

 ARL-CR-0790 ● JAN 2016

 US Army Research Laboratory

Modeling Cerebral Vascular Injury

prepared by David Powell
SURVICE Engineering Company
4965 Millennium Drive
Belcamp, MD

under contract FA8075-14-D-0001

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-CR-0790 ● JAN 2016

 US Army Research Laboratory

Modeling Cerebral Vascular Injury

prepared by David Powell
SURVICE Engineering Company
4965 Millennium Drive
Belcamp, MD

under contract FA8075-14-D-0001

Approved for public release; distribution is unlimited.

FOR OFFICIAL USE ONLY (delete if not FOUO)

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

January 2016
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

February 2015–June 2015
4. TITLE AND SUBTITLE

Modeling Cerebral Vascular Injury
5a. CONTRACT NUMBER

FA8075-14-D-0001
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

David Powell
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-WMP-B
Aberdeen Proving Ground, MD 21005-5069

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-CR-0790

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

Many numerical models for the brain do not include the vascular structures within the brain and thus are incapable of
predicting damage to the cerebral vasculature. The presence of the vasculature within the brain produces a reinforcing effect
and leads to an increase in the effective stiffness of the combined brain-vascular material. This work developed a code capable
of postprocessing an existing head and brain model to determine the deformation in a corresponding cerebral vasculature
mesh. With this information, the user can then input the stretches and strains of the vasculature into a damage model of their
choice to predict potential vascular injury. The code is capable of using the geometry of the cerebral vasculature to provide
information for an updated anisotropic material model, allowing the directional nature of the vessels to inform the material
response of the surrounding brain tissue.

15. SUBJECT TERMS

traumatic brain injury, vasculature, injury biomechanics, numerical brain model, anisotropy of brain tissue

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

50

19a. NAME OF RESPONSIBLE PERSON

Christopher P Hoppel
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-278-8878
 Standard Form 298 (Rev. 8/98)

Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

2. Procedure 2

2.1 Reading Mesh Information and Output Data 3

2.2 Relating Vessel Locations to Brain Mesh 4

2.3 Preprocessing Algorithm 8

2.4 Postprocessing Algorithm 14

3. Example 16

3.1 Preprocessing Results 19

3.2 Postprocessing Results 20

4. Conclusion 21

5. References 24

Appendix A. User Manual 27

Appendix B. Sample Input File 31

Appendix C. Alternative Format for Postprocessing Data 37

Appendix D. EXODUS II Commands 39

Distribution List 43

Approved for public release; distribution is unlimited.
iv

List of Figures

Fig. 1 A 3-dimensional representation of the cerebral vasculature showing
larger arteries. Smaller capillaries are not pictured but can also be
included. ...3

Fig. 2 Mapping from the current domain (x,y,z-space) to the element domain
(𝜉𝜉, 𝜂𝜂, 𝜁𝜁-space) ...5

Fig. 3 The centroid of the element and sphere just large enough to contain all
of the points within the element ...6

Fig. 4 Points contained within the sphere can also be contained by the
element, although it is not necessarily so...7

Fig. 5 Depending on order of the nodes in each vessel element, 2 parallel
vessel segments could have opposite directions. In the vector sum
these will cancel, so the direction segment must therefore be
flipped. ...12

Fig. 6 Solid element mesh representing a portion of the larger mesh17

Fig. 7 Vascular structure made up of 1-D elements18

Fig. 8 Vascular structure and solid elements containing vessels19

Fig. 9 Axial stretch in the vessels, ranging from 1 (undeformed) to 1.5 (50%
elongation) ...21

List of Tables

Table 1 Hexahedral shape function parameters ..5

Table 2 Preprocessing data for a sample of the solid elements containing
vascular segments ..20

Approved for public release; distribution is unlimited.
1

1. Introduction

Traumatic brain injury (TBI) is a serious concern for the military and the general
civilian population. Blast-related TBI has been prevalent in recent military conflicts
(Gupta and Przekwas 2013). During Operation Iraqi Freedom, a study of casualties
requiring level V care at Walter Reed Army Medical Center reported that 29% of
those that were screened had a TBI. Blasts and explosions were the most common
causes, accounting for 78% of those found to have a TBI (Traumatic Brain Injury
Task Force 2007). Understanding TBI also has significant relevance for the civilian
population. Approximately 1.4 million people within the United States sustain a
TBI each year. Of that number 50,000 die, 235,000 are hospitalized, and 1.1 million
are evaluated, treated and released from emergency departments (Langlois et al.
2006). When one also considers concussions (often called mild TBI) it is possible
the largest proportion of patients are not even seen in an emergency department.
TBI is even more concerning due to its residual effects. It is estimated that at least
5.3 million Americans, almost 2% of the population, have current long-term or
lifelong disabilities as a result of TBI (Defense and Veterans Brain Injury Center
2014).

TBI associated with closed head injuries, also referred to as nonpenetrating head
injuries, can be caused by blast, blunt-force impact, or sudden acceleration. In cases
such as these, diffuse axonal injury is one particular injury mechanism that has been
cited as a signature injury of TBI neural damage (Taber et al. 2006; Gupta and
Przekwas 2013). Deformation of the brain tissue can induce misalignment in the
cytoskeletal network or axolemma permeability, inducing a cascade of subcellular
events culminating in the severance of the axon (Christman et al. 1994; Smith et al.
2003). It is these axon fiber bundles that make up the structural network that allows
neurons to communicate with one another. Injury to the axons leads to degraded
structural connectivity, which may be responsible for the cognitive deficits that are
characteristic of mild, moderate, and severe cases of TBI (Vettel et al. 2010).
Concussion, or mild TBI, is thought to be a less severe type of diffuse axonal injury
where axons are damaged to a minor extent from stretching. Postmortem studies of
brains with concussions have found axonal damage; however, because of other
factors, such as restricted blood flow, it is not possible to isolate the cause of this
damage and solely link it to concussions.

While substantial work has already been performed by the Soldier Protection
Sciences Branch to investigate axonal injury, another aspect of TBI, hemorrhage
and other forms of vascular injury, has not been represented within the numerical
models. In 2006 a study of head injury sustained by Soldiers in Operation Iraqi
Freedom was completed by Dr Rocco Armonda. Of the patients in the study, 82%

Approved for public release; distribution is unlimited.
2

suffered blast injury and 14% were injured by a gunshot wound. Of the entire group,
injury to the cerebral vasculature was seen in a significant number of patients. The
data indicate that 47% had vasospasm, 35% had a pseudoaneurysm, 12% had a
subarachnoid hemorrhage, 3.5% had an epidural hematoma, 16% had a subdural
hematoma, 11% had an intraventricular hemorrhage, and 14% had mixed
hemorrhages (Armonda et al. 2006). In order for our numerical models to better
predict the extent of injury to the Solider, a method to include the cerebral
vasculature must be implemented. This report details one such approach, which
builds upon existing simulation work within the Soldier Protection Sciences
Branch, and through a postprocessing algorithm, determines the strains within the
cerebral vascular network.

2. Procedure

The following approach to modeling injury to the cerebral vasculature takes
advantage of an existing head and brain model developed within the Soldier
Protection Sciences Branch (Kraft et al. 2010; Kraft and Dagro 2011; Kraft et al.
2012; Dagro et al. 2013; McKee et al. 2013). The algorithm will use the results
from those simulations to calculate the deformation and strain within a cerebral
vascular network. The intention is to leave the existing head and brain mesh
untouched and create an overlapping beam mesh of the cerebral vasculature
(Fig. 1). The proposed algorithm would serve as a link between the 2 meshes such
that deformation and strain could be mapped from the full finite element simulation
of the head and brain onto vascular elements. Thus, the vascular model would not
constitute a full finite element simulation on its own but rather a postprocessing of
the results from an already existing finite element model. The deformation data
mapped onto the vascular network can then be fed into a damage model selected by
the user to identify the locations at greatest risk for injury.

Approved for public release; distribution is unlimited.
3

Fig. 1 A 3-dimensional representation of the cerebral vasculature showing larger arteries.
Smaller capillaries are not pictured but can also be included.

This approach would require no alternations to the existing simulation. However,
once the algorithm has determined the linkages between the 2 meshes, it is possible
to use the information regarding the location and orientation of the vascular
segments to generate an updated material model for the elements within the brain.
The presence of the vasculature running through the brain provides an increased
stiffness to its mechanical response. In most simulations this is not directly
modeled, instead the stiffness of the brain tissue is increased to account for the
vascular presence. Unfortunately, such an approach fails to capture the directional
nature of the vascular network. Therefore, by using the location of the vasculature
and its orientation a more accurate anisotropic material model can be employed in
the initial head and brain simulation. As before, this would still be separate from
the vascular model, only with new material properties defined for the elements
containing vascular segments.

