point in the vascular mesh will experience 

 𝐸𝐸 = 1
2
�𝑑𝑑𝑢𝑢
𝑑𝑑𝑋𝑋

+ 𝑑𝑑𝑢𝑢
𝑑𝑑𝑋𝑋

𝑇𝑇
+ 𝑑𝑑𝑢𝑢

𝑑𝑑𝑋𝑋

𝑇𝑇
∙ 𝑑𝑑𝑢𝑢
𝑑𝑑𝑋𝑋
� . (46) 

This calculation is for the Green-Lagrange strain tensor. While it is beneficial to 
have the entire strain tensor, we are especially interested in the stretch along the 
fiber axis. As mentioned in Section 2.3, the stretch along the fiber axis is related to 
our 6th principal invariant 

 𝐼𝐼6 = 𝑏𝑏0 ∙ 𝐶𝐶 𝑏𝑏0 = 𝑏𝑏 ∙ 𝑏𝑏 = 𝜆𝜆2, (47) 

where 𝑏𝑏0 is the unit vector describing the direction of the fiber and 𝐶𝐶 is the right 

Cauchy-Green tensor. The right Cauchy-Green tensor is related to the strain 
through the following equation: 

𝑋𝑋 = �𝑋𝑋�𝑖𝑖𝑁𝑁�𝑖𝑖 �𝜉𝜉�
𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖=1

 

𝑑𝑑𝑋𝑋
𝑑𝑑𝜉𝜉

= �𝑋𝑋�𝑖𝑖
𝑑𝑑𝑁𝑁�𝑖𝑖 �𝜉𝜉�
𝑑𝑑𝜉𝜉

𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖=1
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 𝐶𝐶 = 2𝐸𝐸 + 𝐼𝐼 . (48) 

The postprocessing algorithm creates a data file containing the element IDs for the 
vessel segments, the 6 unique components of the Green-Lagrange strain (𝐸𝐸𝑥𝑥𝑥𝑥, 𝐸𝐸𝑦𝑦𝑦𝑦, 
𝐸𝐸𝑧𝑧𝑧𝑧, 𝐸𝐸𝑥𝑥𝑥𝑥, 𝐸𝐸𝑦𝑦𝑦𝑦, 𝐸𝐸𝑧𝑧𝑧𝑧), and the stretch (𝜆𝜆) along the segment axis. These data are 
repeated for each time step reported by the output of the solid mesh simulation. 

3. Example 

To demonstrate the capabilities of this code, a sample mesh was generated using 
trilinear hexahedral elements. This mesh is intended to represent a small section of 
the larger brain mesh. Figure 6 shows 2 views of this mesh. The mapping from the 
physical domain to the element’s reference domain is greatly simplified in the event 
of cubic elements or rectangular cuboids. Therefore, the shape of the mesh was 
chosen so as to force the individual elements to avoid these simpler shapes and 
better demonstrate the abilities of the code.  
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Fig. 6 Solid element mesh representing a portion of the larger mesh 

The vascular network mesh can be seen in Fig. 7. This mesh occupies the same 
physical space as the solid element brain mesh but does not share any of its 
geometry. The nodes and edges of the 2 meshes do not necessarily coincide. As the 
vessels move away from their starting point, they branch and alter direction, 
creating irregular paths through space. 
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Fig. 7 Vascular structure made up of 1-D elements 

The mapping algorithm identifies the elements containing each of the vessel 
segments and determines the location of the vessel in terms of the element’s 
reference coordinates. Figure 8 shows the vascular network overlaid on the solid 
element mesh. Using the results of the mapping algorithm, only the elements 
containing a vessel segment are displayed. For this example the vessels continue 
on their paths until they have left the solid mesh. Endpoints of the vessels in the 
image on the right of Fig. 8 can be seen outside of any element. This is not an error 
in the code, this is because they are outside the boundaries of the solid mesh and 
thus are not contained within any element. These free endpoints will not be a factor 
in any of the calculations in either the pre- or postprocessing algorithm. 
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Fig. 8 Vascular structure and solid elements containing vessels 

