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The nature of solutlonB of differential and difference 

equations 1B of great interest to the applied inathe- 

matician, the physicist, and the encineer.    In partic- 

ular, numerous prohlems of vital 'concern to the Navy in 

connection with the self-ercltation of oscillations in 

electronic and mechanical systems, the stability of 

moving bodies, the steering and turning of ships, etc. 

lead to non-linear differential equations.    Thus far, 

results in the theory of these equations have been 

comparatively disorganized, and this survey should be 

useful in the unification and further development of 

the field.    The Office of Naval Ree^afcÄ is therefore 

pleased to make this report available in accordance 

..its statutory function of disseminating scientific 

Information,     "- 
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Introduction 

The class of differential equations of the form 

(0 dt     "   fi(^1'
x2'  •••» xn't^'    1 < i« n' 

where x^, x2, ...,  x   and t are real variables has played a pro- 

minent part in the mathematical investigation of the physical world, 

and the present emphasis on non-linear processes indifcates strongly 

that its role will not diminish in the future. 

Combined with the intrinsic mathematical interest of 

.* systems of differential equations is the vast range of practical 
j 
I applications in such diverse fields as aerodynamics, astrophysics. 

and electronics.    This combination has resulted in an enormous 

mass of scientific papers, written by specialists in their respective 

journals.    Much of this is relatively inaccessible, and for that 

reason unknown even to experts in the same field, as the great 

amount of duplication of results shows. 

Consequently,  it was felt that it would be useful to 

mathematicians and natural scientists alike to have the known 

results on the behavior of solutions of (i) as t —> +00 collected 

and correlated.    It Is hoped that.such a survey will stimulate 

research on outstanding problems, and prevent duplication of what 

is already known. 

In order to make the results of the survey as widely 

available as possible, no previous knowledge of differential 

equations has been assumed.    Further, all nomenclature and notation 

is defined at time of use. 

As central themes, three principal properties of solutions 

•-"23 
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were selected, boundedneaa, atabllity, and aaymptotic behavior. 

Althou^i the first two properties are qualitative, and the third 

quantitative, all three are closely interconnected, and it is 

not easy to separate results into categories pertaining to one or 

the other property. 

The restriction to real differential equations has material- 
4 11 ly limited the scope of the results concerning asymptotic behavior. 
1 5 However,  to have included the complex plane would have meant doubling 

4 the size of the survey and introducing many additional complicated 

"j concepts and methods. 
| 
* Nor is there anything on differential-difference equations, 
';; 
4 infinite systems of differential equations, product integration, 
"I 
■j linear and non-linear Sturm-Llouville theory, and, more generally, 

| the behavior of solutions as a function of a parameter, iteration, 

existence and uniqueness theory, topological methods, and many 

other fundamental parts of the theory of differential equations. 

However,  in alight compensation, difference equations have been 

considered, (Chapter IV). 

These topics have not been Included either because of 

the existence of comprehensive texts treating the subject in 

question, as, for example, la the case for linear Sturm-Llouville 

theory, or topological methods, or because the subject would require 

a separate survey for an adequate coverage. 

It is a pleasure to acknowledge the helpful criticism of 

Professor J.P. LaSalle of the University of Notre Dame and of 

Professor 3. Lefschetz of Princeton University who read parts of 

B-772J 
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the text in manuscript, and to thank Mr. Newton Haw ley for an 

excellent job of proof-reading.    However, the reaponalblllty for 

auch errors, omissions, etc. as remain Is solely that of the 

author. 

Richard Bellman 

Princeton University 
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CHAPTER I 

Boundedneaa, Stability,  and Aaymptotlc Behavior 
of Solutions of Syatema of  Linear Differential Equations 

"i 

§l.  Introduction 

In this chapter, we ahall atudy the behavior aa 

t —^+00 of aolutlona of ayatema of linear differential equations 

of the form 

(i) 
dz n 
dT = ^ H^y 1,2, .,n. 

Unless otherwise atated,  the dependent varlablea    z, 

will be aaaumed to be real functions of the Independent variable 

t,    which runs through the Interval    [t  , oo ].    The coefficients 

a* .jCt) will also be taken to be real functions of    t,    absolutely 

Integrable over any finite Interval. 

The treatment of ayatems of the form (i ) Is materially 

simplified by the use of vector-matrix notations.    Let    z    be an 

n-dlraenslonal column vector with the componenta    z1,  z2,...,  z 

and A(t)    the n x n , matrix    (a. ,-(t)), 1, j - 1,1,... ,n).   Then (i ) 

can be written In the concise form 

(2) 

(3) 

f =A(t)z, 

The magnitude of the vector will be measured by the norm, 

n 

k»i  K 
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^1 

Similarly, the norm for a matrix la 

CO MAM  -       I       la,,(t)|. " i,i. '^ 
It la readily verified that these norms satisfy the 

usual rules, namely, 

(5)    (a) ||«|| - 0,    if and only if   z - o,    the null-vector; 

'I (b) ||y+«|| i ||y|| + Mzil; 
(c) l|cf|| - |c|   I|z||,    for any real constant   c; 

*       . (d) MA+B||.i | IAI | +  113| |; 

1 (e) NABU i HAH   HBII,  MAzli i ||A||   ||ri|. 
1* 
i' 

1 The symbol    |A|   «ill be used to represent the deter- 

| mlnant    la^jCt)!,    associated with the matrix   A.    A   will be said 

to be singular or non-singular, accordingly as    |A| - o   or 

f • |A| 7t 0.    If   A   is non-singular.   A-     exists. 

In «hat follows, our attention «111 be focuased mainly 

| upon systems, since any n-th order linear differential equation can 

be transformed Into an n x n system.    Thus, If 

dtn       '       dtn 1 n 

one may Introduce new variables 

(7) u - u, 

dun-i 
dt   - V 

•-772J 
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Tx.^n the problem of solving (6)  ia equivalent to the 

problem of solving the system 

du. (8) 
•dr-u2 

dUg 

dt u, 

du. n-l 

j* 

dt n 

du. n 
-dt' 'Pnul  " Pn-lu2  ••'  "PlV 

Three related properties of the solutions of (2) will 

be considered in this chapter:    boundednesa. stability and 

asymptotic behavior.   We begin by making these terms precise. 

Definition:    A solution of (2).    z,    will be said to be bounded 

if    11 z | |    is bounded as    t —•> +•. 

The definition of stability ia more difficult, and 

necessarily so.    Stability ia associated with variation, and 

before a solution can be judged stable, a knowledge of what factors 

have changed is required. 

Considering an equation of the type given in (2), it la 

seen that the solution is changed if the initial condition, the 

value of    z   at    t - o,    is altered, or If the matrix   A(t)    la 

altered. 

It ia reasonable to suppose that in many instances the 

solution of the original equation and the solution of the altered 

B-772J 
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* considered. 

1-k. 

or perturbed syatem, will differ very slightly In properties If 

the changes In the Initial conditions and A(t) are "small enough.* 

Naturally, this last expression must be defined carefully. For the 

present we use It In an Intuitive sense. 

In addition to altering A, the form of (2) may be varied. 

In place of the linear system (2), the more general system 

(9) Jl-A(t)z + f(z,t), 

where f(z,t) Is a non-linear vector function of z, may be 

In this case, It Is relevant to ask whether there la any 

relation between the behavior of the solutions of (2) and (9). This 

is equivalent to examining the validity of using (2) as a first 

approximation to (9)* This problem will be discussed In (hapter II. 

Once we have determined son» of the ways In which an 

equation can be altered, we turn to the solutions and ask what prop- 

erties of those solutions are of Interest. Clearly, boundedness is 

one such property; another is the fact that ||z|| —> 0 as 

t —■> +•. If the solution is unbounded, determination of its magni- 

tude as t —■> +•«» is of interest, and we may compare it with 
k  at 

elementary functions such as t , e . Integrability properties 

are sometimes of importance. We may wish to know whether 

(it)) Sllzlldt, or  ^"||z||2dt, 

is convergent. 

•-7723 
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1-5. 

(We shall uae the notation 

(11) VlUlldt <  - 

to signify the fact that the Integral la convergent.) 

We are now In a position to define a type of stability of 

particular Importance In the sequel. 

Definition:    The solutions    z    of. 

(12) g.f(z,t) 

are said to be stable with regard to a property    P   under a variation 

V   of the form of the equation which converts (12) Into 

(13) 5?= g(«,t). 

If every solution w Qf_ (13) alao has this property P. 

In the applications, where only one property la of Impor- 

tance, and only one type of variation la applied, it ia convenient 

to aay merely "the solutions are atable." Actually, we do thia in 

Chapter II. However,, it must be pointed out that "atable" and 

"atabllity" are aadly abuaed and overworked words, varying greatly 

from context to context. Perhaps the statement that describes the 

situation beat ia that there is no stability to the definition of 

the word stability. 

We shall mean, aa often done in analysis, by 

(U) f(t)~ g(t), 

read f(t) is asymptotic to g(t), that 

«-7725- 
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1 

t —> +-8^ 

| If    f   and   g   are vectors,  (U) means that (15) holds 

] for each of the corresponding components. 

*j Subsequently, this definition will be broadened. 

We may now define the third of the three properties to 

be investigated. 
1 
i Definition;    By asymptotic behavior of   z    as   t —•>•••,   we mean 

the behavior of   z   QT   11 z 11    as    t —•> + ■>  as compared to ele- 
* k at mentary functions such as   t*e    . 

-1 
I   . 

Ü which 

Thus, for example, we shall investigate conditions under 

■ i       . i,t\ ... ^at. (16) z ~ e^c, 

where c is a constant vector. 

If (16) is not true, a weaker condition 

(17) lim  IP* Nzll ■ a, or log||z|K at, 
t —> +»   ^ 

may still hold. 

We shall first discuss with the simplest type of equation 

(2), the case where A is a constant matrix. Once these results 

have been obtained, we shall possess a unit with which to Judge 

solutions of (2) for which A is not constant. 

»-T723 
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52. Linear Differential Equatlona with Conatant Matrix 

In this section, aome results concerning the equation 

(1) ^-Ay, dt 

where   A    Is conatant, will be collected for future reference.    For 

a complete dlacuaalon, we refer the reader to Lefachetz's monograph, 

[191.    We shall preaent here a rapid survey of the theory of (1). 

Let ua endeavor to obtain a solution of the form 

y - e    c,    where    c    Is a conatant vector.    The following linear 

homogeneous aet of equations for the components la obtained: 

(2) ^c = Ac. 

The well-known necessary and sufficient condition that   c 

be a non-trivial vector (not equal to the null-vector) aatlafying 

(2} yields the deteminantal relation 

(3) IA -Ml - 0. 

This equation la called the characteristic equation of the matrix   A, 

and the   n   roots of (3) are called the characteristic roots.    A root 
At > of (3) determlnea a solution   c(7y)e       of (1).    If  A    la complex, 

to obtain real aolutlona it is necessary to take real and imaginary 

parts of   c{^)e>t. 

Since y « c(Tk)e , the geometric location of the roots 

in the complex > -plane determines the aaymptotlc behavior of the 

solutions as t —>*•. As a consequence of this remark, in theory 

at leant, the problem of the asymptotic behavior of solutions of (1) 

10 B-7723 
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is completely answered by the classical reduction theory of 

matrices. In practice, however, when the order of the matrix is 

large and when parameters appear in A, the problem is of great 

difficulty. Although there are several usable criteria for döter- 

minlng the geometrical location of the roots of (3), Routh, Huiwitz, 

etc., the numerical labor involved is still great. 

Let C be a constant matrix, and make the change of 

variable y • Cw in (1). The following equation is obtained for «: 

CO g - C-'ACw 

It is known from matrix theory that, if the characteristic 

roots of A are X, , C can be chosen so that 

(5) (T'AC 

< 

where 

(6) he - 

^jc  0  0 

1  \   o 

and several L^ may contain the same Ä^. We shall call the 1^ 

elementary factors. The elementary factor is said to be simple if 

1^ - (\). 

11 •-772J, 
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Prom (5) it la easy to prove that the aolutlona of (U) 

have the following form, if  "Xv    ia a characteristic root for which 

1^   is an   \x\   matrix j 

(7) 

JO -V rC2) r(%) = e^ 

This ia the general form.    It ia eaay to aee that in parti- 

cular cases, if the elementary factors are simple, even if "X^ ia a 

multiple root, the powera of    t   will not occur. 

(If  "Xj, is complex, we take real and imaginary parts of 

the solutions.) 

Since the solutions of (1) are linear combinations of the. 

solutions (h), we may state: 

Theorem I.    The necessary and sufficienc condition that every non- 

trivial solution of (1) —y o as. t —> +oo is that the characteristic 

roots of   A   have negative real parts.    The necessary and sufficient 

condition that all solutiona of (1) are bounded as t  > +OD  ia that 

the characteriatic, roota have non-poaitive real parta. and that those 

with zero real parts are associated with simple elementary factors. 

I£   k, k ^ n, of the characteristic roots have positive real parts. 

there ia a k-dimenaional linear manifold of solutiona for which 

lly II   —> +QO    as.   t—> +oo. B-7723 
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13.    linear Differential Equations with Periodic Matrix 

The basis for most results concerning periodic systems Is 

the following representation theorem: 

eorem 2.    Every solution of 

(1) ^-^ Jk-A(t)z, 

A(t)   periodic with T)erlo&-<PL   has the form 

(2) z - P(t)y; 

where " - -. 

(3) (a)    P(t)    Is periodic with period   T   and non-singularr ., 

(b)      y       Is a solution of an equation   dy/dt - By,   where 

B       Is a constant matrix. 

For the proof, consult Lsfschetz  [20]. 

The characteristic roots of   B   are called the characteristic 

exponents of   A(t).    The following result follows Iflmedlately: 

Theorem 3.    The necessary and sufficient condition that all solutions 

fi£ (1) be bounded Is that all solutions of    dy/dt - By   be bounded. 

The determination of the characteristic exponents Is a 

problem of great difficulty, and seems to be essentially of a trans- 

cendental. I.e., non-algebraic, nature.    There are some simple criteria 

in the case of second-order linear differential equations, which we 

shall present In Chapter III, but otherwise very little Is known. 

13 »-77J3 
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§4.    Linear Different'.ai  Equations with Almoat-periodic Matrix 

Periodic ayatema are a small aub-claaa of a much more 

General class of almost-periodic systema. 

Definition;    The matrix    A(t)     la said to be almoat-periodic  if 

all its elements are uniformly ucnverrent trlronometric seriga of 

the form 

(XI 

2 'W 
(1)    alj(t)- .^ cijke -QO< t < oo , 7y. real, 

i An alnioat periodic vector ia defined analosously.  Here we con- 

aider the full Infinite t-interval -oo < t < GO . 

If the A, are all integral multiples of a common number 

d, A(t) is actually periodic. Let us exclude this case when we 

apeak of an almoat-periodic matrix. The theory of almoat-periodic 

syatema auffera from a lack of a representation theorem correapond- 

-,.ing to Theorem 2. It ia stated in Cameron, [7], that no such 

repreaentation theorem can exist in general. 

For a very interesting paper which may admit of extension, 

we refer the reader to Shtokalo. [38]. 

§5. Some General Theorema concerning Syatema 

In the succeeding aectiona we ahall treat aolutiona of 

equations of the type 

(1) dz = A(t)z + w, 
dt 

where we suppose the behavior of the solution of 

14 
B-?723 
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(2) S    "   A(t)y 

known.    To link the behavior of the solutions of (1) and (2), 

we shall use Volterra-type integral equations, and express the 

solutions of (i) as solutions of a certain integral equation in- 

volving solutions of  (2). 

We shall consistently use the following notations.   We 

denote by Y the matrix solution of 

■4 • (3^ dt     "   h^t^Y>        y(0) = I, the identity matrix. 

1 
] For any solution   z    of (1), y will denote the solution of (2) 

with the same initial value, z(0) - y{0). 

Then 

Lemma 1.      z is given by 

t 
CO z - y + i    Y(t)Y"1(tl)w(t1)dt1. 

o 

If A(t) la a constant matrix. Y(t)Y"1(t1) - YU-^), and 

(it) becomes 
t 

(5) z = y + 5    YCt-t, Mt, Mt,. 
o 

If.w(t) « w(z,t), a function of    z    and t,z satisfies the 

Volterra-type integral equation 
t 

(6)       ■ Z"y + S    Y(t)Y"1{t1)w(z,tl)dt. 

