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SUMMARY

Charts are presented to show the pressure rise that
is obtaineble in an engine-cooling installation with a
typical airfoil-type propeller-speed fan. The charts
cover fans of the stator-rotor, rotor-stator, and rotor
alone configurations, with tlades incorporating both ths
highly cambered 65-series blower-blade sections and the
conventional low-cambered airfoil sections. The effects
of operation of a geared fan with rotatlional speeds
limited by compressibility considerations and the effects
of initial rotational inflow are indicated. Use of the
charts to predict the pressure rise obtainable with any
fan of the types considered is illustrated in a sample
calculation.

The cooling pressure rise obtainable with a propeller-
speed fan at low altitudes is shown to be large and may
be sufficient for most installations. At high altituces
the pressure rise is small. Of the three configurations
overating as proneller-speed fans, the stator-rotor
arrangement is shown to furnisn the highest pressure rise.
The pressure rise obtainable at a given flight velocity
increases with increasing fan-velocity ratio. A geared
fan is shown to have a possible pressure rise of approxi-
mately 95 inches of water at sea level and 18 inches of
water at 0,000 feet when the mean relative Mach number
at the tip is 0.8.

Rotational inflow in either direction 1s shown to
cause an increase in pressure rise cirectly across the
fan with the stator-rotor arrangement. The pressure rise
cobtainable with a rotor alone is decreased by rotational
inflow in the direction of fan rotation and increased by
inflow in the opposite direction. The pressure rise
obtainable with a rotor-stator may be either increased
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>r decreased byv inflow in the direction of fan rotation
:nd is incressed by inflow in the opposite direction.

o

v}

INTRODUCTION:

Higher pressure rise than was previously thougit
possible is now obtainable with axial-flow cooling fans.
Tn a recent investigation (reference 1) of a family of
NACA €5-series blower-blade sections testec in cascade,
it was shown that values of the product of solidity C
times section 1ift coefficient c¢3 as high as 1.3 may
be obtained with highly cambered airfoils. Previously,
a value of «¢3 = 0.7, for solidities of about unity, has
been considered approximately the maximun for fan desizn
(reference 2), with the low-cambered R.A.F. 6 type of
airfoil section in'general use.

The present paper contains charts showing the pres-
sure rise that is obtainable in an engine-cooling instal-
lation with a typical airfoil-type prcpeller-speed fan
both with highly cambered 65-series blower-blade sections
and with conventional low-c¢ambered sections. These charts
have been nrepared for single-stage fans having a rotcr
alone, a stator following a rotor, and a rotor following
a stator. Additional charts have been prepared to inci-
cate the effects of operaticn of a configuration for which
the rotational speeds are limited only by compressiblility
effects (such as a geared fan) and the effects of rota-
tional inflow, as caused by a tractor prepeller. Material
has been included to meke the charts applicabls to the
detsrmination of pressure rise obtainable with fans of
any given dimension at any operating condition.

SYMBOLS

a velocity of sound, feet per seccnd
A area, squars feet
b blade section chiord, feet

!

number of bDlades
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)
a
Ky

I

J.x.2

M

T

N

N

section 1lift coefficient

fan diameter at & section, feet

fan performance coefficient

3 1600\° 1\
fan performance coefficient = ) = ‘>~)

Mach number (V/a)

rotational speed, rpm (except when otherwise
noted)

rotation vnarsmeter Gnr/Vf3

fan static-pressure rise, inches of water

. ' . pVa\
dynamic pressure, inches of water 2 )

axial dynamic pressure at fan, inches of water

[PV \
%)
racdius at a section, fset

outeide radius of fan, feet

avsolute tangential velocity, feet per second
absolute velocity, feet per second

axial velocity at fan, feet per second

mean relative velocity at rotor, feet per second
radius ratio (r/R)

stagger angle; angle between relative entering
air to rotor and fan axis, degrees



NECA T Fo. 1199

angle of initial rotational inflow to fan,
4
u
tan~ 1 2
Ve

turning angle, degrees
ratio of specific heats (l.L for air)

APactual

efficiency

mass density of air, slugs per cublc foot

| b
s0lidity f%;>
£7r

degrees

angular velocity of rotating blades, radians per

second

Subscripts:

£

h

e

at fan

hub

ideal

free stream

zero rotational inflow
dutside

behind propeller
rotor
rotbf~stator
stator
stator-rotor

mean relative velocity
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Primes on symbols indicate condition of initial
rotational inflow.

