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1. Introduction 

The end of frequency scaling (1, 2) in Intel and AMD central processing units (CPUs) has 

hampered x86 dominance in performance, especially for inherently parallel applications. In this 

new era of parallel computing, the computational capabilities of non-x86 technologies such as 

graphics processing units (GPUs), field programmable gate arrays (FPGAs), and digital signal 

processors (DSPs) have the potential to dramatically augment the traditional CPU-centric 

systems via the exploitation of parallelism. Heterogeneous systems that utilize a mixture of 

processor types can enable an order of magnitude improvement in performance to achieve faster 

time to solution in a smaller footprint. 

Currently, GPUs are as pervasive as CPUs, and graphics cards support general-purpose 

computing in addition to driving displays and rendering graphics on a screen (3). GPUs are 

traditionally designed to handle the inherently parallel operation of managing each pixel of 

graphics concurrently. The original purpose of GPU architecture was to optimize parallel 

processing. Accordingly, peak performance of high-end graphics cards are rated in excess of a 

trillion floating point operations per second (4). In terms of programming, the learning curve for 

getting started with GPUs is relatively low, assuming a programmer has a background in C 

development. However, despite clear benefits in terms of raw computing capabilities, high-end 

discrete GPUs consume more power where thermal design power ranges in the order of  

200–300 W (5), exceeding CPUs. This power requirement can be a severe drawback in battery-

constrained systems. 

FPGAs are inherently concurrent devices by definition. In FPGA development, a specific and 

custom hardware design is generated to solve a problem. FPGAs address computing an algorithm 

at the hardware level rather than at the software level. Depending on an application’s 

characteristics, FPGA implementations can provide a significant performance advantage because 

the circuit in an FPGA maps directly to an application’s specific task. For digital image 

processing, a Nallatech FPGA solution can potentially facilitate real-time computation with 

power consumption on the order of 25 W (6). However, prevalent disadvantages of FPGAs 

compared with CPU or GPU programming methods are the longer development time and the 

steep learning curve of Verilog or very-high-speed integrated circuit (VHSIC) hardware 

description language (VHDL) languages. The programming process is completely different for 

FPGAs since the development essentially involves designing hardware that requires the 

knowledge of digital circuits. 

This report presents work on evaluating DSPs for image formation execution. Consuming power 

in the 10-W range (7), feasibility of a Freescale DSP architecture for field-deployable application 

is investigated to achieve real or near real-time solutions. The benefits of utilizing DSPs include 



2 

the ease in programming and design optimization. Yet, it remains unclear if DSP architectures 

can offer performance advantages competitive to GPU and FPGA implementations. 

This project focuses on a radar imaging algorithm previously implemented on a heterogeneous 

CPU-GPU platform (8). The CPU-FPGA platform implementation is currently in simulation 

stage and near acquiring empirical results. The contribution of this research include an 

implementation of image formation algorithm on a CPU-DSP hybrid system that compares 

power consumption and execution speed with that of the previous CPU-GPU and CPU-FPGA 

designs. 

2. DSP Hardware Platform 

The hardware platform configuration for development comprises of a Dell Optiplex 390 

workstation in conjunction with a Freescale MSC8156EVM evaluation module that supports six 

Star Core SC3850 DSP cores with an onboard 1024-MB double data rate (DDR) synchronous 

dynamic random-access memory (referred to as DDR1). The DDR1 module is an 

MT8JSF12864H(I)Y-1G1 by Micron inserted in a SODIMM204 socket on the evaluation 

module. The module has 1 GB access via a 64-bit data bus from the MSC8156’s DDR1 

controller. A block diagram of the MSC8156EVM is depicted in figure 1. Although the Freescale 

evaluation module has high-speed peripheral component interconnect (PCI) express capability, 

the module is primarily configured through a standard universal serial bus (USB) 2.0 interface 

connecting the board to the Dell host system.  

 

Figure 1. MSC8156 block diagram (9). 