3.1 Preprocessing Results 

Using the preprocessing algorithm, every element containing a vessel segment was 
assigned a directional vector, 𝑏𝑏0, and a scale factor as a measure of the correlation 
between the directions of the vessel segments. Table 2 shows a sample of the data 
reported by the preprocessing algorithm. Because of the irregular paths and 
branching vessels, the scale factor shows a value less than one when multiple 
segments were present within a single element due to variations in the directions of 
the individual segments. 
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Table 2 Preprocessing data for a sample of the solid elements containing vascular segments 

Element X Y Z Scale, 𝒇𝒇�  
84 0.369179 0.897098 0.771899 1.0 

156 0.585461 0.375538 0.718475 0.549186 
157 0.455495 0.470486 0.755756 0.791908 
164 0.213751 0.930328 0.297994 0.819901 
172 0.737664 0.670064 -0.082860 1.0 
173 0.933215 0.340099 -0.115940 0.761922 
174 0.556493 0.665586 0.497304 0.812248 
182 0.303811 0.851047 0.428273 0.389745 
190 0.554413 0.826289 -0.099359 1.0 
222 0.793040 0.311000 0.523800 1.0 
230 0.193325 0.740923 0.643163 0.573547 
231 0.581279 0.548160 0.601362 0.753829 

3.2 Postprocessing Results 

To examine the mapping of strains from the solid mesh to the vessel network, the 
solid mesh was subjected to a time varying strain that also varied nonlinearly with 
position. The displacement values are defined at the nodes of the solid mesh only, 
not the nodes of the vascular mesh. The displacement field defined over the solid 
mesh was then mapped onto the vascular mesh, and the strains in the vessel 
segments were calculated. Figure 9 shows a plot of the vascular network with the 
color of the vessel segments indicating the amount of stretch in each. As expected, 
the vessel segments in the regions where solid elements have the largest strain also 
exhibited the largest strain values. However, fiber direction plays a role as well 
since the stretch along the fiber axis is a function of the fiber’s direction 

 𝜆𝜆 = �𝑏𝑏0 ∙ 𝐶𝐶 𝑏𝑏0 . (49) 

Thus, there is additional variation in the stretch and axial strain within the fibers 
due to variations in their orientations. Merely calculating the strain within the solid 
mesh does not provide enough information to make an accurate prediction of the 
potential for damage in the vasculature; the direction of the vessel segments must 
be taken into account. 
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Fig. 9 Axial stretch in the vessels, ranging from 1 (undeformed) to 1.5 (50% elongation) 

4. Conclusion 

TBI is a serious concern in both the military and civilian population. Even when 
nonfatal, injury to the brain has the potential for lifelong repercussions. For the 
Soldier, blast-induced TBI is of particular concern. While significant research has 
been done on models to predict TBI, many of them have focused on axonal injury 
and often neglect the possible presence of damage to the cerebral vasculature. 
During Operation Iraqi Freedom, a study of Soldiers at Walter Reed Army Medical 
Center suffering TBI found that 47% had vasospasm, 35% had a pseudoaneurysm, 
12% had a subarachnoid hemorrhage, 3.5% had an epidural hematoma, 16% had a 
subdural hematoma, 11% had an intraventricular hemorrhage, and 14% had mixed 
hemorrhages (Armonda et al. 2006). Injuries such as vasospasm and 
pseudoaneurysm can lead to further damage to the brain over time. Intracranial 
hemorrhages and hematomas can be life threatening and often require immediate 
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intervention. While damage to the vasculature is a common feature of TBI, many 
numerical models for the brain do not include the vascular structures within the 
brain and thus are incapable of predicting damage to the cerebral vasculature. This 
work developed a code capable of postprocessing an existing head and brain model 
to determine the deformation in a corresponding cerebral vasculature mesh. With 
this information, the user can then input the stretches and strains of the vasculature 
into a damage model of their choice to predict potential vascular injury. The code 
is also capable of using the geometry of the cerebral vasculature to provide 
information for an updated anisotropic material model, allowing the directional 
nature of the vessels to inform the material response of the surrounding brain tissue. 