CONSIDERATIONS AFFECTING PRESSURE RISE

Formulas for Pressure Rise of a FPan Element

A detailed cdiscussion of axial-flow-fan theory and
design may be found in reference 2, in wihich equations
are derived for the ideal vressure-rise coefficient Lnl/qf

of a fan blade element (assumed independent of its ne igh-
boring elements) in terms of the rotor 0Jcy; and N of
the element. The icdeal pressure rise is defined as the
pressure rise that would occur in 4 frictionless Fluid.
These equations are derived on the basis of incompressible
flow for single-stage fans of configurations having
(1) the stator upstream of rotor, (d) the rotor upstream
of stator, and (%) the rotor alone. ‘These configurations
are designated stator-rotor, rotocr-stator, and rotor,
respectively. The ideal pressure rise, expressed in
efficient form, for each of these configurations 1is
given in reference 2 as:

Stator-rotor:

/
1 1 + + 1 ;6
Aps N2 o-c
— = (1)
dr o 116 4
L2 \g%cq2

Rotcr-stator:

/ ] 15
- . _ 4+ -
- l+vl+ = 1 3,2 1
) B - ! (2)
g £
£/ s 1 16 2\
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The velociuy diagrams corresponding to each arrangement
are dresented 1n figure 1. '

mhe stator-rotor and rotor-stator equations were
derived on the assumdtion that nc rotational velocity
exist upstream or downstream of the stage and, therefore,
the ideal static-pressure rise is egquivalent to the ideal
total-pressure rise The ideal total- pressure risge for
the rotor alone is bqual to that of a similar rotor-
stator, inasmuch as no change of total energy takes place
in the flow through the stator.

The ideal pressure-rise coefficient obtained from
reference 2 is plotted as a function of ¥ for values
of wo¢cy of 0.7, 1.0, and 1.3 in figure 2.

Formulas for Average Pressure Rise in the Annulus

The design criterion for the constant-velocity fan
(that is, a fan through which the axial velccity of the
flow remains uniform), also known as the free-vortex fan,
is that the circulation around each blade element is con-
stant radiglly. For this type of fan, the greatest value
of @©cy occurs at the blade hub and for the rotor-stator
and stubtor-rotor configurations the icdeal pressure rise
is constant radially at the deslgn point. TIf, therefore,
(OCL)P and Ny are known, the average ideal pressure

rise for the stator-rotor and rotor-stator mdy be deter-
mined from figure 2.

In the determination of the average 1ceal pressure
rise for the rotor alione, eguation (%) and the rotational
static-pressure loss averaged over the fan disk area may
be used. The average loss 1s .
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. 2

. X 1 [* 1 /8wy .

Average rotational loss = n S\ dA

. ‘L!-N qf ' .

: r-s
Api 2

qp/ r-s 1.0

= Py g log -
2t (1 - x?) h

Thus, the average ideal static-pressure rise for the rotor
is o '

( D3
égi) - EEE S N s 1Qa’l;9 (L)
Qe | T\ q : w2 .2 Pz !
f’rav T Ares gyt (1 = *h ) h

In order to detérwine b ¢ ‘
variows fan 19Q360 SLCL as profile draﬁ, tin clearance,
¢ subiracted from the
verabe ideal prcssure Tl . Fof the purposes of estima-
“tion, it is sufficient to mu“tiply'tbe"ceai pressure
rise by an estimated efficiency to find the actual pres--
sure rise; thus '

AD

Pactual ~ MAPj

i
for a cooling-fan installation with the fan overating at
its design ?ulnt with uniform entry-flow conditions, a
velue of 1 = 0.80 may be cons1dered representative.

When the entry flow is nonuniform, &s in a cowling instal-
lation at a high ‘angle of attack, the efficiency may be
considerably léss than 0.80. -

Maximum ﬂbtaln&ole Desizn acy and Pressure Rise

The conclusicn was reached in re “erance 2, after a
survey of the limited cascade data available, that the
maximum design. cj of & rotor airfoll in cascade was aboutb 0. 7
The airfoils tested in cascade up to that time were low-
cambered sections of the R.A.F. 6 type generally used in



8 NACA T No. 1199

axial fans. Since then, the casccde test:z ranorted

in reference 1 have been conducted, and the mors highly-
cambered low-drag sections tested were found to produce
much higher 1ift coefficients. The data also show that c¢g

alone cannot be used as a criterion, since the marimum

value of ¢3 suitable for dssign will vary with solidity
and stagger.