Thus, this project will provide both a pre- and a postprocessing algorithm built
around the linking of a solid element brain mesh with a beam network mesh for the
cerebral vasculature. The following subsections will begin by detailing the linking
of the 2 independent meshes, the common core of the algorithm, before moving on
to the pre- and postprocessing portions of the code.

2.1 Reading Mesh Information and Output Data

To determine the links between the solid element brain mesh and the vascular
network mesh, and manipulate the deformation data produced by the finite element

Approved for public release; distribution is unlimited.
4

simulation, the proposed algorithm must be able to interface with the files generated
by the meshing programs and the results produced by finite element codes such as
SIERRA. Reading keyword format input files such as those used in commercial
codes like LS-DYNA is relatively straightforward and can be done using the
standard input and output libraries for C/C++. However, other finite element codes,
including SIERRA, use the EXODUS II file format for both mesh data and output
data. The EXODUS II file format was developed at Sandia National Laboratories
specifically to store and retrieve data for finite element analyses. To interface with
the files in the EXODUS II format, special libraries and commands are required
that are not included in standard C/C++ packages.

The files necessary to generate the EXODUS II libraries are available and can be
retrieved from sites like SourceForge.net. The user manual is included in
Appendix A. A sample input file is provided in Appendix B and alternate format
for postprocessing data is provided in Appendix C. A list of useful EXODUS II
commands is included in Appendix D.

2.2 Relating Vessel Locations to Brain Mesh

Since the initial locations of the nodes and elements associated with the brain mesh
are independent of the location of the nodes and elements associated with the
vascular mesh, an algorithm is needed to relate the 2. It is necessary to know which
solid (brain) element contains a given beam (vascular) element to calculate the
strains in the vascular mesh, and use the orientation of the vasculature to inform the
anisotropic response of the surrounding brain tissue. However, because most of the
calculations are done in an element reference domain, as opposed to the physical
(x, y, z) domain, it is also necessary to relate a given point on a beam element
(x, y, z) to the reference coordinates (𝜉𝜉, 𝜂𝜂, 𝜁𝜁) for the surrounding solid element as
shown in Fig. 2.

Approved for public release; distribution is unlimited.
5

Fig. 2 Mapping from the current domain (x, y, z-space) to the element domain (𝝃𝝃,𝜼𝜼, 𝜻𝜻-
space)

Mapping a point from the element domain to the physical domain can be done with
the element shape functions, 𝑁𝑁𝑎𝑎, and the location of the nodes in the physical
domain, 𝑋𝑋�𝑎𝑎, using the following equation:

 (1)

where NEN is the number of nodes and shapes functions associated with that
element. For a typical simulation of the brain and head, the solid elements will be
either trilinear hexahedral elements or linear tetrahedral elements. The shape
functions for a trilinear hexahedral element are

 𝑁𝑁𝑎𝑎(𝜉𝜉, 𝜂𝜂, 𝜁𝜁) = 1
8

(1 + 𝜉𝜉𝑎𝑎𝜉𝜉)(1 + 𝜂𝜂𝑎𝑎𝜂𝜂)(1 + 𝜁𝜁𝑎𝑎𝜁𝜁), (2)

where the parameters for the shape functions are given in Table 1.

Table 1 Hexahedral shape function parameters

a 𝝃𝝃𝒂𝒂 𝜼𝜼𝒂𝒂 𝜻𝜻𝒂𝒂
1 –1 –1 1
2 1 –1 1
3 1 1 1
4 –1 1 1
5 –1 –1 –1
6 1 –1 –1
7 1 1 –1
8 –1 1 –1

𝑋𝑋 = �𝑁𝑁𝑎𝑎𝑋𝑋�𝑎𝑎
𝑁𝑁𝑁𝑁𝑁𝑁

𝑎𝑎=1

,

Approved for public release; distribution is unlimited.
6

The shape functions for the linear tetrahedral elements are as follows:

 𝑁𝑁1(𝜉𝜉, 𝜂𝜂, 𝜁𝜁) = 𝜉𝜉 , (3)

 𝑁𝑁2(𝜉𝜉, 𝜂𝜂, 𝜁𝜁) = 𝜂𝜂 , (4)

 𝑁𝑁3(𝜉𝜉, 𝜂𝜂, 𝜁𝜁) = 𝜁𝜁 , and (5)

 𝑁𝑁4(𝜉𝜉, 𝜂𝜂, 𝜁𝜁) = 1 − 𝜉𝜉 − 𝜂𝜂 − 𝜁𝜁 . (6)

While the shape functions are a convenient way to map from (𝜉𝜉, 𝜂𝜂, 𝜁𝜁) to (x, y, z),
what is required here is the reverse mapping (x, y, z) to (𝜉𝜉, 𝜂𝜂, 𝜁𝜁). While this can be
derived for a linear tetrahedral element, a solution cannot be simply written for a
general trilinear hexahedral element. Instead we must employ a solution technique
such as Newton’s method to solve the nonlinear system of equations. Because this
approach is computationally intensive, the search algorithm is broken up into an
initial coarse search, which is inexpensive to perform, followed by a fine search
where Newton’s method is employed. For large meshes, the reduction in
computational time can be significant.

Prior to initiating the coarse search, the location of centroid, 𝑋𝑋𝑐𝑐, for each solid
element is calculated

 . (7)

Following that, the radius of the smallest sphere containing all points within a given
element and centered at the element’s centroid is calculated (Fig. 3).

Fig. 3 The centroid of the element and sphere just large enough to contain all of the points
within the element

To perform the coarse search, the distance from the centroid of each solid element
to a given point in the vascular mesh is calculated. If that distance is less than or
equal to the previously calculated radius associated with that solid element, then

𝑋𝑋𝑐𝑐 =
1

𝑁𝑁𝑁𝑁𝑁𝑁
� 𝑋𝑋�𝑎𝑎
𝑁𝑁𝑁𝑁𝑁𝑁

𝑎𝑎=1

Approved for public release; distribution is unlimited.
7

the element potentially contains that point and a fine level search is required. If the
distance to the point is greater than the radius, then the point cannot fall within the
element, and the fine level search is unnecessary.

The fine level search will determine whether the point truly falls within the element,
like point p2 in Fig. 4, or if it is still outside, like point p1. To do this we must solve
the following system of equations for 𝜉𝜉, 𝜂𝜂, 𝜁𝜁:

 , (8)

where 𝑋𝑋�𝑎𝑎 are the nodal positions for the given element and 𝑋𝑋 is the location of the
vascular point in the physical domain, both known quantities. To begin we rewrite
this as a function, 𝑓𝑓 �𝜉𝜉� = �∑ 𝑁𝑁𝑎𝑎 �𝜉𝜉�𝑋𝑋�𝑎𝑎𝑁𝑁𝑁𝑁𝑁𝑁

𝑎𝑎=1 � − 𝑋𝑋 = 0, where the coordinates
𝜉𝜉, 𝜂𝜂, 𝜁𝜁 have been rewritten as the vector 𝜉𝜉. Without knowing the value of 𝜉𝜉 that
satisfies the equation, we can make an initial guess, 𝜉𝜉0, and Taylor expand about it

.
 (9)

Fig. 4 Points contained within the sphere can also be contained by the element, although it
is not necessarily so

Dropping higher order terms, we can solve for 𝜉𝜉1. This new solution can be
substituted for the previous guess and process repeated, giving us the following
equation:

 𝜉𝜉𝑛𝑛+1 = 𝜉𝜉𝑛𝑛 − �
𝜕𝜕𝑓𝑓�𝜉𝜉𝑛𝑛�

𝜕𝜕𝜉𝜉
�
−1

∙ 𝑓𝑓 �𝜉𝜉𝑛𝑛�. (10)

The gradient of 𝑓𝑓 �𝜉𝜉� can be calculated from the shape functions and the nodal
positions

�� 𝑁𝑁𝑎𝑎(𝜉𝜉, 𝜂𝜂, 𝜁𝜁)𝑋𝑋�𝑎𝑎
𝑁𝑁𝑁𝑁𝑁𝑁

𝑎𝑎=1

� − 𝑋𝑋 = 0

0 = 𝑓𝑓 �𝜉𝜉0� + �
𝜕𝜕𝑓𝑓 �𝜉𝜉0�
𝜕𝜕𝜉𝜉

� �𝜉𝜉1 − 𝜉𝜉0� + …

Approved for public release; distribution is unlimited.
8

 . (11)

This is a 3 × 3 second order tensor and can be easily inverted as long as the elements
are convex. The error is defined as

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �𝑓𝑓 �𝜉𝜉𝑛𝑛��
2

= �𝑓𝑓 �𝜉𝜉𝑛𝑛� ∙ 𝑓𝑓 �𝜉𝜉𝑛𝑛� . (12)

For the given problem, this method typically converges to an error of less than 1 ×
10−6 within 1–3 iterations.