•-772J 
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These formvlas may be verified by direct autatitutlon. 

After the differential equation haa been converted into 

an int3D;ral equation, the following result ia often very helpful: 

Lemma 2.    Xf    u.v ^ 0>    and    c    la a positive conatant. and 
t 

(5) u ^c +   ^    vU^uCt^dt,, 

then f*        v(t1)dt1 

0 
(6) u ^ ce 

This lemma aeems to have been used first by Gronwall, 

[15], and aubsequently by Bellman,   [1],   [2],   [3], Caligo,   [6], 

Guilano,   [16], and Woyl,   [Uj]. 

Part I - Theorems on Stability 

§6.    Equations of the Form    dz/dt = (A(t) + B(t))z. 

In thia section, we begin the discuaaion of the behavior 

of solutions of equations of the type 

(1) ff   -  (A(t) + B(t))z, 

where the propertiea of the solutions of 

(2) $   -   A(t)y 

are assumed known. The magnitude of l|B(t)|| may be estlmiited in 

various ways. For example, we may require one of the following 

18 B-772J 
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(5)      (£.)       lB(t)ll —> 0   as    t—>+aD, 
■     00 

(b) ^||B(t)| dt   <   ao, 
00 

(c) ^IB(t)« 2dt    < ao . 

We w-11 consider variovs cuses of eqi-.atlons, corresponding, 

to ohoosirv.    A   a constant nx-trlx, t, periodic matrix,  and so on. 

We will identify each cu.se in the heading, by the title "rl£ht-hand 

side of the form...", where it is understood we mean the right-hand 

L'ice of equation (1). 

$7.    Rir,ht-hand Side of the Form    (A + B(t))z,   A Constant. 

Let us consider first the case where   A(t) - A,    a constant 

matrix.    The following important theorem is due to Hvkuwara,  h?], 

for the case of systems, and to Späth,  [39], for the case of n-th 

order linear differential equa^.ons. 

Theorem h.    All solutions of 

(U) ff   - (A+B(t))2 

are bounded, provided that the following conditions hold 

(5)      (a)     A    is constant. 

(b) all solutions of dy/dt - Ay are bounded. 

(c) f5 IIBU dt < oo. 

Proofs of this theorem have also been given by Bellman, 

15]» Cesari, (9], Calico, [6], Levinson, [24], and Weyl, [Uj]. A 

related, weaker theorem was given by Dinl, [iM. 

We give the proof since it is very brief, and illustrates 

a method which can be used in many problems of this type. 

17 1-7725 
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Usinfj Lemma i    any aolctlon of  (k) aatisfiea an integral 

equation of the form t 

0 

According to the hypctheaia,     Ityll       und    l|Yl|   are bounded, 

(o) z -y +    i      Y(t   - t1)B(t1 )z(tl)dt1 

0 

Hence 

(7) lull   i   c1 + c2 \     llBCt^H       lUCt^H   dt^ 
0 

Applying Lemma 2. this yields ^^ 
t 

c0    ^    llBCt^ll dt1 c0 \     llBCt,)!! dt1 

(8) llzl^e 0 £ce 
0 

and so by (5c), II z| la bounded. 

§8.. Right-hand Side of the Form    (A(t, )+B(t) )z,    where   A(t)    la. 

Periodic. 

We may state the following intuitive  "principle" which 

will be illustrated by many of the  subsequent theorems:    "Whatever 

boundednesa and stability results are valid for a conatant matrix    A, 

are valid alao for a periodic matrix   A". 

This is a consequence of  the repreaentation of solutions 

of equations of the form 

(" $   -   A(t)y, 

A(t)    periodic,  given abovt §3,. Theorem 2.    Using this repreaentation, 

we ahall prove the following 

18 B-7723 
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Theorem 5- All solutions of 

(£) ff- - (A(t) + B(t))z 

£>re bounded, rrovlced th^t the follonln.'. cone It long hold: 

(5)        (tt)    A(t)    is per.Lodic 

(b) all solutions of dv/dt - A(t)y are bounded 

(c) V IIBH dt < oo. 

The .method of proof illustrates a general method of 

treating equations with periodic matrix. 

Let Y be the matrix solution of 

{k) $f - A(t)y,   Y(0) - I, 

and y the solution of 

(" äf - A(t)y 

with the same initial value as z. Then z satisfies the integral 

equation 

(6)        z - y + \   Y(t)y"1(t1)B(t1)z(t1)dt1 

As a consequence of Theorem 2, the representation theorem, 

y - P(t)w,    y(t) - P(t)W(t),    where 

1-7723 
19 

--TM.V--—-*r-—   -—-.. -     ms'T't -linMii'ii^siMii^MTr-^ja 



1-17 

(7) 
dt m' dt ^ 

•1 

B   constant, and P(t)    periodic and non-aingular.    Thua    IIWI , HWl 

are bounded, aa a conaequence of the   hypothesis.    Furthermore 

(8) Y(t)Y"1(t1) = PCt)W(t)W~1(t1)P"1(t1)    - P(t)W(t  - t^P'Vt,). 

Hence 

t 
(9) ttzU   £   UylU^       llP(t)ll        llCWCt-t^ll    lIP'Vt^H 

0 
llBCt^H      \\z{t})\\     dt, 

•t 
£c1  + c2f      \\B(t,)[[      \\z{t:)\\    dt,, 

0 

The proof ia concluded upon applying Lemma 2. 

Once It la known that     |i z ||     la  bounded,  one may be 

interested in   lim   z,    if it exiata, or in the oscillatory behavior 
t ^oo 

of    z    as t—-^ CD, if the limit does not exist. 

Theorem 6.    Every solution of 

(10) ä|   =    (Mt) + B(t))z 

approaches an almost-periodic vector, which may be the zero vector. 

aa t- ■ i)-»oo, provided that the following conditions hold; 

B-7723 
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(11)      (a)     A(t)    Xa either conatant or periodic. 

(b)     all solutions of   dy/dt - A(t)y   are bounded. 
oo 

(O       S   »BUdt   <   oo. 

vj The result follows readily from the integral equation 

j (6).    The case where   A(t)    Is constant has been treated by Levinson, 

"i is»»]. 
1 Whether the above theorems remain true, or net, if we 

] listen the condition upon   A(t),    and asaiime it only tc be almost- 
J 
J periodic, is not known, and seems to present a difficult problem. 

If more stringent conditions are imposed upon A(t), the 

.restriction upon B(t) can be llGhtened. Thus 

1 
^ yheorem ?•    Every solution of 

" (12) ^   -    {A(t) +B(t))2 

approaches zeic as   t—^»oo,    pi'ovided that the following condition; 

\ ^pldt 

(13)      (a)     A(t)    is either conatant or period! 

'lj       ' ' (b)     all solutions of   dy/dt ■ A(t)y —-> 0   as    t —>*oo, 
<:! (c)    MBH  —> 0 a?    t—•>+Oü,    or. more Kener^lly.  ||B||    is 

sufficiently small tor   t ^. t  . 

$9.    RlrJit-hand Side of the Form   vA+B(t))r with   B(t)    of Bounded 

v^ Variation in    (t0,co). 
i . 

As will be shown by an example in Chapter III, the condi- 

■ 

■w 
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tlon    \lB(t)\\    y 0    is not sufficient to insure that the solution 

of 

(1) it - (A + B<t))z 

are bounded If the solutions of 

(2) gi 
dt Ay 

00 

% are bounded. We have a den above that  } IIB(t)(| dt < ao Is 
i 
| sufficient for this to be true. However, the Integrability condl- 
i ■      '     . 
j tlon Is not necessary, and sometimes too restrictive a condition. 

It The following result, due to Cesarl, [9], Is a generalization of 
I 
«I Theorem k. 

■I 
i Theorem 8, All solutions of 
i] 

I (3) dZ. §f   -    (A + B(t) + C(t))z 

are bounded, provided that-the following condltlona hold; 

(k)      (a)      A(t)    la constant 

(b) all solutions of   dy/dt - Ay   are bounded as t  ■>* OD 
OD 

(c) S    lldB(t)l <   OD 
00 

(d) $    IIC(t)ll dt .  <   co 

(e) the characteristic roots of   | A + B(t) - ^ 11)- 0, as 

functions of   t- have non-poaltlve real parts for   t ^ *□• 

Condition ^(c) is to be Interpreted to mean that every 

element of B(t)    la of bounded variation In an Interval [t ,00]. 

2a •-'"J 
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{10      Right-hand Side of the Form    (A(t) + B(t))z, The General Case. 

Let us no« consider the general case where   A(t) Is 

neither constant nor periodic.    This situation Is decidedly more 

difficult to handle, due to the fact that the kernel   Y(t)Y    (t,) 

will not. In the general case, have any particular simple form, as 

it does when   A(t)    Is constant or periodic'.    As seen from the 

proofs of Theorems k and 5, given the boundedness of solutions of 

^ & - Mt)7. 

and 
CO 

(2) V •'B^)1 dt < o0' 
the boundedness of the solution of 

<5) f| - (A(t) + B(t))2, 

Is a consequence of the boundedness of llY(t)Y (t )|| , for 

t.t, lt0. 

This  Is to be expected owing to the following result: 

yheoreqi 9. The necessary and sufficient condition that all solutions 

QL 

{k) {jf- - MHz  +f(t) 

\ff ^niijyUed for every vector   f(t)   satisfying the condition 
oo 

(5) S   llf(t)H   dt    <   oo. 

83 
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\ la that 

(6) |Y(t)Y"1(t1)|| io,,        t.t,  i t . o' 

where c. la Independent of t and t1. 

If the aolutlona are to be bounded for every vector 

aatlafylng the condition 

^ (7) llf(t)l|   i   c2   <   oo,    t it0, 

j then the neceaaary and aujFflclent condition la that 

S t 

\    llY(t)Y"1(t1)U   dt,    i   c3    <    oo,    tlt0, (8) ^    —1 

o 

* where   c,    la Independent of   t. 

In Ita original form, the reault la due to Perron,   [33]', 

at, alao Callgo,   [61.    For the proof we refer to Bellman,  [^5]. 

We ahali   raf er to thla theorem when dlacuaalng non-linear ayatema 

In Chapter II. 

To obtain boundedneaa theorems In the general case.  It 

Is necessary to know some simple conditions satisfied by   A(t) 

which will Insure that   (Y(t)Y~ (t^l   £c  .    In the previous casei;, 

because of the functional equation Y(t)Y~1(t1) - Y(t - t^, valid 

when   A    Is constant, boundedneaa of   Y   was sufficient.   Since 

II Y(t)Y'1 (t,) II   i llY(t)ll    II Y"1 (t, )||  , and by hypothesis,   BY»   is 

bounded.  It Is sufficient to obtain conditions which will Imply that 

34 >'; 
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|y'1(t)l|  is bounded. The elements of Y" (t) are cofactors of 

elements of Y(t) divided by lY|. Hence, It Is enough to have |Y| 

bounded as t —^♦ao . Mow   t 
] \      (trace A) dt, 

" 0 1 

vH (9) IYI - e 
') 

^| (see Lefschetz, [21]). Hence we require 

t 

i   r 
i    I 

?    u 
1 
%\ (10) 11m        ^      trace A dt    >    -co. 
j t—^oo      0 

i 
j* This condition Is certainly satisfied if    trace A - 0. 

\ This Is perhaps the most Important case, and Includes the particular 
5 
t 

i 
.1 

equation 

(n) ^t   +   a(t)u   -   0, 
dt2 

which we consider again In Chapter III. 

Thus we have the following result; 

TOieorem io.    All solutions of 

{]'2) fe   -    (A(t) +B(t))z 

are bounded, provided that the following conditions hold; 

26 •T"?) 
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(13)      (a)      all solutions of    dy/dt - A(t)y   are bounded. 

I (b)      11m         (         (trace A) dt    >    -oo 
1 t^oo      }

Q 

I ? 
I (c)        S   I'5" dt    <    a0 • 
i 

H For proofs,  see Bellman,   [5], Callgo,   [6], Wlntner,   [1*^]. 
i 

-^j §11.    RiFJit-hand Side of the Form   A(t) - A + AB(t),    A Constant. 

4 B(t)    Periodic 

i 

Consider the equation 

"] I1) dt = (A + ^B^))2 

where   A    la a constant matrix, and    B(t)    Is periodic with period 

T.    If all the solutions of   dy/dt • Ay   are bounded as   t —>•»• oo , 

all the solutions of (1) need not be bounded, even if   "X   is 

arbitrarily small, for,  if the period of a solution of dy/dt = Ay 

coincides with   T,    we may have a "resonance" effect.    However,  it 

mljfrt be suspected that, if no "resonance" effect occurs, then all 

solutlona of (1) will be bounded for I'M sufficiently small.    This 

la actually so, and we have the following results due to Ceaari, 

[11]. 

Theorem 11.    Consider the equation 

(2) ^|  -   Az + ÄB(t)z 

where   A   is a diagonal matrix 

36 
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(3) 
'\ 

' 6i^sy *i >0' 
n  » 

B(t) la a symmetric matrljc which la periodic. of period T, and 

even. B{t) - B(-t), subject to the condition that 

T 

(M  (a) \     B(t)dt - 0 

0 

(b)  Every element of B has an absolutely convergent 

Fourier aeries, and 1  la a real parameter. 

Ißt w - 2r/T. If 

(5)  nw^ i::-;}- 1*J - 1,2,..., m - 1,2,..., 

then there exlats A pupihar    5v    > o   auch that for   A O0»    the 

aolutlona of (2) are boundeo. 

For the case of 2nd-order systems, the result can be 

generalized. 

Theorem 12.    Consider the gnd-order system 

(6) Ü   -    (A +ÄB(t))z 

where 

27 
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(7)      (a)      B(t)    la periodic of period   T, 
T 

(b)     5      B(t)dt    -    0 
0 

(c) every element of      B(t)    has an absolutely convergent 

Fourier aeries 

(d) the characteriatic roots of   A    are complex conjugate 

^ * 1«   with real part non-poaitive. 

Then if 

(6) van ^   2$ , m - 1,2.... 

there exists a number "X^ 0, such that for  l^l ^  > 0, the 

solutlona of (6) are bounded. 

Cesarl, [11], showed by an example that the result does not hold in 

general for systems of order greater than two. 

Part I - Theorems on Boundedness 

512. Limits of Solutlona of Linear Differential Equations 

In this section, we'discuss some results due to Späth, 

t39]> and, in their original form, to Perron, [29], [30]. Consider 

the differential equatlor», 

(1)       ^ + an-i(t) dn"1u + ... +a (t)u- 0(t), 
dt dtn-i 

(1) i^    +    an-i     ^    +   ••'   +    aou   -   <,(t)' 

where 28 1-1113 
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i 

(2) 11m a^t)   -   eu.,        Um       0(t) - b. 
t—>oo       K K       t—>oo 

The question arises as to whether 

(3) lim   u, lim       ^f 
t—>oo t—>aD   dtK 

exist. 

This question is answered by the following two propositions; 

Theorem 15. Consider equation (i ) where the ^(t) are conatant 

and 

(U) lim  p(t) - b 
t ^OD 

Then for any solution   u   which approaches a limit as 

t —■>+aD , we have 

(5) lim      ^   -    llm       dfu   -    ...    -   lim       dDu   -   0. 
t—yco    dt       t—>CD    dt2 t—-^oo    dtn 

Solutions of this type exist if for every pure imaginary 

root,    r « i^   ,    of the characteristic equation 

(6) r11 + Virn"1+  "• + ao   "    0 

of multiplicity £ ,    the Integrals 

29 »-yu) 
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00 00 03 00   OD            00 

)     e'1** ^(t)dt, i   dt. S e"l^tvKt)dt,   ...     )     »     ...\ 
0 0       1 t1 

0   \^      t^ 

e"t*t»<'(t)dt, 

exlat. where 

(8) t(t)    -    0(t) - b. 