In the investigation of reference 1, the NACA 65-series
blower-vlade sections ranging in camber from free-air
design 1ift coefficients of O to 1.8 were tested at
solidities of 1.0 and 1.5 end at stagger angles of L5°
.and 60°, The design.point of a section was defined as the
point at which a reasonably flat pressure distribution
existed on the suction surface of the airfoil. The
results indicate that a design value of Gc; of 1.3 can

be obtained for stagger anglss up to 60°. Unpublished
rasults from the investigation of reference 1 indicated
that valuss of oc¢y greater than 1.3 can be obtained at

stagger angles equal to and less then L5°. In the calcula-
tions prassented hesrein, however, it will be conservatively
assumed that the maximum obtainable value of ocy for a
rotor is 1.% for stagger angles up to 60°. Although the
tests were not conducted at stagger sngles greater than 60°,
the trends shown by the results indiceate that the maximum
design <cj; will be less than 1.3 in this region. 1In

the celculastions of the c¢; obteined at maximum pressure
rise from fan test data (reference %), the maximum cy was

glgo found to drop in the high stagger rangs. In thias
range of stagger angle the pressure rise 1s high, snd the
stall of the blades is accelarated by the thickening end
senarstion of the boundary layer becauss of the steep
pressure gradient., ‘For stagger angles greater than 609,
the eriterion for blade stall may therefore be expected
to be the pressure rise relative to the meen relative

. ) 3
dynamic pressure at the blade Ag/qw (where Ay =,§%2) .
rather than the blade-losding factor ocy. /

The value of Apy [y for gecy = 1.3 at 60° stagger

1s 0.98 and, in the cbsence of more complete sxperimental
information, 1t will be assumed herein that for stegger
angles greater than 60°, this value is a meximum for
design purposes. The maximum oc¢j; obtalneble for design
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wes calculated following this assumntion and values of
maximum ©cCjy are plottnd in figure 3 as & function ¢f

stagzger angle. The equation for stagger angle for the
rotor-stator and rotor is

tan B =

and for the stator-rotor is .

,'.:-‘i
tan £ = N +

From these equations the maximum obteainable oc; was
related to the rotation perameter N as shown in Ffigure L.
The ideal preasure rise for stagger angles greater than 60°

ased on the maximum oc; cbtainable as determined from
figure lj, was calculated according to equations (1) to (3)
and 1s presented 2z o function of N in figure 5.

The for6001ng criterion for the maximum values ofi Gey
obtaineble will be applied only to the rotor hersin. Iv
is assumed in the charts of figure 6 that stators can be
-éeswbnud to op'“ate nreperly with a rotor loadsd to ths |
meximum values of ooy obtsinable. In the stator=-rctor
snd rotor-stator configurations, the value of ccy
requirsed for the stator is lzrger then that of the rotsr

when the mesn velocity of the rotor is grester than that
of the stator. Tests of entrance vanes in cascade {(refar-
ence L) indicate that because of the pressure drop, XLqily

entering eir can be deflected eff 1~Lunt’y up to anrJe |
of dOO Thus, no difficulty would be encountered in the
design of the stators for the stetor-rotor configuration.
In the rotor-stetor configuration, the stator must act

in a pressure-rise condifion similar to that of the rotor
snd the seme criterion for mazlmum velues of ocy
obtainable would apply. As mentioned previously, unpub-
lished date of cascade tests indicate that values of G2y

greater than 1.3 ma g be obtained at stagger angles squal
to and less than U5°. For a rotor hzving 2 stagger angle
of 60° ond operating at ocy = 1.%, the stagger engle

of the stator is sbout L6°. For thlo condﬂt*op ~the value
of GCL required for the stator is about 1.7. The unpub-
lished cascade tests indicats that this value of gy

may be obtained. For rotor stagger angles up to 607,

-
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therafore, 2 single-stage stator may be utllized with the
rotor-stator configuration. ¥han the rotor stagger angla
is larger than 609, the stagger angle of the stator is
larger than 560 and the stator is required to supnly much
larzer veluwes of Oc¢j; than the rotor. Thus, long diffussr-
1ike stators or a two-stage stator may be required in this
operating range to return the flow completely to the axial
Airection. Iittle datas sre availeble for such stators and
5t is possible that difficulty with the boundary layers

at the malls msy csuse high losses, It may De noted,
nowever, that a large pert of the static-oressure rise
obtainsble from the roteting streem behind a rotor may be
realized even though the sir leaving the stator is 10°

ar 20° to the exiasl direction. -

0o

D

_PRESSURE RISE OBTATNABLE WITH COOLING FANS

Propeller-sueed fan.- Charts showing the pressure
rise TRef ootn Ds ooveined with a tyoicsl propeller-speasd
far having the highly cambered HAGA 6h-series blower-blade
ssctions are presented in figure 0. These curves are
bazed on the maximum gcj relationship shown in figure 3.
The charts were computed to indicate the ideal pressure-

. Fr 94 .