The coordinates of the vascular point in the element reference domain can then be
compared with the bounds of the element. For the hexahedral element, the
coordinates must fall between –1 and 1:

 −1 ≤ (𝜉𝜉, 𝜂𝜂, 𝜁𝜁) ≤ 1 . (13)

And for the tetrahedral element the coordinates must fall between 0 and 1:

 0 ≤ (𝜉𝜉, 𝜂𝜂, 𝜁𝜁) ≤ 1. (14)

If the coordinates fall within that range, then the point is contained in the current
element, and the search can terminate. If any of the coordinates for the vascular
point are outside of that range, the point is not within the current element, and the
search algorithm moves on to the next element and continues with the coarse
search.

2.3 Preprocessing Algorithm

In addition to the goal of linking the solid element head/brain model with the beam
element vascular model to predict the strains and potential damage to the
vasculature, the vascular model can also be used to improve the accuracy of the
head/brain model. The vascular structure within the brain and along its surface
provides a stiffening effect and will influence its deformation. In most numerical
models the vascular structure is not included. Instead the brain matter and
vasculature are merged into a single homogenous material with properties stiffer
than white or grey matter would have on their own. Although this approximation is
commonly used, it does not take into account the structured nature of the
vasculature, and the effect is applied as an isotropic increase in stiffness instead of
the more appropriate anisotropic increase in stiffness. The presence of the
vasculature can be included as an additional anisotropic term in the constitutive
model for the brain tissue based on the direction of the vessels embedded within a

𝜕𝜕𝑓𝑓 �𝜉𝜉�
𝜕𝜕𝜉𝜉

= �� 𝑋𝑋�𝑎𝑎
𝑁𝑁𝑎𝑎 �𝜉𝜉�
𝜕𝜕𝜉𝜉

𝑁𝑁𝑁𝑁𝑁𝑁

𝑎𝑎=1

�

Approved for public release; distribution is unlimited.
9

given element. However, let us begin by looking at the material model for the brain
prior to the inclusion of the vasculature term.

In many biological tissues, fibers or bundles of cells are aligned in uniform
directions. As a result, isotropic materials models are insufficient for capturing the
mechanical behavior. For the white matter within the brain, axon bundles form
complex fiber tracts as they connect and facilitate communicate between different
regions in the brain. These axonal fiber tracts have been reported to be
approximately 3 times stiffer than the surrounding matrix material and thus play an
important role in the mechanical response of the brain (Arbogast and Margulies
1999). To model the white matter we will use a transversely isotropic hyperelastic
material, where the fiber tract directions are determined from diffusion tensor
imaging (DTI) data (Kraft and Dagro 2011).

To describe the material model we must first define some basic kinematic concepts.
The deformation gradient is defined as

 𝐹𝐹 = 𝑑𝑑𝑥𝑥
𝑑𝑑𝑋𝑋

 , (15)

where 𝑋𝑋 is the position of a material point in the reference (undeformed)
configuration and 𝑥𝑥 is the position of the same material point in the current
(deformed) configuration. The reference configuration refers to the undeformed
physical domain, not the element’s reference domain. The ratio of the deformed
volume to the undeformed volume is given by the Jacobian, the determinant of the
deformation gradient

 𝐽𝐽 = 𝑑𝑑𝑑𝑑𝑑𝑑 �𝐹𝐹� . (16)

It is often beneficial to perform a multiplicative decomposition of 𝐹𝐹 into volume-

changing (dilatational) and volume-preserving (distortional) parts to separate the
bulk and the shear response. To accomplish this, a deviatoric deformation gradient
in which the volume change is eliminated is defined as

 𝐹𝐹 = 𝐽𝐽−1/3𝐹𝐹 . (17)

We can then define a modified right Cauchy-Green tensor

 𝐶𝐶 = 𝐹𝐹
𝑇𝑇
𝐹𝐹 . (18)

The modified principle invariants of the right Cauchy-Green deformation tensor are
defined as

 𝐼𝐼1 = 𝑡𝑡𝑡𝑡𝐶𝐶 , (19)

Approved for public release; distribution is unlimited.
10

 𝐼𝐼2 = 1
2
��𝑡𝑡𝑡𝑡𝐶𝐶�

2
− 𝑡𝑡𝑡𝑡 �𝐶𝐶

2
�� , (20)

and

 𝐼𝐼3 = 𝑑𝑑𝑑𝑑𝑑𝑑𝐶𝐶 = �𝑑𝑑𝑑𝑑𝑑𝑑𝐹𝐹�
2

= 1 . (21)

For the modified right Cauchy-Green tensor, because the volume change has been
eliminated, the third principle invariant will always be one. To capture the
anisotropic nature of the white matter we introduce a unit vector 𝑎𝑎0, assigned using
DTI data that describes the direction of the fiber in the undeformed reference
configuration. We can then define 2 additional invariants based on the fiber
direction

 𝐼𝐼4 = 𝑎𝑎0 ∙ 𝐶𝐶 𝑎𝑎0 , (22)

 𝐼𝐼5 = 𝑎𝑎0 ∙ 𝐶𝐶
2
𝑎𝑎0 , (23)

where 𝐼𝐼4 and 𝐼𝐼5 arise from the anisotropy and describe the deformation of the fiber
family. It should be noted that

 𝐼𝐼4 = 𝑎𝑎0 ∙ 𝐶𝐶 𝑎𝑎0 = 𝐽𝐽−2/3𝑎𝑎 ∙ 𝑎𝑎 = 𝐽𝐽−2/3𝜆𝜆2 , (24)

where 𝑎𝑎 = 𝐹𝐹 𝑎𝑎0 is the direction of the fiber in the current configuration and 𝜆𝜆 is the

stretch in the fiber bundle. Thus, 𝐼𝐼4 will also be useful in evaluating strain based
injury criteria for the axon fiber bundles (Kleiven 2007). To take into account the
presence of the vasculature we define 2 more invariants

 𝐼𝐼6 = 𝑏𝑏0 ∙ 𝐶𝐶 𝑏𝑏0 , (25)

 𝐼𝐼7 = 𝑏𝑏0 ∙ 𝐶𝐶
2
𝑏𝑏0 , (26)

where 𝑏𝑏0 is the direction associated with the vasculature in the undeformed
configuration.

The strain energy, Ψ, of the transversely isotropic hyperelastic material can be
written as a function of the modified principle invariants along with the Jacobian,
which describes the change in volume. Assuming that the responses of the fibers
and the matrix material are not strongly coupled, we can choose to separate the
strain energy into a linear combination of the isotropic and anisotropic components

 Ψ�𝐼𝐼1, 𝐼𝐼2, 𝐽𝐽, 𝐼𝐼4, 𝐼𝐼5� = Ψiso�𝐼𝐼1, 𝐼𝐼2, 𝐽𝐽� + Ψaniso�𝐼𝐼4, 𝐼𝐼5�, (27)

where Ψiso�𝐼𝐼1, 𝐼𝐼2, 𝐽𝐽� describes the response of the isotropic matrix and
Ψaniso�𝐼𝐼4, 𝐼𝐼5� describes the directional contribution of the reinforcing fiber

Approved for public release; distribution is unlimited.
11

bundles. We can then select an appropriate isotropic strain energy function for the
matrix component such as a Neo-Hookean or Mooney-Rivlin material model. For
the anisotropic response it is suggested to select a Fung material model that includes
the exponential behavior characteristic of most soft tissues

 Ψaniso�𝐼𝐼4� = 𝑘𝑘1 �𝑒𝑒𝑒𝑒𝑒𝑒 �𝑘𝑘2�𝐼𝐼4 − 1�� − 𝐼𝐼4�, (28)

where 𝑘𝑘1 and 𝑘𝑘2 are material constants obtained from a parameter fit to
experimental data. This is purely a simple example of a Fung material. Depending
on the available data a more complex constitutive model for the fibers may be
preferred (Weiss et al. 1996; Holzapfel 2000; Ning et al. 2006).