If   a   }* c,    all auch aolutlona approach the same limit 

(9) 11m     u   -   b/a0. 
t^—/CO 

If there are no pure Imaginary roots, there la always one 

aolutlon which haa a finite limit.    If all the roots have negative 

real parta. all aolutlona have thla property.    If all the roota have 

positive real parta. there la only one auch aolutlon. 

If   g   la the number of roota with negative real parta. 

then   u(0),  u'Co), ... u^" '(0)    may be arbitrarily preacribed and 

a aolutlon with finite limit having theae Initial valuea will exlat. 

In the case of variable coeff icienta, we obtain the 

following result, alao due to Späth,   [39]: 

Theorem Ik,    Conaider the equation 

(10) d^ü   +   a^t)    d11-^   + +a0(t)u   - 0(t) 
dtn                         dtn_1 

where 

(ii) lim     av(t)   - av, lim        0(t)   -   b. 
t—>oo    K K t—>co 

30 a<-7rtji 
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« - Jf  Borne of the roots of the characterlatlc equation are 

pure Imaginary, let the greatest multiplicity heSL  and assume that 

oo 

(12) \  tl'1d(t)dt < oo, 

0 

where 

n 

(13) d(t) - 21  I a* "Mt)! +|0(t)-b|» 

yhen equations  (10) axid (1*) have almultaneoualy solutions 

J which together with their first    (n-1)   derivatives are bounded. 

1 

« .1 
i 

To every bounded solution   u   fi£ (1), there exists exactly 

one solution of (10),   u,    with the proT?erty that 

(U)     Äi    .    ^    +     0(1)     ^    t—>0O,     k-  l,2,...,g, 
ätK dt* 

All .   £ü   i 
o o 

where   g   Is the number of roots of (5) with negative real parts. 

$15-    Generalized Hooke'a Law 

Extending the result that the solutions of 

t1)  ' 0%   +  .a
2u   -   0 

dt2 

are bounded j, we can establish the following theorem: 

81 
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Theorem 15«    All aolutlona of 

(2) dfz ̂     -    (A + B(t)    + C(t))z 
dt2 

J are bounded, provided that 

J 
1 (3)       (a)      A    is a constant,  aymmetric.  negative definite matrix. 

'I (b)  B is aymmetric ^ 

1 n , n I   ' 
\ (O      (Uc,)   \Z_i      blj(t)x1xj|   i   j ^ = i   a.^x.l i 

i t ito, c1 > o, 
I 
j 00 

I (d)     \       llB'(t)ll     dt   <   co, 
1 0 
j 00 
I (e)     C       llC(t)||   dt   <   oo. 

■i 

For the proof we refer to Bellman,   [J]. 

$14.    Some General Reaulta on Boundednesa. 

Let ua examine the* connection between ||y|| and II A l| as 

t —■> oo . If A la a constant matrix, it la known, of. Lefechetz, 

[221, that the solution of 

(1) ^   =   Ay, y(0)   -   v,. 

may be written 

dt "*' t^"' ^o' 

32 
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(2) 7   -   eAty0, 

At where   e       represents the matrix given by the infinite series 

(5) 1  + At •>• A2tg   +  ... +   A1^11   + ... 
2! n! 

Thus, from (2) 

CO lyV    C lleAtll   lly0ll    i   e^!l t jy0|| . 

If   A    is a variable matrix,  (2) is no longer valid, but 

(U) is.    Thus 

Theorem 16.    The solution of (1) satisfies the inequality 

^    HMt,)«   dt, 

(5) lly|    i      liy0ll e 

Proof;   Converting (i) into the integral equation 

t 
(6) y    -    yo +    J Aydt, 

0 

we have 

t 
(7) i yli    i     lly0ir 

+   J    Ul   By«    dt, 
0 

and  (5) follows upon applying Hjemma 2. 

53 ■    »-"23 
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An analoLOua result ia due to Kltamura,   [18].    Define, 

for the moment only,  the norma as 

n i. 

(8) llyll    -(^    |yklP)   P .     PH, 

IIA l|     -   max II A(t)xll    . 
Ilxli > 0 Hxi| 

Then 

1 Theorem !?• t t 
i -J    II Al)    dt \   llAjj 
i o o 

j« (9) ly(0)« e i    lly(t)|l i       |\y(0)|| e 

Kltamura obtains a similar,  more complicated result for 

the equation 

dt 

(io) di  m 
i dt Hy + w. 

Related reaulta are due to Toyama,  [42]. 

A consequence of Theorem 16 la the following result of 

Trjitzlnaky,  (M]: 

Theorem 18.    I£. 

(11) ^   -   Av fit  "  fty» 

and 

dt 

OD 

(12) J llAll   dt      <    oo, 
0 

34 '-"23 
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J 

4 

, exlats. 
.x . Cf.    also Bellman,   [5], Wlntner,  [kk]. 

Trjitzlnaky,  [kl], alao proved 

Theorem 19.    It   A(t) - (a^t)) fiSd 

(U) lalj(t)l    ^   a(t)' 

then If   Y(t) - (y^Ct))    1» the gplutlpR pf 

(15) g   -   AY, Y(t0) - I, 

We hftv? t 
nS   alt^dt,      v 

II 
oo 

(17) \    a(t)dt   <   oo, 
t^ 

t^eye ja ft gglutlpn pf 

35 •-"" 
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(18) g   -   AY 

with the property that   Y(+oo)   -   I. 

The following device Is often useful.   Write 

4 ('9) it - Ay 
j 

^ In the explicit form 

dyi «- 
^20^ dt      "       *■      alJ(t)7J' 1" 1'2'  •••' u• 

J-1 

Then multiply the 1-th equation by   y^   and sum.   This yields 

n n 
(21)     2     dt ^      yi2   -        ^       (a^t) + ajl(t))y1yj. 

1-1 l,J-i 

Integrating between   o   and   t, there results 

n n t       n 
(22)     I     yi2    -   I   y^O) + 2    {   {   1      ^(t,) + aJ1(t1)] y^.ldt 

1-1 1-1 o    ij-i 

Hence 

mm ,-"2' 36 
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3 

V| 

i 

i 

4i 

n n 

(25)      S   y2   £   S     7^(0)+   S  V    ^-    I   a.jU )    + 
1-1      1 1-1        1 0 i,j-i 1J 

^iM)( S    ^I) dtr 

Applying Lenna z, we have the following result due to 

Butlewakl,   Uh cf. Rosenblatt,   [57], for an application: 

Theorem 20.    EL 

(2M ? S      '  •n + ftii I dt    <   «>   , l,>"i        o        ^-J       Jx ^ 

all solutions of (80) ftp? bwiyfrd- 
.* 
v ' 

§15. Transformation Theorems 

It la aometimss of theoretical importance to know that 

an equation of the form 

^ Jf - A(t)y,   A(t) continuous 

can he transformed, by means of a substitution, 

(2) y - B(t)z, 

into an equation of the form 

37 •-"*' 



T 

1-35 

(') §   -    A.(t)z, 

where   A»(t)    la diagonal or aemi-diagonal.    A matrix   A   Is sem1- 

diagonal if    a^ - 0   for   1 > j   or   i < j. 

The following results, due to Diliberto,   [13], are refino- 

ments of results due to Perron,   [31]. 

Theorem 21.    Consider the equation (1).    There exists an orthogonal 

matrix   B(t),    such that, if   z    is given by (2), then   A«(t)    in (3) ■i 
1 S is semi-diagonal. 

* Naturally, the construction of the matrix   B   depends 

i upon the knowledge of the solutions of (1). 
i Jt; Theorem 22.    Consider the equation (1).    There exists a bounded non- 

| singular matrix   B(t),    such that, if   z    is given by (2), thenA»(t) 

in (3) ia diagonal. 

516.    Generalized Characteriatic Roots 

Consider the equation 

'" f   -   Mt)7. 

If A(t) ia constant, the characteriatic roots determine 

the magnitude of lyH . If A(t) is periodic, the magnitude is 

determined by the characteriatic exponents. If A(t) la a general 

3S 8-77« 
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matrix, we reverse this process and determine numbers, which we call 

characteristic numbers/ In terms of the magnitude of  Aytt 

Daflnition; c Is a characteristic number If 

-1 
i 

•i 

h 

(8) c - Tü log II y II 

t-->oo    t 

This concept was Introduced by Llapounoff, [25 3 > and 

developed by. Cotton, [12] and Perron, [32]. Dlllberto, [13I, used 

his results given In the preceedlng section to obtain simpler proofs 

of some results of Liapounoff and Perron. 

It can be shown that there are only a finite number of 

characteristic numbers. Multiplicity can be defined as follows. Let 

(3) c, < c2 < ...< cm 

be the characteristic numbers.    Let    e1    be the number of linearly 

Independent solutions of (1) with   c1    as characteristic number.    Let 

e1 + eg    be the number with c-,    and so on.    Then   e1    Is the multi- 

plicity of    c^    e' that of    c2,    and so on.    Furthermore,    n- *\e\(- 

We shall give two results of Perron,  132]. 

Th?.<?rep 23. 

39 S-77*J 
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n   t 
(U) 2^      ck -^       lia     T"   S     Re(trace A) dt. 

k-i        ' t—>oo 0 

Theorem 2U. If. c. ^ c. ...^ cn are the characterlatic numbera. 

where multiple characteristic numbera are written aa many tlmea as 

they occur, of 

1 (5) 
■ 

I?   -   A(t)y 

and    d1 i d2 ^ ... i dn   thoae of the ad.lolnt equation 

i6) f - -^(t). 

then 

(7) ck + dk ^ 0' k " 1'2"-"n. 

Part 3  - Theorems on Aaymptotlc Behavior 

517.    Aaymptotlc Serlea 

Let ua  consider.the behavior of a function   f(t),    defined 

over the positive real axia, as    t —> 00.    Suppose that 

(1) 11m       f{t)    -    a 
0 

t—■> +00 

1-7723 
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If we are Interested In the finer details of the behavior 

of f(t), we must examine the difference f(t) - a0. Suppose that 

this difference tends to rero like 1 /t. We then examine 

(2) llm  t(f(t) - a0) - a,, 
t—•>+a) 

assuming that this limit exists. Continuing In this way, we nay 

form 

(5) t2(f(t) - a0 - !L ) 

and investigate Its limit as   t —> +00. 

I If   f(t)   has the property that constants   a0,a1,a2,...,an1..., 

exist having the property that 

(O llm (f(t) - a0)   -   0, 

llm tn(f(t)-a0-^   ...     -itiX-   a,     n-l,2,...; 

t—>♦« t t11"1 ' 

f(t)   Is said to have an asymptotic expanslgfl. and we write 

CD 

(5) f(t)- Z JB. 
n-0 tn   * 

Although the sequence of functions t'n Is most coanon, 

we might also consider asymptotic developments of the foni 

41 »-TT« 
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00 

(6) f(t)   ~     an +   ^-    a.   ^, (t), 
0     k-i      K     -c 

•.vhere    IVVU)!    la an arbitrary sequence of functions which approach 

0    aa    t —y oo,    and the    a^    are defined by 

(7) an    =    lim f{t) 
0        t—>+oo n-i 

[f(t) - a   +   21    ^ VAt)  ] 
a_    -    liffl   n    t—>+Q0 ory nx 

It follows from {k) that 

N 
(8) | f(t) -  SI  !n 1 £   cN+i 

\ ' n-0  tn 1      tN+i 

for t above a certain value. 
N 

Prom this,  it  ia clear that the partial auma   2_,    a_t~n 

n=0      n 

fumlah approximations to    f(t)    for large values of    t.      However, 
oo _ 

thia doea not imply that the Infinite aeriea    2     ay,^        convergea 
r^o     n 

for any finite   t,    no matter how large, aince the   a     may increaae 

very rapidly.    For example,  it la eaay to ahow, by repeated integration 

by parta, that for    t > 0, 

oo 

,' V (9)        e"    \      e a      da *    1      - 1     +   _£i t 
i 

t       t2 t3 tk 

tn+i 

42 
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However, the infinite series on the right diverges for all finite   t. 

To make the most advantageous use of asymptotic series, 

it is necessary, since the series usually diverges in practice, to 

choose   N,    the order of the partial sum, so that the error term 

CM+I^ ln (8) above is a minimum.   Thus    N   will be a function 

of   t.   Using the exact formula 

and the estimate 

co 

(n) 1 nie*   \    e"a       dal   £ 
1 t sn+1 ' 

n! 
.n+i 

it is seen that     N   should be chosen to be    [t]    or    [t]-i    if   t 

■is non-integral, and   t-i    if   t    is an integer. 

The first important asymptotic series  was that of Stirling 

for logP(z).    This may be obtained by Integrating by parts the 

integral in the following formula 

(12)       log r(z.) - (z - J-)      log z - r + J-   log 2ir 

oo 

\ VTv^ ' * ' * ) 
e"zx 

4=        dx, 

43 
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where the real part of    z     ia poaJtlve. 

The Laplaoe transform 

oo 

(15) P(t)    -      \      f(S)e"atda 

la the source of many asymptotic developments obtained by meana 
1 
i of repeated Integration by parts. 

•} Let ua now discuss the application of asymptotic  series 

'; to the differential equations.    The first systematic use of asymptotic 

; series  is due to Poincare,   [35], although a specialized theory was 

jb considered independently by Stieltjes,   [ho].    Poincare applied hla 

| theory to differential equations,  for which it was  invented, while 
S 
j Stielt jea was interested in the moment-problem and continued frac- 

tions . 

That the application to differential equations ia  aucceaaful 

is due to the fact that asymptotic series poaaeas many of the 

propertlea of convergent series.    We state these  properties as a lemma: 

T^rrtnft   k.     Jf 

00 00 

X (U) f(t) -v       ^.    at", g(t) -     ^   bt n «/«.^ «.    ^>    v *.-n 
n-0.   n n-O     n 

oo 

then 

(15) f(t)+g(t)-    ^     (an + ^J t"n' 
i>-0 

B-7723 
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3 

oo n 

(16)    f(t)g(t)'v "2. cnt'
n,       cn" 2 «hcVlc' 

oo 

(17)  i£  f'(t)~ ^  dnt"
n,   then  än - -(n-i )an.1 

»-8 

f (18)  It  a-a 

00 00 
■(n-i) 

, - 0,   \    f(t)dt *    2^  fD* 
t 1*12    (n-i) 

.* Prom these properties, it follows that If f^f ,•••**, 

have asymptotic developments, then P(f,fl,...,f '), where P Is 

a polynomial In Its variables, also has an asymptotic development, 

obtained in the obvious manner. Perhaps the main problem in the 

application of asymptotic series to differential equations is the 

following: "Given an asymptotic series. divergent for all finite 

t, which formally satisfies the equation P(f,f',••->f  ) - 0, 

under what conditiona is the series an asymptotic expansion of a 

solution of this differential equation" 

Por a discussion of this problem we refer to Borel, [k], 

Remoundos, [36]. 

The general problem of the asymptotic development of solu- 
< * 

tiona of equations of the form 

(19) S - A(t)y 

48 •-"»i 
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rfvhere the elements of    A(t)    are  polynomials  in   t   was firat attacked 

by Polncare,   [as].    His researches were continued by Horn, Birkhoff, 

and Trjitzinsky.    The latter ,;avt an essentially complete solution 

to the problem as far ad aa^mptotlo  representation was concerned, 

and also or^idered the representation of   the solution by means of 

convergent factorial series. 

For a complete dit'-rsalon of the methods and results of the 

above-oited authors  it  Is necessary   to enter the complex plane. 

Since we have agreed to  limit cur discussion to the behavior of solu- 

tions on the real axis, we shall refer the reader to Horn, 

Tr.iltzinsky,  [*/],   . where extensive references are civen. 

In this chapter, we shall consider linear equations and 

give a partial answer to the question above. In Chapter II, non- 

linear equations will be considered. 

The concept of asymptotic development can be generalized. 

jxist functions    anU),   V(t), 0(t),    where 

and the    a (t)    are bounded, with the property that 

If there exist functions    an(t),   V(t), 0(t),    where  i^(t) —> oo , 

n* 

f(t) - ^(t) z büi + g<i^dü , 
n-0      V(t)n <f(t)N 

where    € ^{t) —> o   as    t —> co,    we write 

46 B-7723 
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1 
i 

00 

f(t)  ^    ^.(t)    Z      an(t) 

n-0   IfCt)11 

This definition coincides with the former definition 

for the case    p(t) - 1,     VU) - t,    an(t) - an . 