The Freescale SC3850 core uses instruction packing to fit the maximum amount of code into the 

minimum amount of space. The SC3850’s Variable Length Execution Set (VLES) instruction 

architecture allows the program to pack multiple instructions of varying sizes into a single 

execution set. The reading of the instructions and identifying the start and end of each instruction 
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set is handled by the prefetch, fetch, and instruction dispatch hardware of the SC3850 (10). All 

instruction words are 16 bits wide and each SC3850 instruction encodes an atomic (lowest-level) 

operation. Atomic operations need fewer bits to execute, thus allowing for a fully orthogonal (all 

instruction types can use all addressing modes) 16-bit instruction set. This VLES architecture 

allows the grouping of up to four Data Arithmetic and Logic Unit (DALU) and two address 

generation unit (AGU) instructions in a single clock cycle (9). 

Each Freescale SC3850 core contains a DALU with four ALUs, a program control unit (PCU), a 

resource stall unit (RSU), and an AGU that includes two address arithmetic units (AAUs). Figure 

2 illustrates a block diagram of the SC3850 DSP core. The SC3850 uses dual-multiply ALUs 

supporting two 16- × 16-bit multipliers that can accumulate results into 40-bit-wide destination 

data registers. Each ALU performs two multiply-accumulate operations per clock cycle, so that a 

single core running at up to 1 GHz can perform 8 billion multiply-accumulates per second. This 

rate is for 16-bit operands, 8-bit operands, or mixed 8- and 16-bit operands. Each AAU in the 

AGU can perform one address calculation and drive one data memory access per cycle. Data 

access widths are flexible and can be between 8 and 64 bits wide. The AGU can support a 

throughput of up to 128 gigabits per second between the core and the memory. The PCU 

performs instruction fetch, instruction dispatch, hardware loop control, and exception processing. 

It includes a 48-entry branch target buffer that is used to accelerate change of flow execution. 

The RSU controls the hardware interlocks. It collects information from the instruction bus, holds 

the status for all resources in the core, and inserts enough stalls to resolve the pipeline hazards. 

 

Figure 2. SC3850 block diagram (9). 

The MSC8156 has a four-level memory subsystem. It consists of two external DDR memory 

controllers, two levels of internal static random access memory (SRAM) (1056-KB M3 and 

512-KB M2), and two separate 32-KB L1 cache memories. The image formation algorithm is 
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characterized by a very large number of indirect (nonsequential) array accesses, favoring SRAM 

greatly over a traditional DRAM memory. An SRAM offers short access times and is optimal for 

real-time systems with timing constraints. However, due to the large amount of terrain signal 

data that must be processed (over 40 MB for certain data sets), only level 4 memory (DDR) on 

the MSC8156EVM can store the complete set of data at one time. Figure 3 conveys the memory 

hierarchy and latencies of each memory level for the MSC8156 device. 

 

Figure 3. MSC8156 memory hierarchy (10). 

The integrated development environment (IDE) CodeWarrior Development Studio Version 1.0.0 

assisted the programming development. This development studio contains the C and C++ 

compilers necessary to access and configure each component of the MSC8156EVM. This 

software tool coordinated the reading of GPS coordinates and terrain signal echo files stored on 

the hard drive, writing to the DSP’s on-chip DDR (level 4) memory, processing the data, and 

back-projecting onto an image matrix that is stored in a portable pixmap file (.ppm) on the CPU 

hard drive. Once generated, the image output is displayed using GIMP 2.8.2, a freely 

downloadable GNU image manipulation program. 
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3. Image Reconstruction Algorithm 

The image algorithm processes GPS and terrain signal data for the purpose of reconstructing an 

accurate radar image. Figure 4 portrays the details of the image reconstruction algorithm. The 

DSP design follows the original algorithm presented by Park et al. (8) that describes GPU 

implementation.  

 

Figure 4. Radar processing flowchart. 