%2 feet and a fan rotstional speed of 1600 rpm. TFor the
free-vortex type of fan discussed in the previous section
the charts give the averege gressure rise for stator-
rotor and rotor-stator fans of 3-foot hwb dismeter and
1600-rom rotational speed. The chart for the rotor slone’
(fig. 6{c)) does not give values of the average pressure
rise, since no outside dlametsr has been designated, but
indicates the pressure risse to be sxoccted at the hub of
a rotor of %-foot hub diemeter operating at 1600 rom.

The averagse robtor pressure rise, if desired, may be found

from equation (h). The ordinates and curvaes of the charts

L.l

rigse coeffic ‘at & fan section diameter of

O

)

have two dssignations gnd for the typnicsel nrepellar-speed
fan the first designation is used. The second desgignation
generalizss the charts with respect to thse determination
of prsssure rise for fans of any diaweter and rotational
speed and 1s Alscussed subssquently in the section "Ien

charts and Iillustratlive Example." The charts (fig. 6)
show the idsszl pressure-riss coefficient based on free-
amic pressure that may be obtailned for several
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fan-velocity ratios Vf/VO through a flight velocity
range of 120 to LOO miles per hour. The pressure-rise
coefficient is shown to increase with increasing fan-
velocity ratio for the rotor-stator and stator-rotor.
for the rotor the pressure rise increases with fan-
velocity ratio in the low flight-velocity range but
decreases in the high flight-velocity range and actually
is negative at very high fan-velocity ratios. This
phenomenon results because, at low stagger angles, the
blade operating at a high c¢cj; turns the air through
such a large angle as to cause most of the energy input
to be converted-to rotational energy rather than to
static-pressure rise. ‘

Charts showing the ideal pressure-rise coeffi-

p Api o R
cient —— —— that may be obtained for a typical
Pr 9, '

propeller-speed fan of the previously mentioned dimen-
sions with blades of low-cambered sections (GCZ = O.?)
are shown in figure 7. At a given flight velocity, the
-pressure rise is noted to increase with fan-velocity
ratio for the stator-rotor and rotor-stator, and also for
the rotor alone over its practical operating range.

The ideal pressure rise in inches of water that may
be obtained by the typical propeller-speed fan at several
altitudes is shown in figure 8 for the fan velocity

'

ratio v. = 0.6. Army standard air c¢ensity was used in
0

these calculations. The figure shows that for a given
fan-velocity ratio the value of cbtainable pressure rise
increases with incresasing flight velocity, and that the
highly cambered sections (maximum obtainable ocy)
furnish considersably higher pressure rise than the con-
ventional low-cambered sections (Ocz = O.?). It is also

evident that the greatest pressure rise is obtained with
the stator-rotor configuration, and that this tyne of fan
should be used when the rotational speed is limited, if
the highest pressure rise cbtainable is desired. The
propeller-speed fan appears to provide sufficient cooling
at low altitudes. At high altitudes, the pressure rise
ovbtainable is small.

Geared fan.- The effect on ideal pressure-rise coef-
ficient of changing the rotational sveed is shown in
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figure 9, wherein it is evident that large increases in
pressure rise may be obtained by gearing the fan.

The maximum fan pressure rise that may be achiaved
by rotating the fan at high speeds is limited by com-
ressibility considerations. 1In reference 2 a method is
given of sclving for the maximum pressure rise and rota-
tional speed of a fan of known dimensions, quentity fiow,
and ocj at the hub, the mean relative velocity at the
tin being set equal to some fraction of the velocity of
sound. The results presented in reference 2 also nroved
that, for fans of hub-tip radius ratio xp greater
than 0.707, the greatest pressure rise may be obtained
from the rotor-stator configuration.