As with the axonal fibers, the direction of the vessels embedded within a given
element can be used to add an anisotropic component to the constitutive equation.
In the case where only a single vessel segment is contained in the element, the
direction is simply determined from the position of the vessel segment’s 2 end
points. However, there will often be cases where multiple segments are contained
within a single element. In those cases a single average direction must be
determined. This can be done by adding the directions of the segments and then
normalizing to create a unit vector. However, the ordering of the nodes within a
segment can cause the direction of the jth segment to be either 𝑑𝑑𝑖𝑖 or –𝑑𝑑𝑖𝑖, since

 𝑑𝑑𝑖𝑖 = 𝑥𝑥2
𝑗𝑗 − 𝑥𝑥1

𝑗𝑗, (29)

where 𝑥𝑥1
𝑗𝑗and 𝑥𝑥2

𝑗𝑗 are the locations of the nodes on either end of the jth segment. Two
parallel segments of a vessel could potentially cancel each other out depending on
the number of the nodes (Fig. 5). To prohibit this from happening, an additional
term is included in the vector sum to flip the directions as needed. The average
vessel direction is calculated with the following equation:

 (30)

where 𝑠𝑠𝑖𝑖 is a sign term (𝑠𝑠𝑖𝑖 = ±1) described by the equation

𝑠𝑠𝑖𝑖 = 1; 𝑖𝑖 = 1

𝑠𝑠𝑖𝑖 =
𝑑𝑑𝑖𝑖∙�∑ 𝑠𝑠𝑗𝑗𝑑𝑑𝑗𝑗𝑖𝑖−1

𝑗𝑗=1 �

�𝑑𝑑𝑖𝑖∙�∑ 𝑠𝑠𝑗𝑗𝑑𝑑𝑗𝑗𝑖𝑖−1
𝑗𝑗=1 ��

; 𝑖𝑖 > 1 . (31)

For the initial segment 𝑠𝑠1 = 1, and for all the following segments 𝑠𝑠𝑖𝑖 is used to
determine whether or not to flip the ith segment based on the sum of the preceding
segment directions.

𝑏𝑏0 =
∑ 𝑠𝑠𝑖𝑖𝑑𝑑𝑖𝑖𝑛𝑛
𝑖𝑖=1

�∑ 𝑠𝑠𝑖𝑖𝑑𝑑𝑖𝑖𝑛𝑛
𝑖𝑖=1 �

Approved for public release; distribution is unlimited.
12

Fig. 5 Depending on order of the nodes in each vessel element, 2 parallel vessel segments
could have opposite directions. In the vector sum these will cancel, so the direction segment
must therefore be flipped.

Using the average vessel direction, we can calculate our 6th invariant (𝐼𝐼6 =
𝑏𝑏0 ∙ 𝐶𝐶 𝑏𝑏0) and use it to create an additional term within the anisotropic portion on

the constitutive equation. As with the response of the fiber tracts, we employ a
simple exponential Fung type material model

Ψaniso�𝐼𝐼4, 𝐼𝐼6� = 𝑘𝑘1 �𝑒𝑒𝑒𝑒𝑒𝑒 �𝑘𝑘2�𝐼𝐼4 − 1�� − 𝐼𝐼4� + 𝑘𝑘3 �𝑒𝑒𝑒𝑒𝑒𝑒 �𝑘𝑘4�𝐼𝐼6 − 1�� − 𝐼𝐼6�. (32)

The calculation for the average direction works well when summing multiple
segments that are close to parallel. However, when segments are nearly
perpendicular an average direction does not have much physical significance. Take
the example of an element containing 3 perpendicular fiber segments of equal
length. For the sake of simplicity, let those sections be aligned with the x, y, and z
axes. The average direction would be the sum of these vectors:

 𝑒𝑒𝑥𝑥 + 𝑒𝑒𝑦𝑦 + 𝑒𝑒𝑧𝑧 = �
1
0
0
� + �

0
1
0
� + �

0
0
1
� = �

1
1
1
�. (33)

And that sum is then normalized to calculate the directional vector associated with
that element:

 𝑏𝑏0 = 1
√3
�
1
1
1
�. (34)

However, because these vectors making up the sum are perpendicular, other vectors
would be equally valid as the segment vectors could be defined as ± 𝑒𝑒𝑖𝑖 and thus

 𝑏𝑏0 = ± 1
√3
�
−1
1
1
�, 𝑏𝑏0 = ± 1

√3
�

1
−1
1
�, 𝑏𝑏0 = ± 1

√3
�

1
1
−1

� (35)

Approved for public release; distribution is unlimited.
13

are also possible solutions. In truth, there should be no preferred direction for this
element. So we introduce a scale factor to allow the user to take this into account
when creating the material model. This scaling factor is defined as the sum of the
absolute values of the dot product of the segments, 𝑑𝑑𝑖𝑖, with the previously
calculated directional vector, 𝑏𝑏0, divided by the sum of the lengths of the segment
vectors

 𝑓𝑓 = ∑ �𝑏𝑏0∙𝑑𝑑𝑖𝑖�𝑛𝑛
𝑖𝑖=1
∑ �𝑑𝑑𝑖𝑖�𝑛𝑛
𝑖𝑖=1

 . (36)

This allows the length of each directional vector to act as a weight in the sum. The
maximum value for the scaling factor, when all of the segments are aligned, is
therefore one. For the special case where there are 3 segment vectors of equal length
but perpendicular to one another, the scale factor would be 1

√3
 or 0.57735. As a

result we expect our scaling factor to have a range of 1
√3
≤ 𝑓𝑓 ≤ 1. We can adjust

that range by defining a new scaling factor

 𝑓𝑓 = 3+√3
2

�∑ �𝑏𝑏0∙𝑑𝑑𝑖𝑖�𝑛𝑛
𝑖𝑖=1
∑ �𝑑𝑑𝑖𝑖�𝑛𝑛
𝑖𝑖=1

− 1
√3
� , (37)

such that 0 ≤ 𝑓𝑓 ≤ 1. This scaling factor is a measure of the correlation between
fiber directions and can be considered a measure of the anisotropy introduced by
the presence of the vasculature. Highlight-aligned vasculature will leave to a
scaling factor of close to 1 and have a highly anisotropic effect on the overall
response. Conversely, evenly distributed perpendicular vessels will lead to a scaling
factor of close to zero and have a more isotropic effect on the overall response. The
preprocessing algorithm reports the scaling factor for each element along with the
directional vector, 𝑏𝑏0. It is suggested that the updated scaling factor, 𝑓𝑓, be used to
weight the anisotropic portion of the constitutive equation that corresponds to the
vascular structure

Ψaniso�𝐼𝐼4, 𝐼𝐼6� = 𝑘𝑘1 �𝑒𝑒𝑒𝑒𝑒𝑒 �𝑘𝑘2�𝐼𝐼4 − 1�� − 𝐼𝐼4� + 𝑓𝑓𝑘𝑘3 �𝑒𝑒𝑒𝑒𝑒𝑒 �𝑘𝑘4�𝐼𝐼6 − 1�� − 𝐼𝐼6� .
 (38)

To account for the isotropic stiffening effect of perpendicularly aligned vessels
(cases where 𝑓𝑓 is close to zero), the isotropic component of constitutive equation
can also be updated

 Ψ�𝐼𝐼1, 𝐼𝐼2, 𝐽𝐽, 𝐼𝐼4, 𝐼𝐼5� = �1 + κ∗�1 − 𝑓𝑓��Ψiso�𝐼𝐼1, 𝐼𝐼2, 𝐽𝐽� + Ψaniso�𝐼𝐼4, 𝐼𝐼5� . (39)

Here the material constant, κ∗, represents the traditional artificial isotropic
stiffening of the brain tissue due to the presence of the vessels. As the vessels are
more uniformly aligned, that term goes to zero and the anisotropic term takes over.
If the vessels are randomly oriented and 𝑓𝑓 approaches zero, the additional

Approved for public release; distribution is unlimited.
14

anisotropic term vanishes and isotropic stiffness is increased. This code merely
provides a calculation for the average vessel direction and the scale factor. The
decision on whether or not to use this data to alter the material model and how it is
used within the constitutive equation, is left to the end user.

2.4 Postprocessing Algorithm

To calculate the potential damage in the vascular structure we must be able to map
to the deformation from the results of the brain simulation onto the vascular mesh.
The algorithm described in Section 2.2 has determined the solid element containing
each vessel segment. It has also determined the corresponding coordinates in the
element’s reference domain. Combining this information with the output data from
the simulation of the brain simulation will allow us to determine the strains within
the vascular network. Although the initial locations of the vascular nodes are not
related to the nodes in the brain mesh, the vascular nodes are treated as material
points within the brain mesh. Thus, as the brain mesh deforms, so too do the
vascular nodes. It is that deformation which the postprocessing algorithm will
determine.

The finite element simulation produces an approximate solution, 𝑢𝑢ℎ, for the
displacement, which is a function of the degrees of freedom, 𝑢𝑢�𝑖𝑖, and the shape
functions, 𝑁𝑁𝑖𝑖. Both of these correspond to specific nodes within the descritized
finite element mesh.