The image formation begins by receiving the signal data returned from the transmitted radar 

pulse and tagging these data with a GPS position to subsequently determine the location in the 

target area of each returned signal. The energy of the return signal (reflectivity) indicates objects 

in the area to be imaged (target area). Because the radar platform is moving, a distance 

calculation is performed that determines the position of each pixel in the target area relative to 

the position of the transmitting and receiving antennas. The distance-time correlation takes into 

consideration the round-trip time of signal propagation using the computed distances between 
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transmitter/receiver and pixels. From this correlation, signal strength and location are 

determined. Finally, the target image area is mapped onto the smaller image display area (image 

matrix), the current return data are summed with the prior data (e.g., “summation” or coherent 

summation), and back projected onto the image display area. This implementation study 

considered an output image with a resolution of 100 × 250 pixels. 

3.1 Input Data Format and Storage 

The input data for testing the DSP implementation contained a real numerical format in seven 

files located on the CPU hard drive. The first six files contain 6–9 KB of positional coordinate 

data (x, y, and z) of the transmitting and receiving antennas obtained by GPS for each of 640 

apertures. The title of each file designates the corresponding antenna and coordinates. The 

seventh file contains about 42 MB of return signal data for each of 640 apertures. This file is 

significantly larger because the reflected radar data is sampled at a particular frequency 

depending on the frequency of the radar pulse (11). In this application, 5397 samples are 

generated for each aperture and formatted into a one-dimensional (1-D) matrix that contains 

3,454,080 data values. The total size of the input data files needed for this implementation 

(42.43 MB) exceeds the amount of SRAM available on the MSC8156EVM (1.6 MB), thus it is 

stored in the form of 1-D arrays in onboard DDR1 memory. Because the access latency to 

onboard DDR is high, the optimal DSP solution must include more available on-chip SRAM. 

To utilize these seven files, a code written in C++ converts all input data from real format to 

IEEE 754 single-precision floating-point. This same code is also used to convert the floating-

point data back into real format after the data have been processed but before the data are written 

to the CPU hard disk to be displayed. Focusing on the more computationally intensive case, this 

work investigates floating-point data only. 

4. Performance Tools 

The primary purpose behind designing and optimizing the back-projection algorithm for a 

CPU-DSP hybrid system is to compare its power consumption and execution speed with that of 

the previous CPU-GPU and CPU-FPGA designs. Therefore, we tried to keep code optimization 

and parallelization constant. The following section describes tools pertinent to timing and power 

measurement. 

4.1 Code Optimization 

The CodeWarrior IDE offers a variety of performance analysis and enhancement tools, one of 

which is the provision of four levels of code optimization. The empirical results are documented 

according to the optimization level implemented on the DSP. The FPGA implementation being 
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fairly well optimized, results are expected to be comparable to the higher levels of optimization 

(3 or 4). The following describes the differences between each level of optimization: 

1. Optimization Level 0: This optimization level disables all optimizations. The compiler 

generates unoptimized, linear assembly language code. 

2. Optimization Level 1: The compiler performs all target-independent (that is, 

nonparallelized) optimizations, such as function inlining. The compiler omits all target-

specific optimizations and generates linear assembly language code. 

3. Optimization Level 2: The compiler performs all optimizations (both target-independent 

and target-specific). The compiler outputs optimized, nonlinear, and parallelized assembly 

language code. 

4. Optimization Level 3: The compiler performs all the level 2 optimizations and then the 

low-level optimizer performs global-algorithm register allocation. 

5. Optimization Level 4: The compiler performs advanced scalar and loop optimizations. 

6. Faster Execution Speed: The compiler optimizes object code at the specified optimization 

level such that the resulting binary file has a faster execution speed, as opposed to a smaller 

executable code size. 