1 
i 

•| §18.    Asymptotic Development of Solutions of Linear Dlffei^ntlal 

1 Equatlona 

In this section, we consider the linear differential equa- 

tion 

(,) §   -    A(t)z, 

where the elements of   A(t)    have asymptotic developments of uie 

form (5) of the previous section.    Let us further assume tnat the 

elements of   if   also possess asymptotic developments. 

The following result Is due to Hukuwara,   [17]: 

Theorem 2%    Consider the equation M ) where 

(2)    (a)    every element    a^-Ct)    of    A(t)   has an asymptotic develop- 

ment 
CD 

^      a    (*) a^t)*   2^    hi  
k-O tk 

> 

4? 
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(b)    the characteriatlc roota   "A ,,  ^ 0, ..., "X .,    of    A' n 
(a^/05)   are all diatinct. 

~1 

Then there exlat n linearly Independent aolutiona of (1), 

z^',z^2\...,z^n',    having the aaymptotic expanalona 

(3) .CD. e^ t^ %   J^L 
k=0  tk 

where the    aj, are conatant. poaalbly complex, vectora, 

If the    Ä .      are complex, it la neceaaary to take real and 

imaginary parta of the   zv  '   to obtain real aolutiona.    Since com- 

plex  ^^    occur in conjugate paira,  no additional aolutiona are 

obtained in this way. 

P9.    Aaymptotic Development of Solutions of Linear Differential 

Eauationa - Periodic Coefficienta 

Consider the equation 

(1) §   -    A(t)Z 

where every element   a^t)   of   A(t)   has the generalized aaymptotic 

development 

48 
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1 

00 

.' . (2) a^t) *   2,      !iJ ü!     , 
j k=0 tk 

where    c^•    '(t)    is continuous and periodic of period    T. 

i ;,.     ' For this case Carleman,   [8] proved the following theorem 
N^| analogous to Theorem 25. 

•1 
Theorem 26. Consider the equation (1), where 

(3)  (a) every element of A(t) has an asymptotic development 

of the form (2), 

(b) the characteristic exponents, oi, > <*2, • • •, *_* associated 

with the matrUc C0 - (Cj/^U)) are all distinct. 

(c) «. -*, ^ 2k1t-k ,  i T« j,  k - 0,1,2,... . 
■I-     J m 

Then there exists a fundamental system of solutiona of (1 ), 

z^   ' ,z^   ',... ,2^',    having aaymptotic developments 

n.^ wk *    fk     JE. (ic),.. 
{k) Z(

k)   -        e t S       d^     _(t)    , 
1.0 ^5— 

where the    d.^   '(t)    are continuous periodic vectors of period   T. 

§20.   A(t)    is almost-conatant*1 

We shall say that the matrix    A(t) is "almost-constant' 

whenever there is a constant matrix A such that 

49 I-77IJ 
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z(1),z(2),...,z(n), such that 

(5) Um   Ion  »2(k)" . R(Xv). 
j                                 t—>oo     t K 

] 
^J Here, as usual In analysis, RCX^) stands for real part 

of Ak. 

Specializing this result to n-th order linear differential 
% 

] equations, we obtain 

Theorem 28. Consider the differential equation 

(6) u(n) + p.Ct) u(n"1) +     ...        +pT,(t)u-0 'l^' " T     '   *   '        ^ *& 

where 

(7)      (a)    lim       p^t)    -   p^ 
t—>oo      K K 

-n-k (b)    the roots   r.,r.,...,r    of     I       Pi,rn'K   - 0     are all real 
12 n k-0 

and distinct. 

Then there exist    n    linearly independent solutions 

du 

u(1^u^2^ ...u^n^    such that 

(8) lim     dt  j. 
t—>CD      „(k)      " u' 

Further results, which are not of such simple nature, may 

61     • 1-772? 
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be obtained in the case cf multiple roots. We refer to Perron, 

[28], Lettenmeyer, [23]. 

For the case of real, simple characteristic roots, we may 

also obtain more precise results for systems. Thus, we have Bellman, 

Theorem 29. Consider the equation 

(9) äf   -    (A +B (t))Z 1 dt 

^ where 

i 
I (10)      (e ^    A    is a constant matrix, all of whose characteristics 
1 
4 roots   '\1,'Xp,..., ^      are real and distinct 

! (b)     IIBII    —> 0   as    t —>+oo . 

I 
'j Then correapondinp; to anv characteristic root    v ,    there 

is a solution   zCk)    satisfyinp the inequalities 

(11) c2exp(>kt-d2   $      IIBII   dt) i   ||z(k)|| 

t 

i   c1exp(Äkt+d1    ^    IIBII   dt),    t ^ t0,    c2 ^    0. 

S 

If we put a further restriction on B, we can obtain 

aysmptotic results. 
9-772J 
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Theorem 50. If in equation (9)/ 

(12)  (a)  A la a constant matrix with real, distinct chs,racter- 

latic roots, 7i ^,   %.,..., Ä   , 
00 

(b)     \   UBII at < 00. 

^ Then corresponding to any characteristic root    ^   >     there 

y that 

>„t 

•i is a solution   z^  '    having; the property that 

(15) lim        z(k)e .    c. , 
t—>oo K 

i where    c.     is a non-zero constant vector. 
1 

Specializing this result to the case of an n-th order 

liuear differential equation, we obtain 

Theorem 31•    Consider the equation 

(U) u<n) + p^tha**1"1)    + •••    ♦ pn(t)u   -    0 

where 

(15)    (a)      11m       PK(t)   -    PK, 
t—>CD      

K K 

00 
(b)       ^    |PK-PK(t)|dt   <   00,       K-i,2,...,n, K     "K 

(c)      the roots    r^r ,...,r     Qf_   21   ^K
1

"
11
        

0   are real 

K-0 

n 
„n-K 

and distinct. 

53 
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w 
Then there exist n l-ne>-.rl:; -ndcpendent 

,u,    with the property that 

) lit ions 

(M 
t—>.JO        

K 
^ 

t-^    dt k 

Theorems 50 ^nd 31  i.re due in their original form to 

Dini,   [ik],  and Love,   [2o],  and In their final form to Dinkel,   [4-fc], 

where the case of multiole characteristic roots  is also considered. 

54 
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CHAPTER II 

NON-LINEAR DIFFERENTIAL E^JATIONS 

Ji.    Introduction 

In thla chapter we shall study systems of non-linear 

differential equations of the form 

0) .if     -     F(z,t), 

where   P(2,t)    Is a non-linear vector function of   z.    Equations 

of this type are of great ImporDance In celestial mechanics, which 

accounted for the original Interest in these problems.    Recently, 

J they have also become of great Importance In the study of mechanical 

i and electrical circuits as the need for greater precision ajid 
• 

explanation of new phenomena has forced physicists and engineers to 

consider non-linear equations. 

We shall consider the case where 

(2) P(z,t)   -   A(t)z + f(z,t), 

and ||f(z,t)||  is small compared to Uzl  as ilzli —> 0. A 

simple example of this would be where every component of f (z,t) la 

a power series in z^z ,...,zn, begining with terms of the second 

degree. 

Since It is usually not possible to solve (1) explicitly 
■ 

in terms of known functions, it is necessary to develop some other 

means of determining the behavior of the solution. Of particular 
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interest  in manir physical problems  la the behavior as    t —>+oo . 

There are several different approaches to this question. 

Perhaps the one that la moat Intuitive is that which proceeds as 

follows.    Let   A(t)    be a constant matrix, with characteriatic roots 

having negative real parts.    Then all solutions of 

(3) dz   =   Ay 
dt 

are bounded and    —^ o    aa    t —>+ao .    Hence, we may expect  that,  if 

II z(0)H      ia aufficiently small and     |lf(z,t)ll  /   U z ||     is alao 

sufficiently small for  II z II     small, the behavior of the solutions of 

■1 will parallel that of the solutions of  (3).    We shaül see that this 

j; expectation is valid.    The problem stated precisely is to examine 

} the validity of the first approximation    -- equation (3) — to 

equation (4).    This problem was first inveatlgated by Poincare, and 
\ 

then extensively and intensively treated by Liapounoff in a classic 

memoir.    However, the problem has not been completely solved, and 

' many questions remain unanswered. 
| 
| Of at least as great Importance as the behavior of solu- 

tions as    t —>i-oo,    and intimately connected with it, is the 

question of the existence of periodic solutions of (1).    This question 

is now of great importance in connection with electronics.    However, 
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we shall not ücnsider the topiu here, since It is not possible to 

present it siraplj and in few pa^es,  and sin^e it is treated at 

length in the easily availtible monograph of Lefschetz,  [It],    Never- 

theless, we shall discuss some results concerning the nature of the 

solutions of  (1) when   P(z,t)    is periodic In   t,    or is derived 

in a special manner from a periodic function. 

Finally the asymptotic behavior of solutions of  (i) will 

be considered, and, more specifically, the behavior of solutions 

of equations of the form 

i (5) p(u'-dt~ '^ " 0» 

P    a polynomial, as     t —^+00.    This problem has relevance to the 

problem of the behavior of the solutions of second-order linear 

differential equations. 

§2.    Methods 

Although we shall not give any proofs,  some discussion of 

the methods used in obtaining- the results given below seems in order. 

Foremost is the method of integral eqrvtions.    The link between the 

solutions of  (5) and CO of  S1   Is iurnished by the following lemma: 

Lemma 1 .    Let    y   be the solution of 

(" g   -   A(t)y 

with the same initial value as    z.    Let    y(t)    satisfy 
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(2) ^    -    A(t)Y, Y{0)    - I. 

Then every solution of 

(3) ff   -    A(t)z  + f(z,t),      z(0)    -   z0, 

'i aatlsfiea the inteAr-al equation 
t 

(U) z   _   y   +  ^    y(t)y"1(tl)f(z.tl)dtl 

As always In the theory of differential equations,  the 

| advantage of using an Integral equation in place of the original 
J 

<; differential equation lies In the smoothing properties of the integral 

■| operator as contrasted with the harsh behavior of the derivative. 

Thus,  for example,  if two functions are close,  integration preserves 

this closeness, while differentiation   may not even be applicable 

to the functions if they are merely continuous. 

| Once the Integral equation has been obtained, an immediate 

technique la the method of sucüessive approximations.    Form the 

sequence 

(5) zo - y 
t 

zn+l    -   y+^   Y(t)Y'1(t1)f(zn,t1)dt1,      n   =    0,1 

0 
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It ia now not difficult to show, under various aasumptiona 

concerning the nature of A{t) und f(z,t), that the sequence Jz ] 

converGas to a solution z of (4) and thence (3), having many of 

the properties of y . 

This furnishes a constructive proof of the existence of 

various classes of solutions. If we are merely interested in prov- 

ing, the existence of certain solutions, we may regard (h)  as an 

equation of the type 

(6) z - T(z), 

where   T(z)    is a non-linear operator defined by the right-hand side 

of  (U).    The existence of a solution of {h) now depends upon the 

existence of a function   z    satisfying (6).    Considering   z    as a 

point in an abstract space, we require a "fixed-point" of the trans- 

formation   T(z).    Such a fixed-point will exist for a large class 

of operators, to which   T(z)    belongs, as was first shown by Birkhoff 

and Kellogg,  [3 ].    For an application of this method to the prob- 

lems of this chapter, see Hukuwara,   [it], Bellman,   [ ' ]• 

Another method of approach is by means of difference 

equations.    We approximate to the differential quotient by quotients 

<7) Z(t   +h)   -   Z{t)       .    Mt)z   +  f(z,t),        t.0,h,2h,.., 

This method will be discussed in detail in Chapter IV. 
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A method of an entirely different type depends upon the 

connection between differential systems of the type 

(8) dZi dZ? Ün_ 
FTTTT   "      FjJJ   "     •••    "      Fn(z) 

and linear partial differential equations of the form 

n 

(9) ^     Fu(z)   i^_   m    0 
1 k-i       k dz. 

This method is discussed by Liapounoff,   [t^], and used to 

| treat some cases not amenable to the previous methods.    Since 
I I Liapounoff'a memoir has been reprinted [HL  and is readily available, 

'I we will not enter into a discussion of this method. 
.1 

| 53.    Stability 

i :.j We shall use the word stable in the followinß sense: 
i 

■\ Definition;    A solution   z    of 

'" Ü - nz.t) 

ia said to be stable if every other solution   w,    for which the 

difference    llw(t0) - z(t0)H     is  sufficiently small, (non-zerdV  re- 

malna within a certain nelchborhood of    z    for   t ^ t0;    that  ia.  if 

&      la sufficiently small and 
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(2) ll»«(t0)   - Z(t0) M       i   i        , 

then 

(3) li«(t) - z(t)|l     i   ?{S ),       t it0. 

In many Important case a'. 

(»0 11m Hw(t) - r(t)||    -   0. 
t—>+oo 

To Illustrate this concept, let us consider the equation 

(5) at  -  ** +flz't) 

where   A    Is constant and   f(0,t) * 0.    Here It is clear that   z - 0 

Is a solution.    The question arises as to whether It Is a stable 

solution.    Under the condition that all the characteristic roots of 

A   have negative real parts, it Is, as we shall discuss below. 

For further discussion of stability we refer to Pejer,  [»o], 

Horn,  [ü], Lefschetz,  [n], Levl-Clvlta,  [U],  [    ], Liapounoff,   [H]. 

ik.    The equation   dz/dt ■ Az + f(z,t),    A constant 

In this section we shall begin answering the question raised 

In the previous section concerning the stability of   z - 0   as a 

solution of 
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i (1) dt   -  Az + f(z't)' 

where   A    is a constant matrix. 

| The following results are due to Perron,   [38].    Other less 

general results were'obtained by Liapounoff,   [•*],  Polncare,   [3oj, 

H Bohl,   [M,  Cotton,   [ I ]. 
j 
^j Theorem 1 :    If    f (z,t)    is a continuous function of    z    for ||z H ^ c, 

i anä 

1 
J (2)      (a)    Hf (z.t)ll     _v    0   as     Hz ||      v  0, uniformly in   t, 

1 U z » ^ ^ 
-1 (b)    all the characteristic  roots of    A    have negative real parts. 

I then 

';l (3)      (a)    z ■ 0    is a stable solutiom of  (i ), 

il 

(b)    every solution   z    for which    |\z(0)\\      is sufficiently 

small. has the property that. I zrt    —■> 0   üS.   t —} oo . 

We shall use the term instable to indicate that    z » 0   is 

not stable.    We then have the following result: 

Theorem 2.    If    f(z,t)    is a continuous function of    z    for   lizH^c., 

and 

(U)    (a)      UiLxkM       _> o   aa     lzU   _> 0) unifomiy in   t, 

(b)    at least one characteristic root of    A has positive real part. 

then   z - 0   is inatable. 

B-7723 
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There atlll remains the possibility of conditional sta- 

bility, that la. If not every solution for which llz(0)l| Is small 

remains in. a bounded neighborhood of the origin, at least some sub- 

manifold of solutions remains in a bounded neighborhood. We expect 

this to occur If some of the characteristic roots of A have nega- 

tive real parts. 'Phat this is true is shown by 

(5)   (a)  f(z,t) is a continuous function of tzt for »zu < c1. 

(b) IfU^t) - f(22,t)U i    t »z, - Z^H , whenever 

Iz,«  i  5(0,  «z2H i  SU), 

(c) k   of t^e characteristic roots of   A   have negative 

real parts, and   n-k   have positive real parts. 

then there exists a k-dlmenalonal manifold of solutions  of (1) which 

—> 0   as.   t—> oo,   and tflt which   |z(0)||   i S   implies that   lz{t)ll 

i f ( * )    for   t ^ 0,   and an    (n-k)-dimensional manifold for which 

this last condition is not valid. 

If some of the (n-k) characteristics roots with non-negative 

real parts have zero real parts, we can only say that there exist at 

least a kwdlroenslonal manifold of solution with the above property. 

We shall discuss later the case where characteristic roots with zero 

real parts occur, and we shall see that it Is quite difficult to 

ascertain the general behavior. 