This approach is particularly desirable because it builds upon an existing head and 
brain model currently in use by the Soldier Protection Sciences Branch at the US 
Army Research Laboratory. Whereas developing an entirely new head model and 
mesh would be extremely time consuming, this code can be immediately put into 
use with the existing simulations. Another important feature of this model is that 
the topography of the brain and vascular meshes can be independent of one another. 
Other approaches to linking a solid mesh with 1-dimensional (1-D) network often 
require that the locations of the nodes and edges in the 2 meshes coincide. For the 
complex geometry of the brain and cerebral vasculature, this requirement would 
impose severe restrictions on the brain mesh, potentially increasing simulation time 
or even making effective meshing impossible. This approach places no such 
restrictions on either mesh and requires no changes to the existing head and brain 
model. Another important feature of this code is that it can be used to help improve 
the material model for the brain. The presence of the vasculature within the brain 
produces a reinforcing effect and leads to an increase in the effective stiffness of 
the combined brain-vascular material. While many simulations account for this 
with isotropic increases to the stiffness of the brain’s material model, this code can 
be used to assign directional values to that increased stiffness and lead to a more 
accurate anisotropic material model. Finally, this code gives the user a great deal 
of flexibility in how they determine the damage in the vasculature. Since the raw 
strain and axial stretch data for the vessel segments are reported at each output step, 
the user can use whatever damage model they deem most appropriate. Although 
this approach has many strengths, there are some limitations. The model does not 
currently account for fluid flow within the arteries and the corresponding internal 
pressure of the vessels. Also, since it uses a 1-D approximation of the vessels, any 
damage model must be simplified. However, both of these limitations can be 
addressed through future work. 

There are a number of new features that would be desirable if work on the project 
continues. In regards to the preprocessing algorithm, inclusion of data on the 
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thickness of the vessels could be used to provide more accurate anisotropic material 
constants. Larger vessels would have a more pronounced effect on the stiffening of 
the surrounding brain tissue; therefore the thickness of the segments could be used 
to provide an additional scaling term for the constitutive equation. Furthermore, a 
secondary simulation could be created to model the fluid flow within the arteries. 
Using a pressure gradient to drive the blood flow, and the external pressure induced 
by a blast wave through the surrounding brain elements, an approximation for the 
time varying internal pressure of the vasculature could theoretically be created. 
When this internal pressure calculation is used along with a mapping of the external 
pressure from the brain, a measure of the compressive stress through the thickness 
of the vascular walls could be attained. This compressive wall stress is likely an 
important contributor to and predictor of vasospasm in the arteries. Finally, future 
work could directly model the largest cerebral vascular structures in the head and 
brain model, relying on this approach for only the smaller scale vasculature. 
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Appendix A. User Manual 
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To read the mesh files used in SIERRA, this program requires the EXODUS II C 
and C++ libraries. The files necessary to generate the EXODUS II library can be 
found at sourceforge.net. These must be compiled and the location of the EXODUS 
library must be linked when the cerebral vascular injury code is compiled. It is also 
possible to read in the mesh data using LS-DYNA keyword format; however, the 
EXODUS II library is still necessary to compile the code. If the user wishes to avoid 
using the Exodus libraries, it is recommended to create a separate copy of this code 
with the “include<exodusII.h>” line removed or commented out and all of the 
EXODUS specific functions in the body of the code. 

A-1 General Input File Commands 

$ at the beginning of a line denotes a comment. Any information following the $ 
will be ignored 

*PREPROCESS  ON/OFF 
Determines whether the preprocessing algorithm is run to assign average directions 
to the brain elements. Acceptable inputs are on, On, ON, off, Off, or OFF. If the 
command is omitted, the simulation treats it as off. 
 