 . (40)

While the displacement is a function of the position within the mesh, the 𝑢𝑢�𝑖𝑖’s are
constants. For a given element, only the shape functions corresponding to nodes
within that element have nonzero values. So, to determine the deformation we only
need to sum over the 𝑢𝑢�𝑖𝑖 and 𝑁𝑁𝑖𝑖 values corresponding to nodes within that element.
To determine the gradient of the displacement we take advantage of the fact that
the 𝑢𝑢�𝑖𝑖’s are constants and move the 𝑑𝑑

𝑑𝑑𝑋𝑋
 within the sum. Thus the gradient of the

displacement is just the sum of those constants times the gradient of the
corresponding shape function at the current coordinate

 . (41)

However, in practice the shape functions are written in terms of the element
reference domain’s coordinates, so 𝑁𝑁�𝑖𝑖 �𝜉𝜉�, and not the physical domain’s
coordinates, 𝑁𝑁𝑖𝑖�𝑋𝑋�. The gradient of the shape functions with respect to the physical

𝑢𝑢�𝑋𝑋� ≈ 𝑢𝑢ℎ�𝑋𝑋� = � 𝑢𝑢�𝑖𝑖𝑁𝑁𝑖𝑖�𝑋𝑋�
𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝑑𝑑𝑢𝑢
𝑑𝑑𝑋𝑋

= � 𝑢𝑢�𝑖𝑖
𝑑𝑑𝑑𝑑𝑖𝑖�𝑋𝑋�
𝑑𝑑𝑋𝑋

𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖=1

Approved for public release; distribution is unlimited.
15

coordinates can be rewritten as the gradient with respect to the reference domain’s
coordinates multiplied by the derivative of the reference coordinate with respect to
the physical coordinate

 𝑑𝑑𝑁𝑁𝑖𝑖�𝑋𝑋�
𝑑𝑑𝑋𝑋

=
𝑑𝑑𝑁𝑁�𝑖𝑖�𝜉𝜉�

𝑑𝑑𝜉𝜉

𝑑𝑑𝜉𝜉

𝑑𝑑𝑋𝑋
 . (42)

For general trilinear hexahedral elements it is not possible to write a simple
expression for 𝜉𝜉 in terms of 𝑋𝑋; however, there is a simple expression for 𝑋𝑋 as a
function of 𝜉𝜉

 (43)

where 𝑁𝑁�𝑖𝑖 are the same shape functions as before and 𝑋𝑋�𝑖𝑖 are the coordinates of the
element’s nodes in the physical domain. This can then be easily differentiated to
give us

 . (44)

The resulting 3 × 3 tensor can then be inverted to provide the gradient of 𝜉𝜉 with
respect to 𝑋𝑋

𝑑𝑑𝜉𝜉

𝑑𝑑𝑋𝑋
= �𝑑𝑑𝑋𝑋

𝑑𝑑𝜉𝜉
�
−1

. (45)

With the gradient of the descritized displacement determined, we can calculate the
strain at the desired location in the brain mesh. This is the strain that the
corresponding point in the vascular mesh will experience

 𝐸𝐸 = 1
2
�𝑑𝑑𝑢𝑢
𝑑𝑑𝑋𝑋

+ 𝑑𝑑𝑢𝑢
𝑑𝑑𝑋𝑋

𝑇𝑇
+ 𝑑𝑑𝑢𝑢

𝑑𝑑𝑋𝑋

𝑇𝑇
∙ 𝑑𝑑𝑢𝑢
𝑑𝑑𝑋𝑋
� . (46)

This calculation is for the Green-Lagrange strain tensor. While it is beneficial to
have the entire strain tensor, we are especially interested in the stretch along the
fiber axis. As mentioned in Section 2.3, the stretch along the fiber axis is related to
our 6th principal invariant

 𝐼𝐼6 = 𝑏𝑏0 ∙ 𝐶𝐶 𝑏𝑏0 = 𝑏𝑏 ∙ 𝑏𝑏 = 𝜆𝜆2, (47)

where 𝑏𝑏0 is the unit vector describing the direction of the fiber and 𝐶𝐶 is the right

Cauchy-Green tensor. The right Cauchy-Green tensor is related to the strain
through the following equation:

𝑋𝑋 = �𝑋𝑋�𝑖𝑖𝑁𝑁�𝑖𝑖 �𝜉𝜉�
𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝑑𝑑𝑋𝑋
𝑑𝑑𝜉𝜉

= �𝑋𝑋�𝑖𝑖
𝑑𝑑𝑁𝑁�𝑖𝑖 �𝜉𝜉�
𝑑𝑑𝜉𝜉

𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖=1

Approved for public release; distribution is unlimited.
16

 𝐶𝐶 = 2𝐸𝐸 + 𝐼𝐼 . (48)

The postprocessing algorithm creates a data file containing the element IDs for the
vessel segments, the 6 unique components of the Green-Lagrange strain (𝐸𝐸𝑥𝑥𝑥𝑥, 𝐸𝐸𝑦𝑦𝑦𝑦,
𝐸𝐸𝑧𝑧𝑧𝑧, 𝐸𝐸𝑥𝑥𝑥𝑥, 𝐸𝐸𝑦𝑦𝑦𝑦, 𝐸𝐸𝑧𝑧𝑧𝑧), and the stretch (𝜆𝜆) along the segment axis. These data are
repeated for each time step reported by the output of the solid mesh simulation.

3. Example

To demonstrate the capabilities of this code, a sample mesh was generated using
trilinear hexahedral elements. This mesh is intended to represent a small section of
the larger brain mesh. Figure 6 shows 2 views of this mesh. The mapping from the
physical domain to the element’s reference domain is greatly simplified in the event
of cubic elements or rectangular cuboids. Therefore, the shape of the mesh was
chosen so as to force the individual elements to avoid these simpler shapes and
better demonstrate the abilities of the code.

Approved for public release; distribution is unlimited.
17

Fig. 6 Solid element mesh representing a portion of the larger mesh

The vascular network mesh can be seen in Fig. 7. This mesh occupies the same
physical space as the solid element brain mesh but does not share any of its
geometry. The nodes and edges of the 2 meshes do not necessarily coincide. As the
vessels move away from their starting point, they branch and alter direction,
creating irregular paths through space.

Approved for public release; distribution is unlimited.
18

Fig. 7 Vascular structure made up of 1-D elements

The mapping algorithm identifies the elements containing each of the vessel
segments and determines the location of the vessel in terms of the element’s
reference coordinates. Figure 8 shows the vascular network overlaid on the solid
element mesh. Using the results of the mapping algorithm, only the elements
containing a vessel segment are displayed. For this example the vessels continue
on their paths until they have left the solid mesh. Endpoints of the vessels in the
image on the right of Fig. 8 can be seen outside of any element. This is not an error
in the code, this is because they are outside the boundaries of the solid mesh and
thus are not contained within any element. These free endpoints will not be a factor
in any of the calculations in either the pre- or postprocessing algorithm.

Approved for public release; distribution is unlimited.
19

Fig. 8 Vascular structure and solid elements containing vessels

3.1 Preprocessing Results

Using the preprocessing algorithm, every element containing a vessel segment was
assigned a directional vector, 𝑏𝑏0, and a scale factor as a measure of the correlation
between the directions of the vessel segments. Table 2 shows a sample of the data
reported by the preprocessing algorithm. Because of the irregular paths and
branching vessels, the scale factor shows a value less than one when multiple
segments were present within a single element due to variations in the directions of
the individual segments.

Approved for public release; distribution is unlimited.
20

Table 2 Preprocessing data for a sample of the solid elements containing vascular segments

Element X Y Z Scale, 𝒇𝒇�
84 0.369179 0.897098 0.771899 1.0

156 0.585461 0.375538 0.718475 0.549186
157 0.455495 0.470486 0.755756 0.791908
164 0.213751 0.930328 0.297994 0.819901
172 0.737664 0.670064 -0.082860 1.0
173 0.933215 0.340099 -0.115940 0.761922
174 0.556493 0.665586 0.497304 0.812248
182 0.303811 0.851047 0.428273 0.389745
190 0.554413 0.826289 -0.099359 1.0
222 0.793040 0.311000 0.523800 1.0
230 0.193325 0.740923 0.643163 0.573547
231 0.581279 0.548160 0.601362 0.753829

3.2 Postprocessing Results

To examine the mapping of strains from the solid mesh to the vessel network, the
solid mesh was subjected to a time varying strain that also varied nonlinearly with
position. The displacement values are defined at the nodes of the solid mesh only,
not the nodes of the vascular mesh. The displacement field defined over the solid
mesh was then mapped onto the vascular mesh, and the strains in the vessel
segments were calculated. Figure 9 shows a plot of the vascular network with the
color of the vessel segments indicating the amount of stretch in each. As expected,
the vessel segments in the regions where solid elements have the largest strain also
exhibited the largest strain values. However, fiber direction plays a role as well
since the stretch along the fiber axis is a function of the fiber’s direction

 𝜆𝜆 = �𝑏𝑏0 ∙ 𝐶𝐶 𝑏𝑏0 . (49)

Thus, there is additional variation in the stretch and axial strain within the fibers
due to variations in their orientations. Merely calculating the strain within the solid
mesh does not provide enough information to make an accurate prediction of the
potential for damage in the vasculature; the direction of the vessel segments must
be taken into account.