The condition   llf(z,t)||   / Uz M     —>0   as   Hz II    —> 0 

Is clearly satisfied If every component of    f(z,t)    is a power series» 

•7 1-771* 
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in the con-ponenta of    z,    lacking constant and first-decree tenna. 

This waa the ocae diacuaaed liy Llapoincff and Poincare.    Naturally, 

far more precise results can be obtained in this oase.. and we will 

refer to this tcpio again below. 

It should also be mentioned that this condition ^(a) can 

be weakened to     I I  f (z,t)  11 i £ I I  z   | |    whenever    |1  z  ||  iS(e). 

The above theorems illustrates the fact that eaaenti&lly 

the behavior of the solutions of (l) as    t —y+co    is detc-rrained 

by the behavior of the aolutiona of 

(i) i - ^ 
aa   t —•>+oo . 

■1 55«    Continuation 

1 In the prevloua section,  the cases where the characteristic 

?! roots had either positive or negative real parts were treated.    In 

i this section we shall treat the case where the characteristic roots 

may have zero real parta. 

1 Theorem U.    !£. 

(1)      (a)      all the aolutiona of   dy/dt - Ay   are bounded aa    t —> oo 

(b)      || f(z,t)  || i £11 z  || f(t),    whenever    || z  II ^  Me), 
GO 

where  S f (t)dt < co, 

then z - 0 la a stable solution of 

B-T723 
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i8) ff-   -   Az + f(z,t). 

For e proof, with more restrictive conditions imposeri 

■* upon   f(z,t),    we refer to Bellman,  [ I J.    The theorem In Its 

present form Is due to Levlnaon.      It may also be shown that    z 

approaches an almost-perloälc vector as    t —>+oo . 
). 

56. A(t) a periodic matrix 

ü As shown in the first chapter, results valid for A 

4 constant carry over to A periodic, as far as boundedness is con 

i cemed. Thus we have the following theorem: 

| Theoreip 5. II 

^ (1)  (a)  all solutions of dy/dt - A(t)y —> 0 as. t —>+aD , 

\ A(t) periodic, 

(    ■ (b)  II f(z,t) 11/11 z ii —> o as. II z II —> o, 

' then z - 0 is a stable solution of 

(2) ff- - A(t)z + f(z,t) 

and, in addition, every solution for which || z(0) || is suffici- 

ently small —•> 0 as t —■>+OD . 

• • This theorem is of some interest in the theory of varit- 

Mcnal equations. Suppose that wc have a system 

•Written comnunication to the author. 

69 ,-T7» 

■ 



11-12 

^ i - ««-.t) 

I which we know poaaeaaea a periodic solution. In some cases, It 

| la of Importance to know the behavior of "nearby" solutions. It 

J may even be true that any solution which comes sufficiently close 

1 to thla periodic solution must approach this solution more and more 

closely aa t—•>+oo. 
•1 * To decide thls^ let p be the given periodic solution 
>i 
i and aet   z - p + w.    Assuming that the components of    f(z,t)   are 

i analytic functions of the components of   z,    we have 

1 (', SI - a?+ f -f^ + ^) - '(P't)+ j(f(S'i " * — 
j ^f(p.t)J       la the Jacoblan n»trlx    liti.  \     ,    or 

J 

i 
i 

which la an equation of the type treated in this section, provided 

f(p»t)    la a periodic function of   t.    Thla will certainly be so, 

if, aa la usually the-ease,    f(z,t)   does not contain   t   explicitly. 

To decide whether or not   w —•> 0   as    t —^oo,    whence 

* —■> p,    it la thua aufflcient to consider the first approximation 

TO i»-m> 
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A more general problem la furniahefl by (3) when the 

solutions are almost-periodic. Whether or  not the analogue of 

Theorem 5 la true is not known. 

$7. generalizations 

The previous results can be generalized to Include equa- 

tions of the form 

(1) ^f - Az + f(z,_dz_ ,t).. at dt 

^ We have the following result, of. Bellman,   [ I ]. 

| Theorem 6.    Q 

i 
% (2)  (a)  k, 1 i k £ n, of the characteristic roots of A have 

■I 
negative real part 

|   • (b)      || f(u,v,t) -fCu^v^t)  ||    £   klllu-u,!! +    Itv-vjll, 

whenever    Ilu||,  llujl,  llvil,  llvjl    are all less than 

< ' i ( e ), 

then (1) has a k-dlmenalonal manifold of solutions which   —•> 0   ge 

t —> oo. 

58.   A(t)   lg ft Vftrtftbl? Batrlx 

If   A(t)    la a variable matrix which is not periodic, it 

la necessary to impoae some more stringent restrlctlona upon   A   to 

conclude from the boundedneaa of the solutions of 

(1) fll S   -   A(t)y. 

the boundednes's of the aolutions of 

n 
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W 11   .   A(t)z +f(z,t). 

) Thla la due to the fact that the functional equation 

y(t)y"1(t1) - Ylt-t^    la true only If   A   la a conatant matrix, 

^j and If   A   la not conatant or perlod^ there la generally no almple 

A way of treating   Y(t)Y~1(t1)   aa a function of two varlablea,    t 

>j and t..    For a dlacuaalon of casea where   Y(t)Y" (t1)    may be 

■i 

J 

handled eaally, we refer to Trjltzlnaky,  [3i]. 

Aa dlacuaaed In the flrat chapter,  If    ||Y(t)||    la 

3 
i 

i 
| bounded aa   t —•> co , and 
i t 
j r 
I (5) • 11m  J trace A dt > - oo, 
.1 t —>+oo o 

I then |lY'1(t)tl will alao be bounded. The moat Important example 

of thla condition being aatlafled la when trace A ■ 0. 

We have the following reault. Bellman, [ • ]• 

Theorem ?• If. 

(1*)     (a)     all aolutloha of   dy/dt - A(t)y   are bounded aa    t—•> oo 
t 

(b) 11m        \    trace A dt > - oo 
t^+OD     3 •* 

0 

(c) ||f(z,t)|| i  tf(t)  l|z||,   whenever    \\z\\ i    J(t), 
CD 

and  ^ f(t)dt < oo, 

then z - 0 la a atable aolutlon of (2)|. 

■-•• "^ilBftBiii ii nriiin 
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59. A general condition 

The following theorem emphasizes the fact that the 

boundedness of the solutions of non-linear differential equations 

depends essentially upon the boundedness of the solutions of first 

approximation. 

•} Theorem 8. The necessary and sufficient condition that the solution 

'4 
< 
\ be bounded for every vector function 0(z,t) which Is bounded for 

I      ' t i 0 and z arbitrary Is that the linear system 
I 

(2) H   -   A(t)z + ^(t) 

possess only bounded solutions for all   0(t)    satisfying the condition 

(3) Il0(t)|| iov     t ^0. 

If this condition Is satisfied and 

(M Il0(z,t)||£     ||z|| 

for llzlli k(e), then z-0 la a stable solution of (i). and 

Ilz|| —> 0 as t —> OD. 

I|_ (2) possesses only bounded solutions for all jJ(t> satis- 

fying the condition 
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(5) \   Il0(t)||  dt < 

then   z - 0   la a stable solution of O) If 

(6) Il0(z,t)||    i      l|z||f(t),      ^   f(t)dt < oo 
00 

£2E run i nt). 
We refer to Bellman,  ML for the proof. 

510.    A Counter-Example 

At this point.  It might be auapected that a result of 

the following type would be true: 

"If all solutions of 

'" f  -   Mt)y 

—•> 0   as    t—•>+ao ,    then all solutions of 

(2) ff   -   A(t)z +   Hz) 

do likewise provided that ||i(z)|| / ||z|| —> 0 as ||z|| —> 0, 

||z(0)|| Is sufficiently small? 

That this Is Qgt true Is shown by the following example 

of Perron, [at]: 

(3)    i*- -ay,,     (a>0), 

dy   ....... 
•^ m    (aln log t + cos log t - 2a) y2. 

The general integral Is 

74 
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(M fi C1   3 
-at 

(ain log t -2a) t 
y2 - c2 e 

which    —^> 0   as.   t—>+co ,    for   a > 1/2. 

Now consider the non-Hnear system 

dz. (5) i az1: 

<6) 

dt    " 

dz 
j^- -    (sin log t - cos log t - 2a) 22 + z. 

The general Integral Is 

-at 
z,    -    c^ 

z2   - 

(sin log t - 2a)t 
(c8 , 0/   [   e-t. '^ ^ t^ 

It may be shown easily that If   1 < 2a < i  + e    '2 , 

z2 —> 0   as   t—>+oo    only if    c1 » 0.    Thus the condition   II z(0) || 

sufficiently small does not entail    llzj| —> 0   as    t—■>+oo. 

: 

§11.    One characteristic root zero 

We now turn to the difficult question '.f deciding atability 

when some of the characteristic roots of   A   are zero.   We begin 

with the simplest case where one characteristic root is zero.    In 

this case, contrary to the results above. It is not sufficient to 

consider the linear terras alone, and the nature of the non-linear 

terms is critical.    For this reason the results are quite complicated. 
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and we refer to the menhir of Llapcunoff,  [H], and later papers 

of Malkln.  [ar],  [aft],  [    ],  [    ],  [    ]. 

By meana of a transfotmatlon to polar coordinates, the 

case where there are two complex conjugate roots with zero real parts 

can be reduced td the case of one characteristic root zero.    This is 

also discussed bj Llapounoff,   [H]. 

512.    Asymptotic behavior of solutions 

The question of the asymptotic behavior of solutions of 

(1) il   "   Az +f(z't) 
leads to the study of the geometric nature of the solutions con- 

sidered as curves in z-space. 

Since a detailed discussion of the two-dimensional case Is 

given in Tefschetz,  [17], we shall not enter into the subject here. 

We also reler to papers by Martin,  [sn], Petrowsky,  [VJl, Poincare, 

[30],  [    ], I    ]. Weyl,  [3«n, and Yoaida, [3^]. 

•,, For a general treatment of asymptotic  solutions of non- 

J linear differential equations we refer to Trjitzlnaky,  [3i ],  [sa.]. 
i 

513.    Tranafonjation of equationa 

ii many cases, it is possible to find tranaforraationa of 

«]-•.- the varlatie-« 'uilch reduce 

7« »-"2J 
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(1J ft    "   Az + f(z't) 

to various canoalcal forms, which are easier to treat. 

>i We refer the interested reader to Dulac,  [9 ], Lefschetz, 

[HI, MacMillan,   [ai],  [    1. 

.1                                       «H.    All characterlat 1 o r^ota zero 
!> . '    

While It is difficult to obtain results for the case where 

I son» of the characteristic roots are zero, Maillet,  [aa],   [as],  [a*], 

J$ has treated some, cases, important in applications, where all the 

characteristic roots are zero.    His chief result,   [a*], la the follow- 

ing: 

Theorem 9. Consider the systems 

(,' & - l»(7) 

(2) $   -   PM'*   Viz). 

where all the components of    |Ö(y)   are homogeneous polynomials in 

V,>72>--->7n   of decree   p > 1, p odd, and   y(y)    has terms of high- 

er order in   y,,y2,.•.,yn. 

l£t bj be the coefficient of y^ in ^.(y). Then the 

necessary and sufficient condition that the solutions of (i ) —> 0 

»a    t —•> oo    is that    b 1 < o. 

The solutiom of (2)    —■> 0   as.   t —>+QD   if the solutions 

•-7TIJ 
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<i 

OX. C )   —> 0   as   t —■>+oo ,    sod the aolutlcna of (2) then h^ve 

the form 

i                                  (3) z, - 22 - ... -   zn   -   0, z^. -    ( e, + f^Ct)) (a+ t) 

* j ■ i+1>  i+2; ... I 

i 
C. *t 0,    where     lira        €.{t) - 0,    and 

1                                     J t—>oo        J 

i -1_ 
i                                  CO y, - y2 -...:,- 0,      y.. - c^a+t)1"? ,    j=i + i,i + 2, 

i 

ia s. aoli.tlon of  (1 ). 

1 
J Theorem 10.    H   "P    ia oven, the above condi-tlün^. plus the säöltlonal, 

x'estrlctlcna tlu.t    ^.;(y) - i-tX^Cy),    where   XA    is homo.--eneous of 

] derree   p -  i,    and that the initial values are positive and sufflci- 

| entr'' cmL.ll. are necessary and aufficlent thd.t the solutiorLS of  (2) 

■i —y 0   aa    t —■>+oo    when the same Is true of the aolutiona of  (1). 

\ §15.    Soluticna in trigonometric form 

Although we shall not discuss the general theory of solu- 

I tlona of equations of the type 
i] 

I (1) ft   -   AZ+.(z,t) 
I 
i 

{ where    f(z,t)    contains trigonometric terras and the characteristic 

roots of    A   have zero real part,  since there are expositions of 

this theorj  InLefschetz,   ['7], and Kryloff and Bocoliuboff,   [•*], 

78 
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the lollowing result due to Bohl,   [*"], deserves mention. 

TOieorem 11.    Consider the equation 

(2) jjl   -   Az + f(z,t) 

where 

(5)  (a)  no characteristic root of A has zero real part. 

(b) l|f(z,t)||/||zl|,  I|f2(z,t)||* are sufficiently small 

fgr ||z|| amall. uniformly in t 

(c) f(2,t) la obtained by the substitution^ Uj, - zAlir lp 

the vector w(u1,u2,...,u_,t), which is continuous for 

all Uj, and periodic with respect to the vu of period 

one, where ^r^O,    and no relation of the form 

m 
<*/' K - 0, 

K-1 

Cj, integral exists.  ... 

Then, provided that c la sufficiently amall. there existe-rme and 

only ODB solution of (g). defined for all t, auch that ||z|| ^c 

for all t. The components of this solution are trigonometric series 

of the form 

I 

• llfz(z,t)| 
^ 

denotes the maximum of the norms of   'f-, (z,t), whe^e 

the subscript algniflea partial differentiation with respect to that 

variable. 

7» 
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00 

(M ^K -    ^ 2m' K - i,2,...,n, 

1-1 

' uniformly convergent for all   t,   where each term   z1K   is a poly- 
\ ■   '""   "' "    """'"                                   , 

j nomlal In   cos2trt/AL,    3ln2irt/iiL,    L-i,2,...,M. 

J If,   w(u1 ,u2,... JUL^)   has continuous partial derivatives 

I with reanect to   u^   and   t   UP to the 2nj-th order, then each   z1K 
4 '    "'"         ^ "   "     *"                                       - .                       •                m II can be represented by a uniformly and absolutely convergent aeries 
1 
' of the form 

(5)     ^ av       v     coa 2T{v1t/*1 + d,) ... cos aV^t/*,,, + dm) 
i        '   . y vi--m 

« "•  "   ^ v*   "0,1,2,...,     and     d^ - 0   or -r— . 

■i §16,    Th? W^^^SSbM. solutions of non-linear differential equations 
■>„,>■ V. 

"V        "■-, I 

Let   P(x1 ,x2,rrv»^XjjjL   ^ a polynonilal In the   n   variables 

-    x. ,x~,... ,*-,   and consider tlvif'«Hebraic differential equation 

' '"   "   •-/"■■■--.■■ du     ,   „___ 
(1)—--.      ■-^ P(t,u,dt,...,Hfn-i) 

'--■>. The problem of «atinatlng the behavior of real co'i 

L^j"""--^    ^>^  aolutlona of (1) aa'"t-rr>+Qp wöiCflrat attacked by Borel, [Wl* Kla" 

*""'■>-. , *"^^>eault8r»©jre. In turn, refined byTAndelöf, [ao]. The result of 

•-.-; taateiSrSts ■••.         -^ .. 

fT-■■..,, "** *^i^eorem 12.    If.   u" 1% a^real^continuous solution of 

•-7TJJ 
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'ja 1 

I 

(?) PC^^»!?)" o' 

lor   t i to,    where    P   is a polynomial, then if   a(t)    |g ary. 

res.1 function with the property that as   t —^-wo 

(?) ait —>+oo, n - 1,2, 
tn 

we have 
t 

J     a(t)<lt 
(M 1x0   i  e     ^ ,        t ^t0 

11   P(t;V,Tr-)    le of de;.ree    ra    In   t,    then there exists 

a constant    C,    such that 

c t
m+1 

(5) lul    i   e *W      , tlto- 

The first pe,rt of. the theorem with   a(t) - e      is clue to 

Borel. 