*POSTPROCESS  ON/OFF  <format_type>  file_name.extension 
Determines whether the postprocessing algorithm is run to calculate the strain in 
the vascular beam elements. Acceptable inputs are on, On, ON, off, Off, or OFF. If 
the command is omitted, the simulation treats it as off. After the command is the 
format type for the data and the name of the file containing the finite element 
deformation data for the solid mesh. The format type is an integer value and must 
be included. The acceptable values are as follows: 
 1 – For output in EXODUS II format 
 2 – For output in text format (for more information see Appendix C) 
 
The file name can include the path to the file if it is not in the current directory. 

*NEWTON 
$   max_it        tol 
              20    1e-6 
 
Sets parameters for Newton search algorithm. 
Max_it – Maximum number of Newton iterations (integer, default = 20) 
tol – Tolerance for Newton iteration (double, default 1e-6) 
 
*INCLUDE file_name.extension 
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Allows for the input file to include other files. Primarily used so that the mesh can 
be stored in a separate file. Multiple files can be included and those files may also 
contain the include command. The name of the file and its extension must follow 
the *INCLUDE command 
 
*END 
Denotes the end of an input file. Can be either the end of the main input file or of 
an include file. 

A-2 Mesh Input File Commands 

It is possible to read in mesh data either through importing a file in EXODUS II 
format or using LS-DYNA keyword input format. 

*EXODUS_INPUT_SOLID  file_name.extension 
Read in the mesh file containing the solid elements for the brain/head model. File 
must be in EXODUS II format. 
 
* EXODUS_INPUT_BEAM  file_name.extension 
Read in the mesh file containing the beam elements for the vasculature model. File 
must be in EXODUS II format. 
 
Keyword input files may be used in place of the EXODUS II format files. The 
following are the commands to input the nodes and elements for either mesh. The 
simulation will function with either format, you do not need to use both. 

*NODE 
$ NID      X        Y        Z  
        1    0.0    0.0    0.0 
        2    1.0    0.0    0.0 
        3    0.0    1.0    0.0 
        4    1.0    1.0    0.0 
Etc. 
 
NID – Node ID Number (integer > 0): Unique identifier for each node. Numbers 
must be greater than zero, however numbering does not need to begin at one or be 
sequential. 
X, Y, Z – Reference position for the node (double) 
 
*ELEMENT_SOLID 
$ EID   type   NID1    NID2    NID3    NID4    NID5    NID6    NID7    NID8 
       1         1          1          2         12        11         41        42         48        47 
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       2         1          2          3         13        12         42        43         49        48 
Etc. 
 
EID – Element ID Number (integer > 0): Unique identifier for each element. 
Numbers must be greater than zero, however numbering does not need to begin at 
one or be sequential 
Type – Element type (integer): Used in LS-DYNA but not only a placeholder here. 
Some value must be entered but actual value is irrelevant 
NID1 – NID8 – Node ID Numbers corresponding to the vertices of the element. A 
hexahedral element will have 8 NIDs defined. A tetrahedral element will have 4 
NIDs defined. Based on the number of NIDs entered, the simulation will 
automatically determine if a given solid element is a hexahedral or tetrahedral 
element. All NID numbers must correspond to nodes defined using *NODE 
 
*ELEMENT_BEAM 
$ Beam Elements that make up the vascular network 
$ EID   type   NID1    NID2 
       1         1          1          2          
       2         1          3          4          
Etc. 
 