Approved for public release; distribution is unlimited.
21

Fig. 9 Axial stretch in the vessels, ranging from 1 (undeformed) to 1.5 (50% elongation)

4. Conclusion

TBI is a serious concern in both the military and civilian population. Even when
nonfatal, injury to the brain has the potential for lifelong repercussions. For the
Soldier, blast-induced TBI is of particular concern. While significant research has
been done on models to predict TBI, many of them have focused on axonal injury
and often neglect the possible presence of damage to the cerebral vasculature.
During Operation Iraqi Freedom, a study of Soldiers at Walter Reed Army Medical
Center suffering TBI found that 47% had vasospasm, 35% had a pseudoaneurysm,
12% had a subarachnoid hemorrhage, 3.5% had an epidural hematoma, 16% had a
subdural hematoma, 11% had an intraventricular hemorrhage, and 14% had mixed
hemorrhages (Armonda et al. 2006). Injuries such as vasospasm and
pseudoaneurysm can lead to further damage to the brain over time. Intracranial
hemorrhages and hematomas can be life threatening and often require immediate

Approved for public release; distribution is unlimited.
22

intervention. While damage to the vasculature is a common feature of TBI, many
numerical models for the brain do not include the vascular structures within the
brain and thus are incapable of predicting damage to the cerebral vasculature. This
work developed a code capable of postprocessing an existing head and brain model
to determine the deformation in a corresponding cerebral vasculature mesh. With
this information, the user can then input the stretches and strains of the vasculature
into a damage model of their choice to predict potential vascular injury. The code
is also capable of using the geometry of the cerebral vasculature to provide
information for an updated anisotropic material model, allowing the directional
nature of the vessels to inform the material response of the surrounding brain tissue.

This approach is particularly desirable because it builds upon an existing head and
brain model currently in use by the Soldier Protection Sciences Branch at the US
Army Research Laboratory. Whereas developing an entirely new head model and
mesh would be extremely time consuming, this code can be immediately put into
use with the existing simulations. Another important feature of this model is that
the topography of the brain and vascular meshes can be independent of one another.
Other approaches to linking a solid mesh with 1-dimensional (1-D) network often
require that the locations of the nodes and edges in the 2 meshes coincide. For the
complex geometry of the brain and cerebral vasculature, this requirement would
impose severe restrictions on the brain mesh, potentially increasing simulation time
or even making effective meshing impossible. This approach places no such
restrictions on either mesh and requires no changes to the existing head and brain
model. Another important feature of this code is that it can be used to help improve
the material model for the brain. The presence of the vasculature within the brain
produces a reinforcing effect and leads to an increase in the effective stiffness of
the combined brain-vascular material. While many simulations account for this
with isotropic increases to the stiffness of the brain’s material model, this code can
be used to assign directional values to that increased stiffness and lead to a more
accurate anisotropic material model. Finally, this code gives the user a great deal
of flexibility in how they determine the damage in the vasculature. Since the raw
strain and axial stretch data for the vessel segments are reported at each output step,
the user can use whatever damage model they deem most appropriate. Although
this approach has many strengths, there are some limitations. The model does not
currently account for fluid flow within the arteries and the corresponding internal
pressure of the vessels. Also, since it uses a 1-D approximation of the vessels, any
damage model must be simplified. However, both of these limitations can be
addressed through future work.

There are a number of new features that would be desirable if work on the project
continues. In regards to the preprocessing algorithm, inclusion of data on the

Approved for public release; distribution is unlimited.
23

thickness of the vessels could be used to provide more accurate anisotropic material
constants. Larger vessels would have a more pronounced effect on the stiffening of
the surrounding brain tissue; therefore the thickness of the segments could be used
to provide an additional scaling term for the constitutive equation. Furthermore, a
secondary simulation could be created to model the fluid flow within the arteries.
Using a pressure gradient to drive the blood flow, and the external pressure induced
by a blast wave through the surrounding brain elements, an approximation for the
time varying internal pressure of the vasculature could theoretically be created.
When this internal pressure calculation is used along with a mapping of the external
pressure from the brain, a measure of the compressive stress through the thickness
of the vascular walls could be attained. This compressive wall stress is likely an
important contributor to and predictor of vasospasm in the arteries. Finally, future
work could directly model the largest cerebral vascular structures in the head and
brain model, relying on this approach for only the smaller scale vasculature.

Approved for public release; distribution is unlimited.
24

5. References

Armonda RA, Bell R, Vo A, Ling G, DeGraba T, Ecklund J, Crandall B, Campbell
WW. Wartime traumatic cerebral vasospasm: recent review of combat
casualties. Neurosurgery. 2006;59:1215–1225.

Arbogast KB, Margulies SS. A fiber-reinforced composite model of the viscoelastic
behavior of the brainstem in shear. Journal of Biomechanics. 1999;32:865–
870.

Christman CW, Grady MS, Walker SA, Holloway KL, Povlishock JT.
Ultrastructural studies of diffuse axonal injury in humans. J Neurotrauma.
1994;11(2):173–86.

Dagro A, McKee P, Kraft R, Zhang T. A preliminary investigation of traumatically
induced axonal injury in a three-dimensional (3-D) finite element model
(FEM) of the human head during blast-loading. Aberdeen Proving Ground
(MD): Army Research Laboratory (US); 2013 Jul. Report No.: ARL-TR-6504.

Defense and Veterans Brain Injury Center. [accessed November 2014]
http://www.dbvic.org/clinicalresearch.html.

Gupta RK, Przekwas A. Mathematical models of blast-induced TBI: current status,
challenges, and prospects. Frontiers in Neurology. 2013;4:59.

Holzapfel GA. Nonlinear solid mechanics. Chichester (UK): John Wiley and Sons,
Ltd; 2000.

Kleiven S. Predictors for traumatic brain injuries evaluated through accident
reconstructions. Stapp Car Crash J. 2007;51:81–114.

Kraft RH, Dagro AM. Design and implementation of a numerical technique to
inform anisotropic hyperelastic finite element models using diffusion-
weighted imaging. Aberdeen Proving Ground (MD): Army Research
Laboratory (US); 2011 Oct. Report No.: ARL-TR-5796.

Kraft RH, McDowell K, Vettel J. High rate computational brain injury
biomechanics. ARL Ballistic Technology Workshop; 2010 May 24–26;
Herndon, VA.

Kraft R, McKee PJ, Dagro AM, Grafton S. Combining the finite element method
with structural connectome-based analysis for modeling neurotrauma:
connectome neurotrauma mechanics. PloS Comp. Bio. 2012;8(8).

Approved for public release; distribution is unlimited.
25

Langlois JA, Rutland-Brown W, Thomas KE. Traumatic brain injury in the United
States: emergency department visits, hospitalizations, and deaths. Atlanta
(GA): Centers for Disease Control and Prevention, National Center for Injury
Prevention and Control; 2006.

McKee PJ, Dagro AM, Vindiola M, Vettel JM. Fiber segment–based degradation
methods for a finite element–informed structural brain network. Aberdeen
Proving Ground (MD): Army Research Laboratory (US); 2013. Report No.:
ARL-TR-6739.

Ning X, Zhu Q, Lanir Y, Margulies SS. A transversely isotropic viscoelastic
constitutive equation for brainstem undergoing finite deformation. Journal of
Biomechanical Engineering. 2006;128:925–930.

Smith DH, Meaney DF, Shull WH. Diffuse axonal injury in head trauma. The
Journal of Head Trauma Rehabilitation, 2003;18(4):307–316.

Taber K, Warden D, Hurley R. Blast-related traumatic brain injury: what is known?
The Journal of Neuropsychiatry and Clinical Neurosciences. 2006;18(2):141–
145.

Traumatic Brain Injury Task Force. Report to the surgeon general. np; 2007.

Vettel JM, Bassett D, Kraft R, Grafton S. Physics-based models of brain structure
connectivity informed by diffusion-weighted imaging. Aberdeen Proving
Ground (MD): Army Research Laboratory (US); 2010. Report No.: ARL-RP-
0355.

Weiss JA, Maker BN, Govindjee S. Finite element implementation of
incompressible, transversely isotropic hyperelasticity. Computer Methods in
Applied Mechanics and Engineering. 1996;135:107–128.

Approved for public release; distribution is unlimited.
26

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
27

Appendix A. User Manual

Approved for public release; distribution is unlimited.
28

To read the mesh files used in SIERRA, this program requires the EXODUS II C
and C++ libraries. The files necessary to generate the EXODUS II library can be
found at sourceforge.net. These must be compiled and the location of the EXODUS
library must be linked when the cerebral vascular injury code is compiled. It is also
possible to read in the mesh data using LS-DYNA keyword format; however, the
EXODUS II library is still necessary to compile the code. If the user wishes to avoid
using the Exodus libraries, it is recommended to create a separate copy of this code
with the “include<exodusII.h>” line removed or commented out and all of the
EXODUS specific functions in the body of the code.