4.2 DSP Parallelization 

To fully utilize the capabilities of the MSC8156EVM, a multicore application code was 

developed that distributes the data among all six cores for parallel processing. However, no 

documentation could be found explaining how to link multicore application code within the 

CodeWarrior development environment. Through submitted service request, a documentation 

regarding to this topic was received. The response included an attached file that explained how to 

link a multicore application for a device similar to the MSC8156EVM. After following the 

instructions, the code no longer compiled. The development of multicore application codes that 

CodeWarrior compilers are able to link and run simultaneously on separate cores is an area of 

future work that will greatly benefit this project.  

4.3 Timing Measurement 

The MSC8156EVM contains a powerful component known as the Enhanced On-Chip Emulation 

module. This module serves as a debugging and testing tool for monitoring StarCore SC3850 

core activity. This module allows determining the number of DSP core cycles required to 

initialize all variables, read each input data file, perform all back-projection computations, 

construct the output image file, and store output data into a text file. 

The emulation module monitors core cycles by synchronizing a 64-bit counter to the 1-GHz core 

frequency and both resetting and logging the counter value when issued the appropriate C++ 

command. A certain amount of overhead is associated with both issuing commands to the core 
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cycle counter and retrieving counter data. To calculate the amount of core counter overhead, we 

initialized the counter, immediately call for the value of the counter, and save the difference into 

the variable ‘overhead.’ This overhead is then subtracted from every core counter call made in 

the code. 

4.4 Power Measurement 

DSP power consumption was measured for comparison with the FPGA and CPU 

implementations. Tools used for the comparison consist of LabVIEW Signal Express 2011 

edition software tool, NI USB-6216 (BNC) data acquisition system (12), and two FLUKE i30s 

current clamps (13). The current is measured from both the power supply input cord connecting 

the module to wall socket power and the USB communication channel between the DSP and CPU. 

The first power measurement was recorded while the DSP was powered up and idling. After 

calibrating each current clamp, acquiring data for 30 s begins through LabVIEW Signal Express 

while there was no input to the current clamp. Then, the current clamps are placed on the DSP 

power and USB communication cords for another 30 s. Finally, the current clamps are removed 

and acquire 30 s more of data. Data were collected in this way to provide a clear visual 

representation of the DSP’s real-time power consumption characteristics during an idle state. 

In addition, the power consumption of the DSP executing the back-projection code was 

collected. The current clamps were placed on the power and USB cords to measure power 

consumption in real time at an idle state and during the code execution. 

5. Results 

The following results are reported in this section. First, the DSP back-projection execution time 

for various levels of code optimization is presented. Followed by a comparison of output image 

quality, execution speed, and power consumption to GPU (8) and FPGA (14) implementations. 

5.1 DSP Code Optimization 

Table 1 refers to the number of core cycles required to execute the back-projection portion of the 

radar algorithm for one aperture on the DSP processor. Optimization level 3 outperformed the 

other levels and is thus used as the base case by which DSP performance is compared to that of 

an FPGA and GPU. 
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Table 1. Optimization level comparison. 

Optimization Level 
Cycles 

(1-GHz clock) 

Time 

(ms) 

0 82,967,850 83 

1 60,681,152 60.7 

2 55,019,518 55 

3 52,292,781 52.3 

4 52,444,969 52.4 

 

5.2 Comparison of CPU-GPU, CPU-FPGA, and CPU-DSP Designs 

The work for implementing VHDL description of the back-projection algorithm on a physical 

FPGA was not complete. Hence, the DSP implementation results are compared with the 

simulated results for the VHDL design. Simulating VHDL provides an accurate measure. In the 

Xilinx IDE, the user can choose a particular FPGA model on which to simulate a design. For this 

project, the Virtex5-LX155-FF1153 model was selected for the simulation device. When an 

FPGA is simulated, all of the timing constraints with respect to technology and gate delays are 

maintained such that the simulated execution time of the design models an actual gate.   