EID – Element ID Number (integer > 0): Unique identifier for each element. 
Numbers must be greater than zero, however numbering does not need to begin at 
one or be sequential. Ideally beam elements would not share EIDs with solid 
elements; however, if they do it should not cause a problem with the simulation. 
Type – Element type (integer): Used in LS-DYNA but not only a placeholder here. 
Some value must be entered but actual value is irrelevant 
NID1 – NID2 – Node ID Numbers corresponding to the vertices of the element. All 
NID numbers must correspond to nodes defined using *NODE 
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Appendix B. Sample Input File 
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B-1 Primary Input File 

*PREPROCESS ON 
$ 
*POSTPROCESS ON 2 post_data.output 
$ 
*NEWTON 
$   max_it        tol 
              20    1e-6 
*INCLUDE Mesh.input 
*END 

B-2 Include File with Mesh 

Input file using LS-DYNA keyword format for the mesh. EXODUS II input file 
can be used in lieu of keyword input (see Appendix A Section A-2). 

<Mesh.input> 
 
*NODE 
5  0.250000  0.250000  0.000000 
6  0.500000  0.125000  0.000000 
7  0.750000  0.000000  0.000000 
8  0.250000  0.375000  0.000000 
9  0.562500  0.437500  0.000000 
10  0.875000  0.500000  0.000000 
11  0.250000  0.500000  0.000000 
12  0.625000  0.750000  0.000000 
13  1.000000  1.000000  0.000000 
14  0.250000  0.250000  0.500000 
15  0.500000  0.125000  0.500000 
16  0.750000  0.000000  0.500000 
17  0.250000  0.375000  0.500000 
18  0.562500  0.437500  0.500000 
19  0.875000  0.500000  0.500000 
20  0.250000  0.500000  0.500000 
21  0.625000  0.750000  0.500000 
22  1.000000  1.000000  0.500000 
23  0.250000  0.250000  1.000000 
24  0.500000  0.125000  1.000000 
25  0.750000  0.000000  1.000000 
26  0.250000  0.375000  1.000000 
27  0.562500  0.437500  1.000000 
28  0.875000  0.500000  1.000000 
29  0.250000  0.500000  1.000000 
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30  0.625000  0.750000  1.000000 
31  1.000000  1.000000  1.000000 
32  0.273756  0.438769  0.210000 
33  0.391502  0.420442  0.362500 
34  0.509247  0.402116  0.515000 
35  0.626992  0.383789  0.667500 
36  0.744737  0.365463  0.820000 
37  0.273756  0.438769  0.210000 
38  0.321508  0.375461  0.387500 
39  0.369259  0.312153  0.565000 
40  0.417011  0.248845  0.742500 
41  0.464762  0.185537  0.920000 
*ELEMENT_SOLID 
3  1  5  6  9  8  14  15  18  17   
4  1  6  7  10  9  15  16  19  18   
5  1  8  9  12  11  17  18  21  20   
6  1  9  10  13  12  18  19  22  21   
7  1  14  15  18  17  23  24  27  26   
8  1  15  16  19  18  24  25  28  27   
9  1  17  18  21  20  26  27  30  29   
10  1  18  19  22  21  27  28  31  30   
*ELEMENT_BEAM 
11  1  32  33   
12  1  33  34   
13  1  34  35   
14  1  35  36   
15  1  37  38   
16  1  38  39   
17  1  39  40   
18  1  40  41   
*END 