A-1 General Input File Commands

$ at the beginning of a line denotes a comment. Any information following the $
will be ignored

*PREPROCESS ON/OFF
Determines whether the preprocessing algorithm is run to assign average directions
to the brain elements. Acceptable inputs are on, On, ON, off, Off, or OFF. If the
command is omitted, the simulation treats it as off.

*POSTPROCESS ON/OFF <format_type> file_name.extension
Determines whether the postprocessing algorithm is run to calculate the strain in
the vascular beam elements. Acceptable inputs are on, On, ON, off, Off, or OFF. If
the command is omitted, the simulation treats it as off. After the command is the
format type for the data and the name of the file containing the finite element
deformation data for the solid mesh. The format type is an integer value and must
be included. The acceptable values are as follows:
 1 – For output in EXODUS II format
 2 – For output in text format (for more information see Appendix C)

The file name can include the path to the file if it is not in the current directory.

*NEWTON
$ max_it tol
 20 1e-6

Sets parameters for Newton search algorithm.
Max_it – Maximum number of Newton iterations (integer, default = 20)
tol – Tolerance for Newton iteration (double, default 1e-6)

*INCLUDE file_name.extension

Approved for public release; distribution is unlimited.
29

Allows for the input file to include other files. Primarily used so that the mesh can
be stored in a separate file. Multiple files can be included and those files may also
contain the include command. The name of the file and its extension must follow
the *INCLUDE command

*END
Denotes the end of an input file. Can be either the end of the main input file or of
an include file.

A-2 Mesh Input File Commands

It is possible to read in mesh data either through importing a file in EXODUS II
format or using LS-DYNA keyword input format.

*EXODUS_INPUT_SOLID file_name.extension
Read in the mesh file containing the solid elements for the brain/head model. File
must be in EXODUS II format.

* EXODUS_INPUT_BEAM file_name.extension
Read in the mesh file containing the beam elements for the vasculature model. File
must be in EXODUS II format.

Keyword input files may be used in place of the EXODUS II format files. The
following are the commands to input the nodes and elements for either mesh. The
simulation will function with either format, you do not need to use both.

*NODE
$ NID X Y Z
 1 0.0 0.0 0.0
 2 1.0 0.0 0.0
 3 0.0 1.0 0.0
 4 1.0 1.0 0.0
Etc.

NID – Node ID Number (integer > 0): Unique identifier for each node. Numbers
must be greater than zero, however numbering does not need to begin at one or be
sequential.
X, Y, Z – Reference position for the node (double)

*ELEMENT_SOLID
$ EID type NID1 NID2 NID3 NID4 NID5 NID6 NID7 NID8
 1 1 1 2 12 11 41 42 48 47

Approved for public release; distribution is unlimited.
30

 2 1 2 3 13 12 42 43 49 48
Etc.

EID – Element ID Number (integer > 0): Unique identifier for each element.
Numbers must be greater than zero, however numbering does not need to begin at
one or be sequential
Type – Element type (integer): Used in LS-DYNA but not only a placeholder here.
Some value must be entered but actual value is irrelevant
NID1 – NID8 – Node ID Numbers corresponding to the vertices of the element. A
hexahedral element will have 8 NIDs defined. A tetrahedral element will have 4
NIDs defined. Based on the number of NIDs entered, the simulation will
automatically determine if a given solid element is a hexahedral or tetrahedral
element. All NID numbers must correspond to nodes defined using *NODE

*ELEMENT_BEAM
$ Beam Elements that make up the vascular network
$ EID type NID1 NID2
 1 1 1 2
 2 1 3 4
Etc.

EID – Element ID Number (integer > 0): Unique identifier for each element.
Numbers must be greater than zero, however numbering does not need to begin at
one or be sequential. Ideally beam elements would not share EIDs with solid
elements; however, if they do it should not cause a problem with the simulation.
Type – Element type (integer): Used in LS-DYNA but not only a placeholder here.
Some value must be entered but actual value is irrelevant
NID1 – NID2 – Node ID Numbers corresponding to the vertices of the element. All
NID numbers must correspond to nodes defined using *NODE

Approved for public release; distribution is unlimited.
31

Appendix B. Sample Input File

Approved for public release; distribution is unlimited.
32

B-1 Primary Input File

*PREPROCESS ON
$
*POSTPROCESS ON 2 post_data.output
$
*NEWTON
$ max_it tol
 20 1e-6
*INCLUDE Mesh.input
*END

B-2 Include File with Mesh

Input file using LS-DYNA keyword format for the mesh. EXODUS II input file
can be used in lieu of keyword input (see Appendix A Section A-2).

<Mesh.input>

*NODE
5 0.250000 0.250000 0.000000
6 0.500000 0.125000 0.000000
7 0.750000 0.000000 0.000000
8 0.250000 0.375000 0.000000
9 0.562500 0.437500 0.000000
10 0.875000 0.500000 0.000000
11 0.250000 0.500000 0.000000
12 0.625000 0.750000 0.000000
13 1.000000 1.000000 0.000000
14 0.250000 0.250000 0.500000
15 0.500000 0.125000 0.500000
16 0.750000 0.000000 0.500000
17 0.250000 0.375000 0.500000
18 0.562500 0.437500 0.500000
19 0.875000 0.500000 0.500000
20 0.250000 0.500000 0.500000
21 0.625000 0.750000 0.500000
22 1.000000 1.000000 0.500000
23 0.250000 0.250000 1.000000
24 0.500000 0.125000 1.000000
25 0.750000 0.000000 1.000000
26 0.250000 0.375000 1.000000
27 0.562500 0.437500 1.000000
28 0.875000 0.500000 1.000000
29 0.250000 0.500000 1.000000

Approved for public release; distribution is unlimited.
33

30 0.625000 0.750000 1.000000
31 1.000000 1.000000 1.000000
32 0.273756 0.438769 0.210000
33 0.391502 0.420442 0.362500
34 0.509247 0.402116 0.515000
35 0.626992 0.383789 0.667500
36 0.744737 0.365463 0.820000
37 0.273756 0.438769 0.210000
38 0.321508 0.375461 0.387500
39 0.369259 0.312153 0.565000
40 0.417011 0.248845 0.742500
41 0.464762 0.185537 0.920000
*ELEMENT_SOLID
3 1 5 6 9 8 14 15 18 17
4 1 6 7 10 9 15 16 19 18
5 1 8 9 12 11 17 18 21 20
6 1 9 10 13 12 18 19 22 21
7 1 14 15 18 17 23 24 27 26
8 1 15 16 19 18 24 25 28 27
9 1 17 18 21 20 26 27 30 29
10 1 18 19 22 21 27 28 31 30
*ELEMENT_BEAM
11 1 32 33
12 1 33 34
13 1 34 35
14 1 35 36
15 1 37 38
16 1 38 39
17 1 39 40
18 1 40 41
*END

B-3 Post-Process Data File

<post_data.output>

3
0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000

Approved for public release; distribution is unlimited.
34

0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.100000
0.012500 0.025000 0.000000
0.006250 0.012500 0.000000
0.000000 0.000000 0.000000
0.018750 0.037500 0.000000
0.021875 0.043750 0.000000
0.025000 0.050000 0.000000
0.025000 0.050000 0.000000
0.037500 0.075000 0.000000
0.050000 0.100000 0.000000
0.012500 0.025000 0.050000
0.006250 0.012500 0.050000
0.000000 0.000000 0.050000
0.018750 0.037500 0.050000
0.021875 0.043750 0.050000
0.025000 0.050000 0.050000
0.025000 0.050000 0.050000

Approved for public release; distribution is unlimited.
35

0.037500 0.075000 0.050000
0.050000 0.100000 0.050000
0.012500 0.025000 0.100000
0.006250 0.012500 0.100000
0.000000 0.000000 0.100000
0.018750 0.037500 0.100000
0.021875 0.043750 0.100000
0.025000 0.050000 0.100000
0.025000 0.050000 0.100000
0.037500 0.075000 0.100000
0.050000 0.100000 0.100000
0.021938 0.043877 0.021000
0.021022 0.042044 0.036250
0.020106 0.040212 0.051500
0.019189 0.038379 0.066750
0.018273 0.036546 0.082000
0.021938 0.043877 0.021000
0.018773 0.037546 0.038750
0.015608 0.031215 0.056500
0.012442 0.024885 0.074250
0.009277 0.018554 0.092000
0.200000
0.025000 0.050000 0.000000
0.012500 0.025000 0.000000
0.000000 0.000000 0.000000
0.037500 0.075000 0.000000
0.043750 0.087500 0.000000
0.050000 0.100000 0.000000
0.050000 0.100000 0.000000
0.075000 0.150000 0.000000
0.100000 0.200000 0.000000
0.025000 0.050000 0.100000
0.012500 0.025000 0.100000
0.000000 0.000000 0.100000
0.037500 0.075000 0.100000
0.043750 0.087500 0.100000
0.050000 0.100000 0.100000
0.050000 0.100000 0.100000
0.075000 0.150000 0.100000
0.100000 0.200000 0.100000
0.025000 0.050000 0.200000
0.012500 0.025000 0.200000
0.000000 0.000000 0.200000
0.037500 0.075000 0.200000
0.043750 0.087500 0.200000
0.050000 0.100000 0.200000