It was shown by Vijayaraghavan,  [i3], that the analogous 
t t 

j result with exp(e    )    in place of    e        is not. tinje for «quationa 
.      .2 

of the form   P(t,^,^, ^ )   -   0. 
^   dt2 

For equations of the form 

(6) äk   .    P(^.t) 
* at      Q(u,tj 

where    P   and   Q   are polynomials, much more precise results are 

available.    Equations of this type were Investigated for   t    complex 

n •-mi 
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by Boutroux. [7).. -nd by ILrdy. [it], for t real. We chall 

present the results of Har^y. 

Theorem 1?. Any solution of 

I 

(7( du Pi 
dt    "   Q( 

u.t) 
uTt) 

contlnuoua  for    t ^ t      Is -JIt-irately monotonJ.c.  together with it; 

derivatives,  aad ^atl^flea one of the r-elaticns 

(S) u  ^   C^    e 
'2 Pit) 

1/t, 
U    ^    (t   ^lO ,§t) 

where    p(t)    i^ a polynomial,    C^^d,    are Ir.te, ere. 

Any solution of    P(t,u,ivl) - 0    satisfies either 

lul  i c2t  
1 

u    =     C 
C,t   "(1    + £(t)) 

5 £(t)   —>  0, 

(9) 

or 

(10) 

a a    t —y oo . 

All aclutiona of the latter cl^aa are monotonic, together 

with their derivatives. 

Hardy t;lves some further reaulta on the behavior of aolu- 

tlona of 

(ii) l^r)     -     P^'M v    ' vdt/ Q(u,t5 

n 

B-7723 
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Fowler, [II), conslderec1 the equation 

II- 

t'.^i 

(12) 

anc proved 

dt2 QfuTtT ' 

Theorem U. Jf U Is b continucus solution of (U1) with continuous 

first and second dwrlvatives, for t It, then there exist constants 

C^C.^-JCJ, auch that either 

(13) kl i c.t 

I i 2£ 

(U) u^ - e 
c5t "(i + «(t)) 

where  e(t) —> 0 as t —>oo. 

§17. Aa^nnototlc Behavior of Solutions of a Special Class of Equations 

In the first chapter we discussed the behavior of solutions 

of equations of the form 
n 

(1) Si a^t) u{k)(t,) - 0, 
k-o 

where a. (t) —> a. , a conattint. as t—y+co . 

These results have been considerably extended by Koksma, 

[is],  who considered the more general equation 

n 

(?) 
k-0 

ak(t) u(k)(t)   -    .t(t,u, du/dt,...,    d(n)(u)j 
dtn       ' 

1-7725 
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CHAPTER III 

ON im SOLUTIONS OP SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS 

•'i.    Introduction. 

The second order linear differential equation, 

(1) dt-(Wdt)  +     L(t)u-0, 

is of great importance in mathematical physics. It arises naturally 

from boundary-value problems in the theory of partial differential 

equations, occurs In the simpler form 

4 (2) ^  +  a(t)u-o, 
4 

i ■ 
i 

<* mechanics (one-dimensional). 

aa an analytical expression of Newton's laws of motion in dynamics, 

and is, again in the form (2), a fundamental equation in quantum 

The raatheraatically trivial, but physically important, 

equation where a(t) •- +. a2 can be completely integrated. In one 

case, all solutions are periodic, with period 2 ir /a, have an 

infinite number of zeroes in the Interval (0, oo), and do not tend 

to any limit aa t -^oo; in the other case, all solutions are 

ultimately monotonic, thus have at most a finite number of zeroes 

in (0, oo), and -> o or + oo as t ->+oo. 

This chapter will be devoted principally to investigating 

which of these properties are retained by solutions of (2), and under 

89 B-7723 
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what conditions.    Specifically, we are intereated in the bounded- 

nesa or unboundedneaa of the aolutiona as t-»•♦•« the number of 

zeroea of aolutiona in the interval Et,*«*), and the aayraptotic 

behavior of the solution.    As before, all terma auch as bounded, 

positive    and so forth, shall refer only to the interval  (t,^*« ] 

t   > o, unless specifically stated otherwise, 

§2.    A Preliminary Transformation. 

Henceforth we shall consider equations of the form 

(1) 
d!u 

dt2 
+    a(t )u - o , 

since the aubatitution 

i (2) u   ■   v   e 
_ 1    ^ p dt 

2 

ellminatoa the middls terra in 

(5) 
2 

dt 'dt 

and yields the following equation for   v 

CO dfv 
dt2 

+        (q(t)  - :-   dp/dt - p2/1*)v 

90 
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The problem of eliminating the two middle terms In 

(5) ^   +   PU)^   +   q(t)ää   +   r(t)u- o 
dt dt 

Is much more difficult but has been solved by Pors: th. 

By means of the transformation above, all theorems stated 

In terms of equation (1) have analogues for (3). 

1 J3.    The Boundedness of Solutions of u" + a(t)y - 0. 

Let us now discuss sufficient conditions for the boundedness 

jB of ftll. solutions of 

(1) ^   +   a(t)u- 0. 
dt2 

Several Important criteria may be derived from the following 

simple inequality: 

Theorem 1. of. a(t) > 0 for all t ^ 0, then any solution of 0 ) 

satisfies the Inequality 

Proof: we have 

(3) u ' u" +  a(t)u u '  - 0. 

Integrating between 0 and t, and integrating the second term by 

parts, 

91 •-"" 
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(M 
2   .     rt     ',^„2 

ul_   +   a(t)ül-   a(o)u!i2l+    ulLoil+   f a(t)üldt 

Thua, 

(51 a(t)u2 <    c.    +^   la'(t)l     a(t)üidt, 
V 2 o       aCt) 2 

.1 Applying lemma :;   of Chapter I, 

(6) a(t)ui<     c     exp(  5      al(U dt) 
2 o       a(t) 

cf.    Bellman,  [5], Caccioppoll,   ['«"]. 

As conaequencea of Theorem 1, we have the following 

results: 

Theorem 2. All aolutiona ol (i) are bounded If. a(t)>0, a'(t)>0, 

t >t0. 

Theorem 5. All aolutiona of (1) are bounded if. a(t) > c1 > 0, and 

ia. Q£. bounded variation in aome interval [t,, «»• ]. In particular, 

all qplutiona of 

(11) 
dt2 

(a2 +*(t))u- 0 

are bounded If 

92 
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(8) (a)   a2 + #(t) > b2 > 0, t > t > o 

(b) V d#  < -. 

Theorem 2 la due to Blernackl, [f],  Oagood, [fi], and 

Theorem 5 to Caccloppoll, [ir], and Wlman, [SH],  Independently. 

For the above unified presentation, see Bellman, [S], 

Equation (1) corresponds to the system 

(9) u,' - u,. 

u2 - -aCt)^ 

(10) 

The matrix 

A(t) 
\ -a(t)  o ) 

has trace zero, and thus a corollary of Theorem 10 of Chapter I 

Is the following result: 

Theorem k. All aolutlOM oL 

(ti) &-%   +   (a(t) + b(t))u- o 
dt2 

are bounded, provided 

1-7725 
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I 

(12) (a)    All aolutiona of u" +   a(t)u - 0 are bounded. 

(b) \   |b(t)|    dt     <  o- . 

In turn, a corollary of this result la 

Theorem 5.    If 

(15) \  la(t)l     dt      <•• , 

all solutions of. (1 0) cannot be bounded. 

It follows from Hukuwara's result, Theorem   *     of 

Chapter I, that all solutions of (7) are bounded if 

00   . ] (U) S U(t)i   dt    < 

Combining Theorems 3 and k, we obtain the more general 

result; 

Theorem 6.    All solutions of 

(15) ^   +      (a2 +   ♦(t) +   Hi(t)u- 0 
dt2 

are bounded if 

94 B-7723 
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(16) (a) a2 +    ♦(t)   >   b2   > o * >   t0, 

(b)       S <**<-. 

[ (c)      ^    1*1 dt   < •• . 

Butlewakl, [O-l» generalized Theorem 2 and proved 
1 
J 

i Xbfi&zsiT.    All aalaUgna at 

OT) dt"!   •^^St ) +      a(t)u- 0 

are t^undad. provided. 

(18) (a)       a(t) > o,   »(t) > o, gf (a(t) e(t)) > o,     t   > t0. 

All golutj-oBs QL 

(19) 

are bou^Qd- provided. 

(20)       (a)     •it) > o,   a2l+1(t) > o, gS- (»ai+i  W « ^h > o, t 1 tc 

98 »-7723 
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The followlnc results due to Murray,   [*<>], are also 

appropriate here. 

Theorem 8.      The equation 

(21) 
dgu 
dt2 

♦ (t)u - 0 

aguiu. 'i •- < t<^     if   $(t) >«i > 0, 

for < t < - / 

If 

(22) (a) 0 <   b2 < ♦(t) < a2,      -••< t    < »., 

(b) {V(t)\   <   c^    -•• < t <^ , 

there is. one and only one solution of 

(23) ä-f    -   *{t)u-   f{t), 
dt2 

which is. bounded for    - •• < t < •• 

This result can be extended to equations of the form 

UM       af- (k(t)^)   -   d(t)u- o, dt 'dt' 

provided    0 < a < k(t) < b, and continuous. 

• The trivial solution   u - o    la, as usual,  ignored. 
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$4.    Counter-Examplea. 

The question arises as to whether or not the hypotheses 

of the previous theorems were too restrictive.    Intuitively, one 

might expect that the condition ♦(t)-* o   as     t-**— would be 

sufficient to ensure the boundedness of all solutions of 

(1) ^   +        (a2    +      ♦(tju   -    0. 
dt2 

This was actually stated by Fatou,   [it], but shown to 

be false by means of a counter-example by Perron,   [*!], cf. 

Caccloppoll,  ['5], Wlntner,  [55],    We shall give a specific 

counter-example due In slightly different form to Wlntner,  [55], 

and then a general method of constructing counter-examples. 

Theorem 9-    EH. equation 

(2) flfü   +       (1  + k SlS-gJtNu   - 0 
dt2 t        / 

has unbounded solutions. 

Another Imnedlate way of realizing that the condition 

4(t) -♦   o   as       t-»«-»- might not be sufficient to ensure bounded- 

ness of the solutions of (1) Is to note that the theory of the Mathleu 

equation shows that the condition 

(5) 0   <   a2    <     a2    +     ♦ (t)    <     a2 

Is not sufficient to ensure boundedness of solutions of (i).   We 

shall discuss this condition later. 

1-7723 
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Wlntner'a general result la the following: 

Theorem 10.   !£. 

(k) g(t)-40,    g,(t)-»o     aa   t-»-»o., 

then 

(5) u -     exp    (   5    g(3)coa da) coa t 
o 

le a aolutlon of 

(6) ä!|   +    (  1   +   ♦(t))v . 0 > 
dt 

where      ♦ -•  o   ga   t -♦ +0« 

Chooalng   g(a) -   coa 3/3, we see that the conditions 

g(t) -• 0,   g'Ct) -♦ 0   are aatlafled, while   u   la unbounded. 

Levlnaon,  [ay], gave a counter-example of a different 

type. 

Theorem 11.    ConaIder the equation 

(7) ^   +    ( a2 +  «KM  )u- 0 
dtz 

Let e( (t) ö§. a monotone Increaalng function auch that 

•1 '(t) - 0(1) aa t-»+<>. . Then there exlata a 4 {t)  auch that 

for large t 
B-772) 
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(8)        J        ♦(t)   dt   < «(t) , 
o 

and (7) has a solution satisfying 

t->*. 

§«.     L"-stability. 

On the above results we have considered the property 

of boundedness of solutions of 

(1) ^   +   a(t)u- 
dt' 

.> 

We now consider the property of solutions belonging 

to    L  (0, •>  ),   f> ^ 1.      A function   u   Is said to belong to 

Lf (o, .. ) If 

(2) S    lu| P    dt     < <»•   . 
0 

Generalizing results of Weyl,  [si], and Carleman,   [ii], 

BelLnan,  [fe L    proved 

Theorem 12.    If all solutions of 

(5) ^   +     a(t)u- 0 
dt2 

• Theorem k of Bellman,   [L ], Is Incorrect. 
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^ 

.< 

belong, to    LP(0,»«)and   Lp,(0   ••), where 

(U) 1 < P<: 2 < p'   ,      l/p + l/p' - 1   , 

then all aolutlona of 

2   ' 
(5) ^   +    (a(t) +    fi(t)  )u = 0 

dt2 

P P' belong to L (0, o* ) and    L    (0, i»  ),  pr'CVi.ded that 

(6) l^(t)|     <     c,      .     t    >    t0  . 

The moat interesting case of the above theorem is 

p - p' » 2. For the case p - 1 , tba result becomes 

Theorem 13. If all solutiona of 

(7) ^ + a(t)u - 0 
dt2 

» 
are bounded and belong to L(o, «o ), then all solutiona of 

(8) ^ +  (a(t) + ^t))u - 0 
dt2 

belong to   L{0, •• ) and are bounded, provided that 

(9) U>(c)| i   c,   ,      t it0    . 

A consequence of these theorems is the following 

1, • L(0, •• )    -    L'{0, ^ ). 

B-772J 
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Theorem il».    H. 

(io) |a(t)|   <    c.    ,    t     >     t0. 

all Bolutlons of (7) cannot belong to L2(o, 00 ). nor can they all 

be bounded and belong to L(0, 0« ). 

For alternate proofs of the above, see Wlntner, ($♦]. 

Theorem 14 was extended by Wlntner, [5fe], to 

Theorem 15. II 

(11)       Ia(t)| < c^ .• t > t0 

then If a solution   u   of. (7) belonfcs to   L2(o, a» ), du/dt also 

belongs to   L2(0, M ).   This Is true If only 

(12) a(t)     <     C,   ,    t > t0 

II 

(13) (a)       a(t) > 0 ,    t > t0 

(b)     laU,) - a(t2)|   <    c2     |t1    -   tg | 

uniformly in   t1    gnd   t2, then all solutions of (7) cannot be lone 

is.   L2(0, po ). 

II (11 ) holds. and a solution u d (7) belongs to L2(o, »• ), 
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then   u(t)-»o   ga.   t—»♦o«, u (t)-»0   as.   t-»+o», and no 

other linearly independent aolutlon of (7) can remain bounded. 

S-. Aaymototlc Be)iavlor of Solutlona of    u"   i (a2 +f (t)  )u - 0. 

Although the asymptotic behavior of solutions of the 

linear system 

(1) ^   -   AY dt fty 

has already been discussed in Chapter I, we shall consider the 

equatIon 

(2) ^7± • (aa + ♦(t) )u - o 
dt2 

separately, since more precise results may be obtained.    The first 

results in this direction are due to Polncare,  [•»*], and Kneser,   [31], 

The following result, due to Hartman,   [afc].,  is a considerable im- 

provement of Kneser'a result: 

% 
Theorem 16. Consider the equation 

(3) äji - (i + 0(t))u -   o. 
dt' 

where for some   p   In the Interval    1    ^   p   ^   2, 

CO S   l<>(t)l pdt   < •• . 

102 
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Every solution s£ (5) Is. a linear combination Q£. two 

solutions. u1, u , possesslnr. the asymptotic forms. 

t 
(5) u,  ^    exp ( t + j  ^ fCsjäs)     ,    u,1 •«' u,   , 

o 

u2  *    exp   (.-t - j   ^   ♦(s)ds)    , - Ug'-   u^ , 
o 

as t-»*»»   . 

A companion result Is due to Wlntner,  [Si]: 

Theorem 17.    If 

(6) (a)    ^(t) ia 2l bounded variation iß (t   , •• ), and 

(b)        [   l*(t)l2dt    < 00   , 

to 

then every solution pf 

(7) £11*   (1 +4(t) )u- 0 
dtz 

has the form 

(8) u   -   C, cos ( Cg + t + j  5    ♦(s)ds) +     E(t) , 
o 

where  E(t)->0,   C,(t)-»o, ftg. t-» ••   . 