The NiCA 65-series blower-blads sections are new
being investigated in high-speed flow. Preliminary
indications are that the critical mean relative Mach

nember W/a will be betwsen 0.6 and 0.8, depending upon
“the section camber and loading.
lculsat
of the maximum icésal pressure rise of a rotor-stator
of xp = 0.75, (oc;}h = 1.0, and mean relative Hach
W X .
aumber — = 0.5 and 0.8. The fan was also assumed to be

oy

<

in an inlet. The density ratio pf/po was calculated
from the equation

oy
wa

[}
.
*..
v
-~
S

‘rom RBernoulli's equation for a com-

ee reference 5.) The calculations

ht velocity range of 120 to 400 miles
des from sea level to L0,000 feet,
and for fan-velo ratios from 0.2 to 1.0. The results
snowed that the pnressure rise obtainable and the maximam
tip speed at a given W/a varied only 5 percent through

which was derived {
pressible fluid. (
were made for a fli
- per hour, for altit

c

@

the calculated —-range at any altitude and f1lizht speed.

In figure 10{a)

s
) is shown the variation of maximum ideal
pressure-rise coef

rricient with flight velocity and
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v N
altitude for §§-= 0.6, which may be considered typical
o .
for values of LA 0.6 and 0.8, 1In figure 10(bd) are

a
values of maximum tip speed (in terms of ndyy¢ for con—

venience) reguired to give the maximum pressure rise

for V£'= 0.6, The maximum ideal pressure rise in inches
o}
of water, computed by using Army standard air, is pre—
sented in figure lo(c), and the pressure rise at any
altitude is shown to be almost constant over the flight—
velocity range at a given value of mean relative Mach
number, The maximum ideal pressure rise is shown to be
approx1mafely 95 inches of water at sea level and
18 inches of water at 40,000 feet in Army standard air
for a mean releative Mach number at the tip of 0.8, Fig-
ure 10 may be used to determine quickly whether a single—
stage fan can furnish a required pressure rise, For
example, at an altitude of 30,000 feet in Army standard
air and at a flight velocity of 300 miles per hour, a rotor—

4 , _ W
stator of 3.5~foct outside diameter, with a value of a = 0.8

at the tip, can supply & maximum ideal nressure rise of
about 27 inches of water, at a rotational speed of approxi-
mately 4700 rpm.

With Rotational Inflow

General remarks,.,— When the inlet to the fan is down—
streem of' the propeller, the resulting rotational inflow
may affect appreciably changes in the ideal pressure rise
end blade—angle setting for any design value of gcy .
Scanty experimental evidence available (British) indicates
that the inflow angle &, resulting from an initial

2

rotational velocity wu,, where
u

5 = tan™t ﬁg

f

may be as large as 450. Most of the rotational inflow

is probably caused by the rotating boundary layer on the
spinner and the interference at the blade root and spinner
juncture; therefore, theoretical prediction does not
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feasible. The analyesls treats only the change in
c-pressure rise from immediately upstream to irme-
ly downstream of the fan. 1In estlmatlng the total
ressure avallable for cooling. the total energy of the.
flow directly benind the proneller must be known. Values
of 8 and u, are defined as positive when the inflow

r

”J

ua D r o

C‘b(/lSL'

ANDes
tat
dat
r

3

rotation is in the same direction as the fan rotaticn and
&8s negetive when the inflow rotation is in the opposite
direction to the fan rota+1on, Use of the charts to
estimate rotational inflow effects reguires that the
“value cf & be known cor assumed.

fffect of initial rotational inflow on stator-rotor.=-
ial rotational inflow increases the ideal pressure
obtain<’.le directly across the stator-rotor con-
stion. In this configuration a pressure drop is
rienced through the stater, and the initial rotation
eases the pressure droo. The increase of pressure-

w
coefficient is derived in appendix A as

3oy o
[l e
L]
nﬁ

o
(D’i(‘o

’

B0 Fh
e @ B b e

P
e

[£3}

'_J

G 7
~ S

i N YN
kS S S (S S <X£\ (%)
qQ Po \pos26, /\Vo / ‘

Equation (6) i3 vnlotted in figure 11. . Significant
increzases in idezl statlc pressure rise sare seen to be
obtainable at high angles of inflow and the anher Tan-
velocity ratios.

Effect of initial rotational inflow on rotor-stator
and rotor npressure rise.- 1he effect of rotational inilow
8T the rotor and rotor-stator ideal pressure rise at a
fan vlade element is shown in figure 12 Ffor inflow rota-
tional direction the same as the fan rotation and in
figure 13 for inflow rotational direction opposite to the
fan rotation. The effect 1s presented as the ratio of
the change of pressure rise due to rotational inflow to
the pressure rise with zero rotational inflow. The curves
are plotted for constant values of stagger (3 of the

fan, that is, the stagger anzle for zero rotational
inflow, where :
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for constant values of ocy egual to 0.7, 1.0, and 1.3.
It 1s assumed in theseé curves that:the original ocj; 1is
obtained by changing the fan blade-element angle and that
the stator element of the rotor-stator. is reset to remove.
all the rotation from the final stream. The method of
calculating the curves is presented in appendix B.