B-3 Post-Process Data File 

<post_data.output> 
 
3 
0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
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0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.000000  0.000000  0.000000 
0.100000 
0.012500  0.025000  0.000000 
0.006250  0.012500  0.000000 
0.000000  0.000000  0.000000 
0.018750  0.037500  0.000000 
0.021875  0.043750  0.000000 
0.025000  0.050000  0.000000 
0.025000  0.050000  0.000000 
0.037500  0.075000  0.000000 
0.050000  0.100000  0.000000 
0.012500  0.025000  0.050000 
0.006250  0.012500  0.050000 
0.000000  0.000000  0.050000 
0.018750  0.037500  0.050000 
0.021875  0.043750  0.050000 
0.025000  0.050000  0.050000 
0.025000  0.050000  0.050000 
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0.037500  0.075000  0.050000 
0.050000  0.100000  0.050000 
0.012500  0.025000  0.100000 
0.006250  0.012500  0.100000 
0.000000  0.000000  0.100000 
0.018750  0.037500  0.100000 
0.021875  0.043750  0.100000 
0.025000  0.050000  0.100000 
0.025000  0.050000  0.100000 
0.037500  0.075000  0.100000 
0.050000  0.100000  0.100000 
0.021938  0.043877  0.021000 
0.021022  0.042044  0.036250 
0.020106  0.040212  0.051500 
0.019189  0.038379  0.066750 
0.018273  0.036546  0.082000 
0.021938  0.043877  0.021000 
0.018773  0.037546  0.038750 
0.015608  0.031215  0.056500 
0.012442  0.024885  0.074250 
0.009277  0.018554  0.092000 
0.200000 
0.025000  0.050000  0.000000 
0.012500  0.025000  0.000000 
0.000000  0.000000  0.000000 
0.037500  0.075000  0.000000 
0.043750  0.087500  0.000000 
0.050000  0.100000  0.000000 
0.050000  0.100000  0.000000 
0.075000  0.150000  0.000000 
0.100000  0.200000  0.000000 
0.025000  0.050000  0.100000 
0.012500  0.025000  0.100000 
0.000000  0.000000  0.100000 
0.037500  0.075000  0.100000 
0.043750  0.087500  0.100000 
0.050000  0.100000  0.100000 
0.050000  0.100000  0.100000 
0.075000  0.150000  0.100000 
0.100000  0.200000  0.100000 
0.025000  0.050000  0.200000 
0.012500  0.025000  0.200000 
0.000000  0.000000  0.200000 
0.037500  0.075000  0.200000 
0.043750  0.087500  0.200000 
0.050000  0.100000  0.200000 
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0.050000  0.100000  0.200000 
0.075000  0.150000  0.200000 
0.100000  0.200000  0.200000 
0.043877  0.087754  0.042000 
0.042044  0.084088  0.072500 
0.040212  0.080423  0.103000 
0.038379  0.076758  0.133500 
0.036546  0.073093  0.164000 
0.043877  0.087754  0.042000 
0.037546  0.075092  0.077500 
0.031215  0.062431  0.113000 
0.024885  0.049769  0.148500 
0.018554  0.037107  0.184000 
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Appendix C. Alternative Format for Postprocessing Data 
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Instead of using an EXODUS II file for the deformation data, a text file may be 
used. That file must match the following format for the algorithm to function. The 
file will contain only numbers, no keywords are used. 

The first line will be a single integer entry indicating the number of output time 
steps. After that the time of the first output step is reported. Then the following lines 
include the displacement values of the nodes of the solid mesh in order. All nodes 
must be reported at each output time step. 

<line 1 – Number of output time steps> 
<line 2 – Time for output step 1> 
<line 3 through number of nodes + 3 – X, Y, and Z displacement values for each 
node> 
<line number of nodes + 4 – Time for output step 2> 
<line number of nodes + 5 through 2*(number of nodes) + 5 – X, Y, and Z 
displacement values for each node> 
This pattern continues until all of the output time steps have been reported 

For an example of this format, see Appendix B-3. 
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Appendix D. EXODUS II Commands 
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The following header line is required at the top of the code to use any of the 
following EXODUS II commands: 

#include “exodusII.h” 

D-1 Reading in Mesh Data 

Open EXODUS II file 
int ex_open(path, mode, comp_ws, io_ws, version); 
 
path – char, file name and path to the EXODUS II file 
mode – int, EX_READ or EX_WRITE (predefined constants) 
comp_ws – int, word size in bytes (0, 4, or 8) 
io_ws – int, word size in bytes (0, 4, or 8) 
version – float*, returned EXODUS II database version number 
 