B-772J 
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If 4 (t) la. merely gf. bounded varlatloru then every 

aolutlon of. (7) has. the yorm 

(9).   u(t) - C, coa (C2 +  \  (i + <Ka)f da) + t(t) , 
o 

c(t) -» 0 aa t-»*«» . 

If   ^(t) poaaeaaea an aaymptotic aerlea expansion aa 

t -•♦<»• , 

(io) 4(t) *    -f   + 
t2 +      -S       + 

t11 

then the aolutlona will also have asjuiptotic representatlona: 

Theorem 18.    Every aolutlon of 

(11) ^   -    (a2 +  ♦(t) )u- o, 
dt2 

where ^(t) jatlaflea (10), la. a linear combination o£ twa. aolutlona 

u1, u-, auch that 

(12) u, - eat (b0 + ^t . . . + -S+ . . .) , 

u- -v. e"at (cA + c\ +  in + . • . ) 

Every aolutlon of 
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(13) ^ +    (a2 +   f{t)  )u - 0 
dt2 

Is a linear combination of two aolutlons. u1, Ug, such that 

(U) u,    ^   cos at    (<•„ +     _L . *   -S * \ 

e. 
u-   ^   sin at    (eft +   _L + .  .  . +   _£   + .  . 2 0       t ..n 

This theorem is due to Kneser,   [3a],  [as]. 

ST.  The Llouville-Jeffrles-Wentzel-Kramers-Brlllouln Approximation. 

The system of differential equations 

<i) 
dv 
dt -    -   Z(t)I,   g- - Y(t) V, 

of fundamental Importance In wave-guide theory, upon eliminating I, 

yields the equation 

(2) üF- <mr f > - ^^ 

i 

In this fcrm, the equation Is of the type dlacusaed pre- 

viously.    However, often the equation is non-inteprable; which Is 

to say,  its solvtion cannot be represented  in terras of the classical 

functions of mathematical nhyslcs,  associated with the names of 

Bsssel, Hermite, Lapuerre, Lependrc,  etc.    Nevertheless, since the 

behavior of   V   as t —^ +OD  IS often of considerable moment, some 

approximate means must be devised to determine this behavior. 

Such a method has been obtained •    In this countrj, It goes under the 
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name of the WKB (Wentzel-Kramera-Brlllouln) method; in England, 

it is commonly called Jeffries' method, and it turns out, like ao 

much else in the theory of differential equations, to be due to 

Liouville,  [37].    In discussing the method, we shall follow the 

presentation of Schelkunoff,  [fl], and rlgorize the procedure 

using a result due to Hartman. 

The first step is to transform (2) into an equation of 

simpler type.   Let 

(3) Z/Y ,       L   -    ZY ,        6-5     IZY da     , 

where we assume that   Z > 0. Y > 0, for   t   >    t  .     Substituting, 

we obtain the following equations for   I   and   V: 

CO äiv(9) . K\e)    d_v(e) - v(e)  - o 
d#2 K(e)      da 

äLi<.) * w iv(,) - ™ ■ ° ■ 
dec 

where. K(e) now denotes the function 

(5) Z(t(e) ) 
Y(t(e) ) 

To eliminate the coefficients of   dV/de    and   dl/de   , 

set 

(6) V 
i -1 

K(«)2   v ,      I   -     K(e) 2 j    , 

106 
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thus obtaining for   V   and   I  : 

ULI      K 
(7) (a)        V"    -    (1  +      kK2    -   -^r- ) v 

(b)   i* - (i - H + Ir)! - 0- 

At this point, we deviata from Schelkunoff'a discussion 

and apply Hartman1 s result, Theorem 16.    Thus 

'X Theorem 19.    If 

(6) ^ULgl  4e<« ,a     \lp-|Pd   <"■ 

for some p    in the range   1 ^ p ^ 2, every solution of   7(a) is. a 

linear combination of the solutions 

0       h*' 

e 
/   ' c .HK ^(^- If)^ 

ä  similar result holds for the solutions of 7(b). 

§8. The Asymptotic Behavior of Solutions of Ctäu')' + b t^u" - 0. 

In the previous section, we have given a method of 

obtaining the asymptotic behavior of a large class of linear differentiml 
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equations. Studying the question of asymptotic bebavlor more 

closely, we consider the equation 

(1) '^ +  pCi)^ + q(t)u- 0 , 

where   p(t)    and    q(t)    are asymptotic to elementary functions of 

the form   t e       as    t —♦♦ o» .    Seeking to determine the behavior 

of the solutions wljbh greater exactness, we may ask the following 

questions: 

(2) (a)   When do only monotone solutions exist ? 

(b) When do only non-monotone solutions exist ? 

(c) When do both types occur ? 

(d) How do monotone solutions behave as t-»«-»»  . 

(e) B2. non-monotone solutions behave like sine-curves ? 

The systematic answering of these questions was undertaken 

by Fowler,   [a3], for the equations 

(3) df (^ &    +    btV1   "    0 ' 

gf- (eat f)    +   beattcun   -   0, 

and for the equation 
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(M        af- (g(t)^)   ♦   f(t)un  -   o , 

where   g(t) and f(t) are asymptotic to elementary functions. 

Fowler's results are too extensive and Intensive to be 

presented here, containing as they do, almost complete answers to 

the questions of (2). 

A particular equation of the type (3) above. Is 

Emden's equation, which Is of considerable Importance In astro- 

physics, 

(5) df" <t2 f)    +   t
a un   -    0 . 

This equation, and the general class (3)» were further 

Investigated by Fowler,  [ai],  [9%], and by Sansone,   C*). 

5 9.   Asymptotic Behavior - Continued. 

Considering the equation 

(1) £-ü + f(t)u - 0 , 
dt2 

we may ask for simple conditions to set upon f (t) which will 

determine the behavior of u as t -»♦ o«  . One such condition 

Is that 

(2) \ t |f(t)| dt < oo . 

It may be shown that this Implies that 11m du/dt exists. Actually 
* 
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thla la a special case of a result due to Haupt,   [a*?]: 

Theorem 20.    Consider the equation 

n-1 

J4.n   +        ^H   an-k^; ZIc   "   0 ' dt" ^o     —       dt' 
(3) 

where 

a« 

co S K^)/ tk'1dt <QD'   k- )> 

Then the following limit exists; 

n 

(5) lim  d11"^ 
1 "**• dt0"1 

A less general result was given by Caligo, [Jfc], for 

n «• 2. The case n - 2 was proved in a simple manner by M. Boas, 

R. P. Boas, and Levinaon, ["J ], and a proof of the general case, 

based on the same method, given by Wilkins, [55]. Another proof 

was given by Bellman, [ 5" ]. 

§10. Periodic Coefficients. 

Consider the equation 

(1)    £%   +  ^(t)u - 0 , 
dts 

where ♦(t) is a periodic function of t. The noted equations of 

B-7723 
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•I 
< I 
\ 

i 

Hill and Mathleu are Included In this category* The general theory 

of this equation Is not simple, and we refer to the monograph of 

Strutt, [so], for particulars. We are Interested In conditions en- 

suring the boundedness of solutions of (1). Prom the representation 

theorem we know that solutions of (1) have the form 

n.t n t 
(2) u - C^e 1 P^t) 4 C2e 

2 PgU), 

where «ft^ ««2   are conjugate, and •P1(t)1    P2(t), periodic functions. 

In what follows, we shall be Interested in boundedness over the 

interval    - «• <   t    <*«>•   .    Thus If   u   is to be bounded,   'v\1, <« 2 

must be pure complex. 

The first result In this direction was obtained by 

Llapounoff,   [3fc]. 

Theorem 21.    If 

(3) (a)   <l>(t) is continuous with period T. 

(b) <p{t)   >     o , 

(c) )   ♦(t)dt     <   U/T, 

then all solutions of  (i ) are bounded for    - o. <   t    <  •• 
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For a discussion of the geometric significance of this 

result, together with a generalization, see Adamoff,  [ i ],   [ X]. 

If the equation is written in the form 

(U) i-^   +   (a + b   vj/ (t))u - o , 
dt2 

where 

(5) (a)     a   >   o 

•| (b)    \   ,P(t)dt    -     0   , 
% 0 

It might be expected that for b small enough, the solutions would 

be bounded.    This theory was developed by Polncare,  [    ]; see Strutt,  [So]. 

However, the general problem of the boundedness of solutions 

of (k) has been solved, in many important cases, by Borg,  [to], using 

variational methods.    Borg considers the following problem: 

" Given equation (U), where 

(6) (a)     f(t) has period ir  , 

(b) 5   ^(tjdt   -   o 
o 

f* 1 

(c) (-!_  \   |»f(t)|P   dt)p   -    1, for acme    p 1 1   • 

to (jetermine the regions of the ( a, b ) Plane where all solutions of 

(U) are bounded in the Interval    - •• <   t   < o«    . 
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Borg conaldera only the moat Important cases, p ■ 1, 8> 

The case p - o*   corresponds, by virtue of the equation 

(7 ) mx  U(t)l     -   lim   (—\   l*(t)\ vdt\ 

valid for continuous f(t), to the condition 

(8) max   1«^ (t)|   ^   1    . 

:i 
For p - 1, Borg derives Llapounoff s result.    For p - 2, 

he obtains 

. 

Theorem 22.   1L 

(9) (a)     ^(^^ j-J contlnaoua with period T. 

(b)    ^(t)     >     0    , 

*/2 de      Y 
(o S%8(t)dt < -^\     [T^I^T )  ' 

the solutions of 

(10) ^t   +  *(t)u 
dt2 

are bounded In the interval   - »•<   t   < ♦••   . 

113 
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The case   p   -«» yields 

Tb'jorem 23.    If 

(11) (a) <> (t) lacontlnuoua with period v , 

(b) (Mt)   >   0 

(c) max|^{t)|   <    1     . 

% all aolutlona of (10) are bounded In the Interval    -•< t < •♦• •• 

] 
*! Furthermore)  if 

(12) 0 <a2<:  ♦(t)   ^   b2    , 

the neceaaary and sufficient condition that all soluciona of (10) 

be bounded Is that    (a2, b ) contain no square of an Integer. 

As conaequencea of these results, Borg derives the 

curves defining the boundednesa regions of the    ( *>b   ) plane. 

For other results concerning the solutions of (1), we 

refer to Hamel, [a5], Haupt,  [ai],   .Wlnan,   [54]. 

§11. Almost-periodic Coefficients. 

As mentioned before, there la very little known about 

the solutions of equations with almost-periodic coefficients.    The 

chief handicap la the lack of a representation theorem analogous 

I B-7723 
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to that for equations with periodic coefficients.    However, there 

ia the following result due to Pavard,   ['1]: 

Theofem 2k.    Consider the equation 

•J (i) ^   +      <) (t)u   -   o 
.i ■. dt 

where 

(2) (a)   all solutlona of  (i) are bounded for -»•< t <+•• 

(b)    ()(t) is almost-periodic in the sense of Bohr. 

Then there exists a form 

(5) F   -   au2    +    2buv    +    cv2    , 

a, b, c    constants. which ia almost-periodic, and such that 

F   ^   k    >   o , for all   t,    where u, v   are two solutions of (i). 

The general solution of (1 ) has the form 

(JO u = C,    fP   cos($    [F   dt  )      +     C2   If   sin( J   ^-   dt  )    , 
to to 

Which is equivalent to saying that $ (t) is a uniform limit of 
trigonometric polynomials of the form Zc e *■ , where the > 

are not necessarily commensurable. 

116 B-7723 
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where    C    la. a. fixed conatant. and    C1, C2 are arbitrary conatanta. 

For related reaulta pertaining to equatlona with quaal- 

perlodic coefficlenta, aee Murray,   [Ho]. 

§12.  Oacillatlon of Solutlona of u" + ^ (t)u ■ 0. 

In addition to the question of boundedneaa of the 

solutions of 

(0 ^1+   f(t)u- 0 , 
dt2 

there la the question as to how often any particular solution 

vanishes in the interyal    [t , t], as t-»**» .    If all solutions are 

i monotone, it la clear that each solution vanishes at most once.    For 

further use, «e introduce the following: 

Definition.    If a solution of (1) has an infinity of zeroes as 

t -•■♦••• , it Ij. said to be oscillatory; If not, it is. said to be 

non-oaclllatory. 

There la a close connection between the boundedneaa and 

oscillation of solutlona.    However, oscillatory solutlona may be 

unbounded, and vice versa. 

The first results concerning the oscillation of solutlona 

of second order linear differential equatlona were obtained by Sturm. 

Since then a vast body of research has arisen connected with this 

topic.    However, since moat of this haa been done in connection with 

eigen value theory, we shall refer the interested reader to BScher, 

[t ], or Ince,   [3e], and go on to discuss some problems connected 
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with the behavior of solutions of (1) over an Infinite interval. 

We shall begin with general properties and then, by 

imposing more restrictions upon ^(t), obtain more precise results. 

Kneser, [SH]? pointed out that the following results 

were imuediate consequences of Sturm's'results: 

Theorem 25« I£ 

(2)      (a)  ♦(t) la continuous for all finite t> t , 

(b)   11m «(t) > o , 
t ■*♦•• 

j then every solution all (!) which has a continuous first derivative 

1 ig. DBCillatory. 

i   '  - 
j . Theorem 26. JX 

i 

(5)      (a) ^(t) is continuous for all finite t > t , 

(b)  f (t) < 0 , t > t0 , 

^ then (1 )has no oscillatory solutions.    Every solution with a 

continuous first derivative must be monotonic and —> 0   or + <»,,      as 

t -* •♦• o»   . 

i An immediate application of this result is to the solutions 
I 

of Bessel's equation 

'k'     Z* ♦ T & ♦ <"^ " o dt 

•Kneser's original statement is incorrect, cf. Fowler, Us], p. 890. 
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The aubatltutlon   v -   u IT    yields 

(5) ^   ♦   0  +   ^ v - 0 , 
dt2 tz 

which la amenable to Theorem 29. 

The above theorem may be obtained by comparison with 

dt 
(6) **±   a2u   -   0 . 

1 
^ With thla fact In mind, It la clear that If we poaaesa sufficient 

'-, Information concerning the aolutlona of 

a)     ^ ± a(t)u- 0 
dt2 

where   a(t) la an elementary function, we may obtain other oscillation 

theorems.    A simple choice for   a(t) la    1/H2, alnce the aubatltutlon 

t - eu reduces (7) to an equation with constant coefficients.    Thua 

we have the following result of Kneaer,   [Sf ]: 

(8) (a)     ^(t) la contlnuoua for all finite   t > t'0 , 

(b)       llm   t2*(t)   <   1/* , 

all aolutlpna fit (1) will b§. oaclllatorv. 

U8 »-"25 
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I (9) t^t)    <   Ijk,        t   » t   . 

no solution will be oscillatory. 

j For a generalization ol this result, see Hllle,  [41]. 

i Kneser,  [31], also considers the more general equation 

j do) ^   +   ^t)u- o, n  » 2. 

% Fowler, [AS], extended Kneser*s results, and there are also 

J extensions by Pits, [aoj, who considers the equation 

(11)    ^ * P(t) ^4 + q(t)u- o . 
dtu      dt,n"1 

> 

Kneser did not use the Sturmlan comparison theorems to obtain 

theorems 85, 26, 27, and thus was able to treat more general cases 

where the comparison method would fall. 

515.     Oscillation of Solutions of  u" + f(u,t) ■ 0 . 

Kneser, [SI], extended his results of the previous section 

and proved theorem 28. Consider the eouatlpn 

(1) S-£ - f(u,t), 
dt8 

where 

(2) (a) f(u.t) Is continuous for ftlj. u. for t » t». 

(b) f(u,t) has the same sign as u. 

(c) A solution of (1) Is determined by the values of u and 
[ 
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u' at any point In the interval     t0 < t < oo 

Then only one of the functlona u, u'  can vanlahTat moat 

once.for   t > t„, 

I Pmrthermore. as t —» oo , two caaea are possible. 

(3) (a)   u—*+co     monotonlcally. or 

.^ (b)    u and u' —>o, both monotonlcally. one Increasing, the 

J other decreasing. 

1 J In the simple case   f(u,t) - f(t)u, we have the following 
J 

result:   Theorem 29.    Jf 

(>) (a)   u-   -   f(t)u 

(b) f(t) > o,     t lt0, 

(c) f(t) has a continuous first derivative for t ^ t , 

there exists one solution —> 0 as. t —^ oo , and all other such are 

constant multiples of the first. 