For the rotor alone, inflow rotation in the same
direction as fan rotation decréases the obtainable pres-
" sure rise and inflow rotation in the opposite directicn
increases the obtainable pressure rice.

For the rotor-stator, inflow in the direction oppo-
site to fan rotation also increases .the obtainable pres-
sure rise. With inflow in the same direction as the fan
rotation, a decrease c¢r lncrease of nbtainable pressure
rise may be realized by the rotor-stator, depending on
the region of fan operaticn. An increase takes place
when the increase of rotational energy behind the rotor
is greater than the rotor static-prescure-rise decrease
caused by decreasing the chdgcr.

Because & value. . of o¢cy = 1.%2 1s not obtainable at
stagger angles greater than 609, curves showing the effect
of initial rotational inflow on the rotor-stator and rotor
ideal pressure rise for maximum. obtainable ocy, as
defined in figure i, are »resented in figures 1, and 15.

_FAN'CHARTS AND ILLUSTRATIVE EXAMPLE .

Charts for Determining Pressure-Rise Coefficieht-

The curves of figures 6 and 7, with a few modifica-
tions ‘in notation, may be used to determine quickly the
maximum obtainable ideal vressure rise (based on the
oc; relation of fig. 3) or the iceal pressure rise
obtainable with a low cambered blade (ocy = 0.7) of

' constant-velocity fans of given. hub diameter, rotationsal
speed, and fan-velocity ratio Vp/V,, 1in the flight-

velocity range between 120 and LOO miles :per hour. In
order to make the charts a»nlicable. to any fan the lines
of constant fan-velocity are designated K3, where
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<

¢ = 3 1600 V&
x.l d n' .VO

The ordinate of figures 6 and 7 then becomes

po A."
——— KP . _ml
Pr 7 g4

where

s N\e
K, = (é . 1600}

The derivation of the coefficients X7 and Kp 1s pre-
sented in appendix C. The use of the curves is facilitated

/ Apy APy
by charts for determining ¥3 and —-— from Kp —,
' ' ' 4o 4o

which are presented in figures 16 ané 17. Thus, in order
to find the maximum pressure-rise coefficient obtainable
at a flight velocity of 300 miles per hour from & stator-
rotor of 2-foot hub diameter, %600-rpm rotational speed,

Ve
and ;; = 0.l, K1 = 0.27 1is first determined from
Po LPy ‘ i
figure 16. Next, == ¥ = 0,50 1is obtained in
figure 6(a), and finally from figure 17(a) it is deter-
mined that — — = 1.1i.
£ 49

In order to facilitate the determination of the
effect of rotational inflow for rotor-stator ana rotor-
alone configurations, a plot of {5 as a function of K;

and flight velocity is presented in figure 18.
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Illustrative Examﬁle

The discussion of the previous sections will be
illustrated by the estimation of fan performance for an
airplene cruising at 220 miles per hour at an altitude.
of 325,000 feet. A fan static-pressure rise of 12 inches
of water is assumed tc ve required for cooling and in tne
- example, the following values are determined:

(1) the maximum pressure rise obtainable with
propeller-speed fans of the stator-rotor, rotor- stator,,:
and rotor configurations

(2) the rotational speed necessary for each fan
configuration in order to sun*ly the reguired pressure
rise

The estimations are first made for zero initial rotational

inflow; the effect of an inflow of 20%° on the pressure

rise at the hub section is then determined. The assump-.

tion is made that the provneller-speed-fan rotation is in.

. the same direction as the vrovpeller rotation, whereas the
geared-fan rotation is onposite to the propeller rotation,

. The following data, based on an actual cooling-
installation, wers assumed:

Altitude (Army stendard air), feet ... . . . . + 35,000
Atmospheric density, p,, slug per
cubic foot. « v « v v v v v v e 4 « « « . . 0.000670
Flight velocity, mph . v . . . + ¢« ¢« ¢« « « & « « « . 220
Flight Mach number, Mgq. . . . ¢« « o« . . . « . . . 0.32
Propeller-speed-fan rotational speed, rpm. . . . . 1125
Fan hub diameter, dy, feet . . . . . . . . . . . 2.30
Fan-velocity ratio, Ve/Vy . . . . . . . . . . . . 0.60
Fropeller rotational inflow, 8§, agrees. . . . . . 20
kequired fan pressure rise, AD, Jcnes water . . . 12
Pan efficiency, m . . +« « « « & « « « +°« « + ... 0.80
Regquired ideal fan pressure-rise
Lps
CoefFiciont, —= v v v v v 4 e e e e e e . 2.2k
o .