Close EXODUS II file 
int ex_close (exoid); 
 
exoid – int, returned value from ex_open 
 
Read Initialization Parameters 
int ex_get_init(exoid, title, num_dim, num_nodes, num_elem, num_elem_blk, 
num_node_sets, num_side_sets); 
 
exoid – int, returned value from ex_open 
title – char*, returned database title 
num_dim – int*, returned dimensionality of the database 
num_nodes – int*, returned number of nodes 
num_elem – int*, returned number of elements 
num_elem_blk – int*, returned number of element blocks 
num_node_sets – int*, returned number of node sets 
num_side_sets – int*, returned number of side sets 
 
Read Nodal Coordinates 
int ex_get_coord(exoid, x_coor, y_coor, z_coor); 
 
exoid – int, returned value from ex_open 
x_coor – float*, returned x coordinates of the nodes 
y_coor – float*, returned y coordinates of the nodes 
z_coor – float*, returned z coordinates of the nodes 
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Read Element Block Parameters 
int ex_get_elem_block(exoid, elem_blk_id, elem_type, num_elem_this_blk, 
num_nodes_per_elem, num_attr); 
 
exoid – int, returned value from ex_open 
elem_blk_id – int, ID of current element block 
elem_type – char*, returned type of elements in the element block 
num_elem_this_blk – int*, returned number of elements in the element block 
num_nodes_per_elem – int*, returned number of nodes per element in the element 
block 
num_attr – int*, returned number of attributes per element in the element block 
 
Read Element Block Connectivity 
int ex_get_elem_conn(exoid, elem_blk_id, connect); 
 
exoid – int, returned value from ex_open 
elem_blk_id – int, element block ID 
connect[num_elem_this_blk, num_nodes_per_elem] – int, list of nodes making of 
the current element 

D-2 Reading in Result Data 

Read Results Variables Parameters 
int ex_get_var_param(exoid, var_type, num_vars); 
 
exoid – int, returned value from ex_open 
var_type – char*, type of variable described 
 “g” or “G” – global variables 
 “n” or “N” – nodal variables 
 “e” or “E” – element variables 
 “m” or “M” – nodeset variables 
 “s” or “S” – sideset variables 
num_vars – int*, returned number of variables stored for specified variable type 
 
Read Variable Names 
int ex_get_var_names (exoid, var_type, num_vars, var_names[]); 
 
exoid – int, returned value from ex_open 
var_type – char*, type of variable described 
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 “g” or “G” – global variables 
 “n” or “N” – nodal variables 
 “e” or “E” – element variables 
 “m” or “M” – nodeset variables 
 “s” or “S” – sideset variables 
num_vars – int, number of variables stored for specified variable type 
var_names – char**, return array of pointers to num_vars variable names 
 
Read Time Values for a Time Step 
int ex_get_time (exoid, time_step, time_value); 

 

exoid – int, returned value from ex_open 
time_step – int, time step number (>= 1) 
time_value – float*, returned time at the specified time step 
 
Read Nodal Variables 
int ex_get_nodal_var(exoid, int time_step, nodal_var_index, num_nodes, 
nodal_var_vals); 
 
exoid – int, returned value from ex_open 
time_step – int, time step number at which nodal variable values are needed (>= 1) 
nodal_var_index – int, index of the desired nodal variable (>= 1) 
num_nodes – int, number of nodes 
nodal_var_vals – float*, returned array of nodal variables 
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   J MCDONALD 
   P MCKEE 
   S SATAPATHY 
   A SOKOLOW 
   C WEAVER 
   T WEERASOORIYA 
   S WOZNIAK 
   T ZHANG 
   K ZIEGLER 
  RDRL WMP C 
   DL CASEM 
   J CLAYTON 
   T BJERKE 
   D DANDEKAR 
   M GREENFIELD 
   B LEAVY 
  RDRL WMP D 
   R DONEY 
   J RUNYEON 
  RDRL WMP E 
   P SWOBODA  
  RDRL WMP G 
   R BANTON 
   N ELDREDGE 
   S KUKUCK 
   T PIEHLE 
   N ZANDER 
  RDRL WMP F 
   R GUPTA 
   R KARGUS 
   E FIORAVANTE 
   N GNIAZDOWSKI 

   R SPINK
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