To mitigate memory latency, the project selected an FPGA board that integrates the Virtex5 

device with an SRAM memory. Unfortunately, the integrated SRAM memory is outside the 

scope of the device simulator, requiring an alternate method of obtaining accurate estimated 

results. To simulate the faster speed of SRAM (compared with DRAM), we implement the 

SRAM memory using standard logic blocks on the FPGA. On-chip logic is used to store the 

input data instead of block RAM to optimize for speed rather than area. However, this will still 

be a pessimistic time estimate since SRAM will be faster than using FPGA logic blocks and an 

SRAM controller will further optimize memory access for speed. In using FPGA’s on-chip logic 

accordingly, limitation exists for the amount of memory that can be mapped to an area 

constrained configurable logic. Therefore, simulated results for small data sets and extrapolated 

the execution time for larger data sets based on this smaller data simulation.  

5.2.1 Back-Projection Execution Time  

These results represent the execution time for the back projection only, excluding read/write time 

to memory for the original signal input data. Results are reported first for a single aperture 

(5397 samples) because of a memory constraint associated with the FPGA simulation results. For 

the execution time for 640 apertures, the FPGA results are extrapolated while the CPU and DSP 

results are measured. GPU-CPU results were obtained for the NVIDIA Tesla C1060 GPU. 

FPGA-CPU results were obtained by simulating a Xilinx Virtex5-LX155-FF1153 on an 

HP XW-9400 workstation. The results for single aperture computation are shown in table 2. 

Next, table 3 summarizes the performance comparison between the measured GPU-CPU, 

simulated FPGA-CPU, and measured DSP-CPU implementations, with an estimated FPGA 

execution time for processing 640 apertures.
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Table 2. Back-projection execution time: one aperture. 

Hardware Technology 
Execution Time 

 (ms) 

GPU-CPU 1.72 

FPGA-CPU (simulated) 0.316 

DSP-CPU 52.3 

Table 3. Back-projection execution time: 640 apertures. 

Hardware Technology Execution Time 

(s) 

GPU-CPU 1.1 

FPGA-CPU (simulated) 0.202 

DSP-CPU 33.5 

 

The resulting data indicate that the simulated FPGA implementation of back-projection is about 

5.4 times faster than on the original GPU-CPU system and about 165 times faster than on the 

DSP-CPU implementation. The simulated FPGA-CPU implementation is faster than the 

GPU-CPU system essentially because the FPGA implementation is a one-to-one mapping of the 

back-projection task to hardware, which provides a significant performance advantage over the 

GPU-CPU implementation. The DSP-CPU implementation is much slower due to its memory 

hierarchy. The number of clock cycles required to access data stored in DDR is much slower 

than that of SRAM, especially when SRAM is located on-chip and DDR is off-chip. Future work 

includes this DSP-CPU implementation executing the same back-projection algorithm using 

on-chip SRAM instead of off-chip DDR memory and a parallel DSP-CPU implementation. 

5.2.2 Output Image Quality 

The output images for the GPU-CPU, FPGA-CPU, and DSP-CPU back-projection 

implementations are shown in figure 5. These output images are for a single aperture data. There 

are a number of what seem like concentric arches with their apexes slightly left of center on the 

display. Each arch contains a slightly different shade of grey than its adjacent arches (looking 

like a black-and-white rainbow).  

 

Figure 5. Back-projected images: one aperture. 
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The darker portions of the FPGA-CPU stand out slightly more than that of the other two images, 

which could prove helpful in generating a sharper output on the field. To perform a more 

accurate comparison of these three images, we developed a short Matlab script that performs a 

mean squared error (MSE) test. The pixel values from the image matrices used for these three 

implementations to compute MSE in table 4. 

Table 4. 1 MSE comparisons: one aperture. 

Hardware Technology 
MSE (compared to original 

GPU-CPU image) 

FPGA-CPU 2.17% 

DSP-CPU 0% 

 

The output images for the GPU-CPU and DSP-CPU back-projection implementations for all 640 

apertures are shown in figure 6. FPGA-CPU hardware implementation is a work in progress. 