The steps taken in the calculation are presented in
table I and the results of the calculstions are as fol-
lows s
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3tator-rotor |Rotor-stator !Rotor

Propeller-speed fan

ADs

—~ for & = 0° 0.52 0.36 0.18
g ‘ |

AV o

—= for & = 20° .56 .38 .01
4 |

Geared fan

Farr speed (rpm)

Apyg 3130 Lolo 11730
for & =09, = = 2.2l
(6]
Avy
- for & = -20° 2.28 2.49 2.8
o

The propeller-speed fan does not supply sufficient pres-
sure rise for cooling and a geared fan 1s required.

CONCLUSIONS

An analysis has been presented of the pressure rise
obtainable with single-stage airfoil-type cooling fans
utilizing highly cambered 65-series blower-blade sections.
The fan arrangements considered were a stator-rotor, &
rotor-stator, and a rotor alone. Ssveral conclusions of
importance in the selection of cooling fans may be drawn,
as follows;

1. The cooling pressure rise obtainable with a
propeller-speed fan is large at low altitudes, ancd may
be sufficient for most installations. At high altitude,
the obtainable pressure rise is small. Of the three fan
configurations onerating as propeller-speed fans, the
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hi;
0

heaf, pressure rises may be obtained with the stator-
or arrangement.

ot UL}

+

2. The pressure rise obtainable with a propellsr-
speed fan increases with increasing fan-velocity ratio
at a given I'light velocity.

Z, The pressure rise obtainable with a fan of which

the rotationzl speed is limited by compressibility effects
is almost indepencent of fan-velocity ratio and flight

velocity. The maximum ideal pressure rise 1s approxi-
mately 95 inches of water at sea level and 18 inches at
;0,000 feet, in army standard air for a mean relative
Mach nunber at the tip equal to 0.8.

li. With the fan blades adjusted for satisfactory
oneration in rotational inflow, the pressure rise
obtainabls directly across stator-rotor will be increased
by rotational inflow in a direction either the same as
or opposite to the fan rotatioan. The pressure rise
obtainable with & rotor alone will be decreased by rota-
tional inflow in ths direction of fan rotation, and
increased by inflow in the opposite direction. The pres-
sure rise obtainable with a rotor-stator may be elther
increased or decreased, depvending on the overating reglon,
by inflcw in the direction of the fan rotation and will
be increased by inflow rotation in the opposite direction.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
langley FPisld, Va., January 16, 1946
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APPENDIX A

DERIVATION OF THE EFFECT OF INITIAL ROTATIOHAL INFLOW

ON STATCR-ROTOR PRESSURE RISE

For the stator-rotor confiburatlﬁn (see flg 1), the
$deal pressure drop through the stator at & = 0° may be
expressed by use of Bernoulli's equation as

APy = -g (ve2 - ;%)

When an initial rotation exists upstream of thse
stator, the pressure drop is

| l’( Vf \d
Api - V12
s’ 2 |\cos 6/

Tnasmuch as the rotaticnal inflow only affects the
pressure rise through the stator, the increase realized
in ideal pressure rise for the stage because of initial
rotaticon is, in coefficient form,

AD

or, in terms of free-stream dynamic pressure,

bpy' - Bpy Pr /1 ]f‘\ ,
= oo (6)
'qO 0 IQ/
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APPENDIX B

METHOD OF CALCULATING EFFECT- OF INITTAL ROTATIONAI, INFLOW
ON ROTOR-STATOR AND ROTOR PRESSURE RISE

The effect of initial rotational inflow on the ideal
pressure rise of the rotor—stator and rotor configurations
vas determined in the following manner, The rotor uay be
considered 'a device that turns the air through en angle 0,
(See fig. 1.) The relation between oc;, the stagger
angle B, and the turning angle 6 1is, if drag is
neglected, ,

. 2 {tar 8 — tan (B — 8)
o, o2 lten 8 = tan (3~ 0)]

\/1 +'117 [tan BA+ tan (B — 9)]

e

A plot of B8 against © for constant values of ocy

equal to 0.7, 1.0, and 1.3 as determined from this equa-—
tion 1is presented in figure 19, The ideal static--
pressure rise across the rotor as a function of stagger
angle and turning angle may be written as (reference 1)