Approved for public release; distribution is unlimited.
36

0.050000 0.100000 0.200000
0.075000 0.150000 0.200000
0.100000 0.200000 0.200000
0.043877 0.087754 0.042000
0.042044 0.084088 0.072500
0.040212 0.080423 0.103000
0.038379 0.076758 0.133500
0.036546 0.073093 0.164000
0.043877 0.087754 0.042000
0.037546 0.075092 0.077500
0.031215 0.062431 0.113000
0.024885 0.049769 0.148500
0.018554 0.037107 0.184000

Approved for public release; distribution is unlimited.
37

Appendix C. Alternative Format for Postprocessing Data

Approved for public release; distribution is unlimited.
38

Instead of using an EXODUS II file for the deformation data, a text file may be
used. That file must match the following format for the algorithm to function. The
file will contain only numbers, no keywords are used.

The first line will be a single integer entry indicating the number of output time
steps. After that the time of the first output step is reported. Then the following lines
include the displacement values of the nodes of the solid mesh in order. All nodes
must be reported at each output time step.

<line 1 – Number of output time steps>
<line 2 – Time for output step 1>
<line 3 through number of nodes + 3 – X, Y, and Z displacement values for each
node>
<line number of nodes + 4 – Time for output step 2>
<line number of nodes + 5 through 2*(number of nodes) + 5 – X, Y, and Z
displacement values for each node>
This pattern continues until all of the output time steps have been reported

For an example of this format, see Appendix B-3.

Approved for public release; distribution is unlimited.
39

Appendix D. EXODUS II Commands

Approved for public release; distribution is unlimited.
40

The following header line is required at the top of the code to use any of the
following EXODUS II commands:

#include “exodusII.h”

D-1 Reading in Mesh Data

Open EXODUS II file
int ex_open(path, mode, comp_ws, io_ws, version);

path – char, file name and path to the EXODUS II file
mode – int, EX_READ or EX_WRITE (predefined constants)
comp_ws – int, word size in bytes (0, 4, or 8)
io_ws – int, word size in bytes (0, 4, or 8)
version – float*, returned EXODUS II database version number

Close EXODUS II file
int ex_close (exoid);

exoid – int, returned value from ex_open

Read Initialization Parameters
int ex_get_init(exoid, title, num_dim, num_nodes, num_elem, num_elem_blk,
num_node_sets, num_side_sets);

exoid – int, returned value from ex_open
title – char*, returned database title
num_dim – int*, returned dimensionality of the database
num_nodes – int*, returned number of nodes
num_elem – int*, returned number of elements
num_elem_blk – int*, returned number of element blocks
num_node_sets – int*, returned number of node sets
num_side_sets – int*, returned number of side sets

Read Nodal Coordinates
int ex_get_coord(exoid, x_coor, y_coor, z_coor);

exoid – int, returned value from ex_open
x_coor – float*, returned x coordinates of the nodes
y_coor – float*, returned y coordinates of the nodes
z_coor – float*, returned z coordinates of the nodes

Approved for public release; distribution is unlimited.
41

Read Element Block Parameters
int ex_get_elem_block(exoid, elem_blk_id, elem_type, num_elem_this_blk,
num_nodes_per_elem, num_attr);

exoid – int, returned value from ex_open
elem_blk_id – int, ID of current element block
elem_type – char*, returned type of elements in the element block
num_elem_this_blk – int*, returned number of elements in the element block
num_nodes_per_elem – int*, returned number of nodes per element in the element
block
num_attr – int*, returned number of attributes per element in the element block

Read Element Block Connectivity
int ex_get_elem_conn(exoid, elem_blk_id, connect);

exoid – int, returned value from ex_open
elem_blk_id – int, element block ID
connect[num_elem_this_blk, num_nodes_per_elem] – int, list of nodes making of
the current element

D-2 Reading in Result Data

Read Results Variables Parameters
int ex_get_var_param(exoid, var_type, num_vars);

exoid – int, returned value from ex_open
var_type – char*, type of variable described
 “g” or “G” – global variables
 “n” or “N” – nodal variables
 “e” or “E” – element variables
 “m” or “M” – nodeset variables
 “s” or “S” – sideset variables
num_vars – int*, returned number of variables stored for specified variable type

Read Variable Names
int ex_get_var_names (exoid, var_type, num_vars, var_names[]);

exoid – int, returned value from ex_open
var_type – char*, type of variable described

Approved for public release; distribution is unlimited.
42

 “g” or “G” – global variables
 “n” or “N” – nodal variables
 “e” or “E” – element variables
 “m” or “M” – nodeset variables
 “s” or “S” – sideset variables
num_vars – int, number of variables stored for specified variable type
var_names – char**, return array of pointers to num_vars variable names

Read Time Values for a Time Step
int ex_get_time (exoid, time_step, time_value);

exoid – int, returned value from ex_open
time_step – int, time step number (>= 1)
time_value – float*, returned time at the specified time step

Read Nodal Variables
int ex_get_nodal_var(exoid, int time_step, nodal_var_index, num_nodes,
nodal_var_vals);

exoid – int, returned value from ex_open
time_step – int, time step number at which nodal variable values are needed (>= 1)
nodal_var_index – int, index of the desired nodal variable (>= 1)
num_nodes – int, number of nodes
nodal_var_vals – float*, returned array of nodal variables

Approved for public release; distribution is unlimited.
43

1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS
 MGMT

1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 65 DIR USARL
 (PDF) RDRL CIH C
 A BREUER
 B HENZ
 M VINDIOLA

 RDRL DPW
 R COATES
 P FROUNFELKER
 M TEGTMEYER
 RDRL HR
 P FRANASZCZUK
 K MCDOWELL
 RDRL HRS
 K OIE
 RDRL HRS C
 S GORDON
 W HAIRSTON
 J MCARDLE
 A PASSARO
 M PETERSON
 B LANCE
 J VETTEL
 RDRL ROP L
 F GREGORY

 RDRL SLB W
 D BOOTHE
 N EBERIUS
 P GILLICH
 A KULAGA
 C KENNEDY
 W MERMAGEN

 RDRL WM
 S KARNA
 RDRL WML C
 L PIEHLER
 RDRL WML H
 B SCHUSTER
 RDRL WMM B
 B LOVE

RDRL WMP
 S SCHOENFELD
 RDRL WMP A
 S BILYK

 RDRL WMP B
 C HOPPEL
 W EVANS
 A DAGRO
 A DILEONARDI
 A DWIVEDI
 CA GUNNARSSON
 Y HUANG
 M LYNCH
 J MCDONALD
 P MCKEE
 S SATAPATHY
 A SOKOLOW
 C WEAVER
 T WEERASOORIYA
 S WOZNIAK
 T ZHANG
 K ZIEGLER
 RDRL WMP C
 DL CASEM
 J CLAYTON
 T BJERKE
 D DANDEKAR
 M GREENFIELD
 B LEAVY
 RDRL WMP D
 R DONEY
 J RUNYEON
 RDRL WMP E
 P SWOBODA
 RDRL WMP G
 R BANTON
 N ELDREDGE
 S KUKUCK
 T PIEHLE
 N ZANDER
 RDRL WMP F
 R GUPTA
 R KARGUS
 E FIORAVANTE
 N GNIAZDOWSKI

 R SPINK

Approved for public release; distribution is unlimited.
44

INTENTIONALLY LEFT BLANK.

	List of Figures
	List of Tables
	1. Introduction
	2. Procedure
	2.1 Reading Mesh Information and Output Data
	2.2 Relating Vessel Locations to Brain Mesh
	2.3 Preprocessing Algorithm
	2.4 Postprocessing Algorithm

	3. Example
	3.1 Preprocessing Results
	3.2 Postprocessing Results

	4. Conclusion
	5. References
	Appendix A. User Manual
	A-1 General Input File Commands
	A-2 Mesh Input File Commands

	Appendix B. Sample Input File
	B-1 Primary Input File
	B-2 Include File with Mesh
	B-3 Post-Process Data File

	Appendix C. Alternative Format for Postprocessing Data
	Appendix D. EXODUS II Commands
	D-1 Reading in Mesh Data
	D-2 Reading in Result Data