Notice the increase in the amount of detail compared with the single aperture images. The 

general arch shape still exists, but individual arches containing their own specific shade of grey 

have disappeared. The MSE between these two images was 0%. 

 

Figure 6. Back-projected images: 640 apertures. 

A 2.17% error between the FPGA-CPU and original GPU-CPU back projected image for one 

aperture indicates that the FPGA-CPU implementation is indeed capable of accurately 

processing this back-projection signal data. A 0% error (identical) between the DSP-CPU and 

original GPU-CPU back-projected images for both 1 and 640 apertures indicates that it is also 

capable of accurately implementing this back-projection algorithm. 

5.2.3 Power Consumption 

At idle state, the current clamps measure approximately 0 mA of current when disconnected 

from any input signal as expected. When connected (at idle state) to the power and USB cords of 

the DSP, a 4- to 5-mA increase in current was experienced on both channels. Since the DSP was 

not currently executing code or communicating with the CPU, little to no change on the USB 

channel is to be expected. However, since it is receiving power and is advertised to operate on 

the order of 10 W, there should be a larger amount of current measured on the power channel. 

Figure 7 illustrates the Signal Express current measurements read from the DSP power cord. As 

can be seen from the x-axis, measurements were taken for 30 s before, during, and after the 

current clamps were connected to the DSP power cord (the break in signal indicates where the 

current clamp was connected and removed). The amount of current measured when the clamp 

was removed from the DSP power cord was slightly higher than before it was connected. 



12 

 

Figure 7. DSP current at idle state. 

Visual analysis of the measurements collected during the program execution, depicted in 

figure 8, yields inconclusive results. The white plot represents the power cable to the DSP board 

and the red represents current over the USB communication line to the CPU. There is about an 

8-mA increase as the clamp is connected to the power line, but as the DSP runs the code for over 

8 min, there is little to no change observed on either line. 

 

Figure 8. DSP current at runtime. 

The MSC8156EVM onboard power system comprises of multiple regulator steps. The primary 

power system contains a 1.0-V point-of-load regulator for MSC8156 loads, cores, and M3. It 

also regulates 2.5 V for input/output and 3.3 V for onboard peripherals. Therefore, using this 

voltage information and the current clamp measurements taken at runtime, power consumption 

(V × I) on the order of milliwatts for this implementation is entirely too low to be considered 

credible. 

Fortunately, Freescale provides typical power consumption measurements associated with their 

DSP processors. They assert that with cores running at 1 V at 75% utilization, a single 64-bit 

DDR1 running at 800 MHz at 50% utilization and M3 memory 50% utilized, the MSC8156 will 
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consume approximately 6 W of power. Single-digit power consumption is lower than the CPU’s 

65.16 W and is comparable to the FPGA’s simulated power consumption of 6.97 W. 

6. Conclusions and Future Work 

Presented here are the initial results for executing a radar-imaging algorithm on a CPU-DSP 

hybrid system. The preliminary results are compared to that of the GPU-CPU and FPGA-CPU 

hybrid systems. After implementing a portion of the back-projection algorithm on the DSP’s 

SRAM on-chip memory, the execution speed failed to reach the simulated FPGA 

implementation. DSP power consumption does rival that of the FPGA in that both systems 

operate on the order of 10 W. Further work is required to optimize memory latency and to 

parallelize for insightful analysis. 

Logical continuation work consists of updating the comparison analysis with the results from a 

PCI-connected Nallatech FPGA card. Moreover, performance efficiency achieved on the DSP 

calls for further examination. Investigation of multiple core operation, architecture specific 

parallel computing optimizations, and instruction vectorization requires closer analysis. 

Accelerators tend to be sensitive to optimization guidelines and techniques, resulting in a narrow 

window of architecture specific configuration for achieving maximum performance. Subpar 

performance of DSP observed for the image reconstruction algorithm can be related to an un-

optimized configuration and is subject of future work. 
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