?_I.):-_) = 1 1 (7)
ar/. cos?p  cosZ(B — 6)

The ideal pressure rise across the stator is, if all
rotation is assumed to be removed, equal to the kinetic
energy of the tangential flow behind the rotor, or

@ /o \Ve

[ ten B, ~ tan (8 - e)]2 | (8)
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Fhe ideal pressure rise for the stage 1is

AD f\ Aps AD
D (2@ e

.L

e

When an initial rotation exists upstream of the stage,
the stagger is altered and way be found from

tan § = tan By - tan §

For a given o¢c; the new value of turning angle may then
be determined in figure 19 and the pressure rise may be
combputed by substi thlng the altered values of stagger
angle and turning angle in equations (7), (), and (9).
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APPENDIX

DERIVATICN OF THE FAN PERFORMANCE

"COEFFICIENTS, K7 AND Xp

Consider tne charts in figures 6 and 7. When the
fan section diemeter and rotational speed are specified
as % feet and 1600 rom, respectively, a given value
cf Vp/Vy, and flight velocity V, fixes the value of

the rotational parameter N. Since ADi/q. i f
of 1§ for a given ocj relationship, the ordinate was
computed by '

Py 4D5 APy [V -

pf q_o f .'\/O/l
Wnhen any other fan diameter and rotational speed are con-
sidered, the same relati

T

1 Vi > Ny N . ir
on between N and Ayl/Qf n
e

the charts may be retain
constant Vf/Vo

d by redezignating the lines of

A
K. = 2 1600 Vr
1 d m Vs
Y -
. . 21 .
The crdinate Decomes Klag or in terms of free-

ir
stream dynamic pressure,

tps (VN (iéoo 3\2 Py AD
Gr \Vo/ \ n rj) © P g, £2
where
L _ (1600 3\2 _ [/ Ky \f

i

ot

o

<
’—ﬁ

S~

<

O
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TABLE I
TLLUSTRATIVE EXAMPLE
' Stator-|Rotor-|.,
Item Source rotor |stator Rotor
Propeller-speed fan; & = 0°
(1) %1y, Fig. 16 1.11 1.11 {1.11
po\ Apg -, 4
5o — 1 .72 .18 | .56
(2) pf/)K2_ o Fig. 6 1.7 1.13 58
(3)}— —= Fig. 17 50 .35 1,17
pf qO O :
Py
(L) 5 Equation 5 1.02% | 1.033{1.033
O
. Av,
(5) N Ttems (3)x(L) 52 .36 .18
© |
Propeller-speed fan; & = 20°
/-or\ p]'_"' Api
— )} —— Fig. 11 0.0l femeeeej-mmu=
(6) \pf C 95 > w8 h
(7] Loy» des- Fig. 18 = |e------ 35. | 35.
Aps = A&py' ‘
@) —5— Fig. 1 |eeemme- -.056 | .97
_1 N
Ap; Jztems [(Lx(6)]+(5)] .56  |==mmmmfommmn
(9) = - -
%o ftems (5)- [(8)x(5) | ------~ .38




ILLUSTRATIVE &>

TABLE I

MACA TN No.

FXAMPLE - Concluded

1199

Stator-

Ttem Source rotor gi;ig; Rotor
Geared fan; & = 0°
'ﬁpi ' —
(10)| — (required) Specified 2.2L 2.2 (2.2l
Q
ADy Py APy VD
(11) =2 (Lo 6.01 | 6.01 l6.01
Gr Pr 4, \Vf
(12)| ¥y fig. 5 1.98 2.51 |2.9L
Vo‘.“-‘
'“J—\ ?j‘l;/ .
Rotational - - ‘ %180 Al
(13)‘SDPGC, rpm Ttem (12) X o 2180 Loio 730
Geared fan; & = -20°
| On ADs ' = ADs
! ) RS ‘L A l
S Fig. 11 0.0 |-==--f-mu--
(1L o i ig Ly
(15) %4, Pig. 16 |ememee- 0.31 |0.26
1y :
(16) ﬁoh, deg, wig. 18 0 | eemeee- 68 71
Api - 4D
(17) v Flg., 15  lemeeeaa 11 | .25
L._;_.i
Apy Items [(L)x(1h)]+(10)] 2.28 |--emenlomee-
(18) ~ i . -~} -
i Ttems [(10)%(17) }+(10) [ -=-===- 2.9 12.80

NATTONAL- ADVISORY
COMMITTEE FOR AERONAUTICS
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