This may be compared with the following result of Bocher, 

[ 1 1, of. Osgood,  [tl ]: 

jfeeajsa 30.   it 

(5) (a)   u"   -   f(t)u 

(h)    0   < c1  4 f(t) <  c2. 

There is one and only one solution wh^ch remain^ finite, in the aena? 

thftt ftU ?^o^ a^r? CQDiftMft mxltlpl^ Qf <?Bgt and this vanishes for 

t   - ♦00. 

This, in turn, la analogous to a theorem of Wintner'a,  [57): 
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Theorem 31.    Conalder the equation 

(6) ä_|   +    (,  + d(t))u   .    0, 
dt2 

V» 

yhere     d(t) —* 0   ^.     t —> 00 . 

If (6) has one aolutlon   u —* 0   ga.   t —^OD , there la 

apother aolutlon which   -> 00 aa   t —» oo . 

Aa Wlntner polnta out, this Is a conaequence of the fact 

that the Wronaklan 

(7) W(t)   - 
u       v 

U 

of any two solutions u, v of an equation of the form 

(8) ^   +    f(t)u 
dt2 

la a constant. 

Using Kneaer's methoda, Butlewakl,   [II ],  [13],  [If], extended 

Kneaer's results, and proved 

Theorem 32.    Consider the equation 

(9) 

where 

(ic) 

it(e{t)f)   +   f(u,t) 0, 

(a) e(t) la differentiable for   t » t0, 

(b) e(t)>o,   t  » t0,   tjLjgi     i/e(t)>o. 

(c) f(-u,t) la continuoua in u and t for t > t 
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■v. 

(d) A aolutlon u Q£. (9) la determined bv the values of 

u aud u1 at any point In th? Interval oo > t ^ t0. 

(e) fln.t) has the algn of u. 

(f) If  11m u(t)-g>o,   11m  f(u,t) > 0, 
t —> CD t—♦ 00 

If  lim u(t)-g<o.   Um  f(u,t) < 0, 
t—♦ OO t—, 00 

Then every aolutlon of (9) la oaclllatlpg. 

The following result was obtained by Plcard,  l+sj: 

Theorem 33.   H 

1 
(11) (a) e(t)5   1, 

(b) f(u,t) increases conatantly aa u does, u > o, 

(c) f(o,t)s o, 

(d) rrr f(u,t) > 0, and decreases as u Increases. u > 0, 

(e) -f( -u,t) has aame propertlea aa f(u.t). 

every aolutlon of (9) la oadilating. 

The following result waa obtained by Milne, [ 39]: 

Theorem Ik,    Consider the equation 

(12)        i-a +  a(t) f(u)  -  o 
dtz 

where 

(13) (a) d(t) la positive, continuous, monatone increasing. 

and bounded for t > t , 

(b) f(u) la odd, monatone increaalng. and  If(u^ )-f(u2)| 

41 cl,ul"u2l'   ^   -a^u^ u24a,    a > 0, 
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(c) ^   -   0,   u - u,, for    r - ;.  ;   :.o , 

(d) lu,!    <   a,       fCu,)   -   o. 

Then u la paclllatory. and Its amplitude decreases momtonl- 

pally. Tyut does; npt approach zero. 

Butlewaki,  [13], pointed out that results similar to those 

of theorem 32 can be obtained for 

<1^ fe  (V^)dH
en-2 

(t) ••'   dt(e^dF   •-)   +f(u,t)-o. 

As corollaries of theorem 52, we have the following results: 

Theorem 55.    Consider the equation 

<">    it (•»)£) * I; ♦.I,,«) ""*' -». 

where 

(16) (a)    e(t)    is differentlable for t » tG. 

(b) ♦ 2*  . (t)   is continuous and positive for   t- ^ t , 

(c) lim l/e(t)   >    0, 
t—♦oo 

(d) lim        *2l+1(t)    >   0- 
t-*oo 21+ 

Then every solution is oscillatory. 

Theorem 56.    Consider the equatlor. 

(17) ät     (^^dt)      +      <>lt)   f(u)   "    0' 

where 
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(18) (a)       lim       i/e(t) > o, 
t >CD 

(b) e(t)    la differentlable for   t ■> t0, 

(c) 11m       0(t) > o, 
t —>oo 

(d) 11m       f(u) > 0,        Um       f(u) < 0, 
u —* +00 u —♦ -oo 

(e) f(u)    la contlnuoua for all finite u, <>(t) for t > t0. 

Then every aolutlon la oaclllatlng. 

The equation 

(19) ^-T   + fU)   -   g(3lnw t) 
dt2 

la Important phyalcally.    For reference to previous work on this 

equation, and Its phyalcal origin, we refer to John [31], where various 

boundedneaa and oscillation properties of the solution are given. 

Butlewaki [it] alao obtains reaulta for non-oaclllatlon, 

which generalize theorem 28.    He alao investigated the zeroes of aolu- 

tiona of aya'tema of differential equations of the type 

(20) dy. 
ST   -   aii  tt) y,    +   al2 (t) y2 

dy2 
dt"   "   a2i  Ct) y,    +   a22 (t) y2 , 

Butlewaki,  [it], 

SH Magnitude of Oacillatlona of Solutions of u" +  ^(t)u - 0. 

In this section, we shall diacusa the equation 

•For a comprehensive report, see Friedrichs and Stoker,   UM]. 
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(1) ^  +  4Ct)u   -   o 
dt8 

with particular reference to the following queatlons: 
* 

(2) (a)   What are the magnitude and frequency pf the oscilla- 

tions of solutions of (1)? 

(b)   What Is the magnitude of   du/dt? 

By Imposing some conditions upon    +(t) which are satisfied 

for a large class of elementary functions, these questions may be ans- 

wered completely.   However, we shall begin with some general results 

first. 

Ibs&sai 37.   If. 

(5) (a)      ^(t) > o,    t ^t0,     4(t)->oo   as t -*oo, 

(b)       ^(t)    Is monotone Increasing. 

then every solution of (n —» 0   fiat—»co. 

This result is due to Aroelllnl,  [3]. 

If an addltlo^l condition Is placed upon +   , we can 

estimate the order of smallness of   u as t —»oo.    Thus: 

lhe(?p9B 58.    II 

CO (a)     ♦'(t) > 0,    t > t0, 

(b) ^'(t)    Is non-lncreaslng. 

(c) 11m        ^(t)   -   OD , 
t —"»00 

every solution of (i) —> 0   fia.   t-* oo .   Bfiafivfin,        llm       lu(t)J^(t)| 
t —> 00 

Is positive. 
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By analogy with the equation 

(5) ä!^   ±   a2u    .    o, 
dt2 

we might expect that the quantity   j^(t)     would play an Important 

role In determining the oscillation of the solution.   This is 

actually so.   Let us begin the discussion with the following result 

due to Petrovitch,  WJs 

Theorem 39.   Consider the equation 

(6) ^t     -     *(t)u, 
dt2 

In which f(t) > 0 far a 4 t 4  b. Igt. u be the solution satis- 

fying the boundary condition  ul(t0) ■ 0> a*t0*b. Then u 

may be written 

T   -T 
(7) u  -  9  p    , 

where 

(8) T  -  (t - t0) 4* (s) ,  t0*s«t, 

and    s    depends on   t 

Thus the ao'lution is conroriaed between 

(9) T,        -T, T -T 
e    _i_e §nd e     + e 

where 

126 •-"« 
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(10)    T. - (t - t0) Jllai^(s),  Te - (t - t )J lim f (a). 

t04-   a   <t. 

If_ 0(t) < 0, the solution In the Interval between two 

succeaalve zeroes, t^ t2, has the form 

(11)    u - cos T,  T - (t - t ) J-^(a),  t^s^tg 

\ Thus 
.1 

i 
(12)     t, - t  -   , S     ,  t- - tn +   "==~ar 10       efTcT) 2      0 2f?T7) 

Hence the length 11 of a half-wave satisfies the In- 
equalities 

(15)      ,  Z   «  1.  ^   . 2!:  , t.* s it.. 
Ulm(-^(s)) 1      Jliffl(-*(8))   1    2 

In connection with the above results, the following results 

are interesting.    The first is due to Osgood,   [41], the second to 

Murray,  [to]. 

Theorem Uo.   ]£ 

dM 4>(t)  >, o,   tj.  t0, 

the general aaMiaa at (6) has the form 

(15) I >1(t1)dtl fv^^i 
t_ ft 

u   -   c1 e ♦   c2   e 
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where    "X^t),    >2(t)»0,    t   » t0,    and bounded If  ^(t) la. 

Theorem J»i.   If. 

(16) (a)      ♦(t) > 0, 

(b)      ^ (t) la monotone.- 

the anrolltudea of aolutlona of (1) vary mcnotonlcally. Increaaina 

when  ^(t) la a decreasing function, decreaalna othenwlae.   Further- 

more If     ^(t) remalna finite as t —» oo, the amolltudea remain above 

a certain ^?"^i depending upon   u(o). 

Ascoli,  [**J, conalderably extended Oagood'a results and 

proved the following: 

IbSS£SB te-   It 

(17) (a)      0(t) Is monotone. 

(b)      0(t)   -♦    a2   aa   t-*oo, 

th?n. ü u aatlaflea (1) 

(18) 11m max    ju|    -   c. 
t--»bo osa<t 

11m atax .   ju'l    m   ( 
t—»00 0 < a * t 

and   Cg   •   ac1. 

If    ^(t) la non-decreaaliyt.       max     Ju'l    la non- 
0<3< t 

Increasing, and approaches a finite yjfljj ftg t -* 00,      max    lu'l 
04a« t 

iq pou-decreaslpg. but may approach 00 aa t -» 00. 

B-77IJ 
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| 
| It     *lt) la non-lncreaalng. the above reeulta hold 

. with u Afi& u' interchanged. 

I Theorem 39 shows the Importance of the quantity  J ±^(t), 
i 
I and we shall now discuss more precise results.   Blernackl,   [7], 

showed 

1 
^ (19) (a)       ^'(t) > 0,    t   >  t., 

.| - (b)       t'Ct)    la non-decreaalng. 

1 (c)      i(t   +  i/lfTT))   /   *(t)—^iaa t-►CD, 
J 

every solution of (1) —» 0 as t—»oo. However.  Um |u(t) ^(t)| 
M       , ~- - -      -   — - -■' T^ „ 

'{ Iff Wg^Av?» 
't Milloux,   W, took up this question using the transformation 

i (20.) u   -     rcoa e,     e   -   c ^^|   , 

used by Patou, [H], which reduces M ) to the non-linear equation 

2        2 
(21)        H  "  ^T  +  r 4>(t) - 0 

dt2    r3 

His result is 

Theorem kk.   2L u aatisfles (1), und 

(22) f (t) —»oo      a§.     t —*oo, 

then for Intervals ^ (t^ t2 )t auch tliat 

(23) ♦(t2)/ ♦(t,) -»i       &   t2, t,    -*oo 
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JA 
(2V) u   -    /S" ^(t) (1   +   t (t)),    t, «  t „< t2, 

  iA 
where   «(t)—>o   aa.   t-»oo.    Hence       llm     I ♦(t)       u|   >   ^F. 

t  —» OD 

Continuing In this vein, Wlman,   [si], Impoaed the following 

condition upon   ^(t); 

Condition A. 

^ *(t) 

Thla holds If, for example,   $ / 6^'Z   "-* 0   aa t —♦ oo. 

Using this condition Wlman,  [si], proved 

Theorem k}.    If condition A Is satisfied, where   ^(t). —♦oo    ai 

t —»oo, then If   A{t) la the interval between two successive 

zeroes of a aolutlon of (1), we have 

(26) lim       Am fJLÜJ     .     1 
t —*oo «rr 

Furthermore. If both   f anä # * aatlafr condition A. 

tt^e amplitude of   u   la of order    ^(t)"1'   , and thgt of u» of order 

^ Ct r /   at the zeroea of u, aa    t —♦ OD . 

Related weaker results were proved by Horn, 

Using Condition A, Wlman proved; 

Theorem »6«    If condition A la aatlsfled. and u a^tlaflea 

(27) u-   -      ^(t)u, 
B-7723 
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(28) 

♦ (t) > 0, then 

lim   
t > 00     u J^(t) 

III-k3 

lii ; jn^ra]. but there exist solutlona for which 

ii 

(29) lim 
t—> oo     u   J^)(t) 

For further results on the magnitude of the oaclllationa, we 

rel'er to Biemackl,  (ij, who considers non-linear equations, Powler, 

p«], Milloux,   öl], Wlman,   M],   [  ], and Wintnar,  [55]. 

§if Mon-Oscillation Theorems. 

tlon of 

(1) 

We now consider some conditions which ensure that QD solu- 

^f     +        ♦(t)u 
dt2 

are oscillatory. 

One of the principal tools in the study of the linear 

equation (1) is the non-linear Rlccati equation 

(2) dv 
dt ^-  +  v^ + 0(t) - o. 

-,- i satisfied by v ■ u'/ii. 

The connection between the two has been known ever since 

Buler, and (2) was used by Polncare, [^]# In the form of the non- 
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linear integral equation 

00      « J30 
(3)       w - t  \    aldt   +   t  ^        ^ (t)dt    ,      w   -   tv    , 

t    t? t 

It la used by Hllle,  CM], to derive the results below. 

Theorem hi.    If. (1) adplta one solution auch that 

(k) 11m   u     -  1      , 
t —>oo 

then Its general solution haa the form 

(5) u - <!,( 1 +C1(t) ) + c2t( 1 +l2(t) ) , 

where t^ t^    —>o sa. * —*®« 

Ttjiua. every solution la non-oaclllatory. 

Thepreffi 48.   II 

(6) ?   t| ♦U)! dt   <   oo  , 

there la a solution u of m auch that  11m u - J. . KreOY^r^ 
t—»oo 

(7) lu - i| .4    ( exp S  t| ^1 dt - 1 ) . 
t 

Conversely. If    « (t) haa  cotiatant aim. aa3 ttoSJOt **\*+f 

a aolutlon auch that       11m   u —> 1 , then    ^(t) gatlafles (t). 
t-* CD 

Theorem k9.    Jf 
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(8) \    t2  | ♦(t)l dt   <   ao 

there la t* solution   u   of (1) auch that      llm   (u'- t)   -    o. 
 '"~"~'       " ■"" t—>oo 

♦ (t) has constant sign for large t,  (8) Is necessary 

jj and sufficient that       llm     (u - t)   •    0. 
t —»oo 

(9) (a)    /u(t)    la a positive non-decreasing function. 
oo 

(b)   ^^mdt < a, , 
t2 

then If    (i)   has non-oscillatory aolutlona. we must have 

(10) f0 ^(t) |f(t)| dt   < 

I33fiS£&l 5X.    Consider the two equations 

(ii) (a)   u"   +    ^(tju   -   o. 

00 

(12) 

(b)   v"   +    fg(t)v   -   o, 

Baciae. 

g^t) - t  S      *1(t)dt 

oo 
82(t)   -   t .S        ^(t)dt 

If tha BflMAflM gf (a) »r? ron-g^cm^tpry» fiQd. 
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(15) g,      ^    gc    >      t   >   t0  , 

then the aolutlona of (b) are non-oadilatory. 

15. Non-OacIllation Theorema     continued.    Conalder the 

equations 
.2 

(0 (a) M   -   Pi(t>dt   "   P2(t)u   "   ^^   -   O'^V 

(b) ^J    -    Pl{t) äl    -    p  (t)v     -    q(t)    >    0, 
dt 

where     u(t0)   -    u0   -   v(t0),    u^^)    -   u^   -   V'UQ), and 1 

1 
J ?!» P«» Q   are contlnuoua functions for t > t0. 

It la clear that v > u In some Interval   t, > t > t0, and 

the queatlon arlaea aa to the length of thla Interval.   The original 

result la due to Tchaplygin, and a partial converse to Petrov, 

[•»3].    Hie result below gives the beat possible, bound, and la due to 

Wllklna,   £53]. 

Theorem 52.    Ifit u, v aatlsfy 1(a) and 1(b)..    Then v > y for 

t1 > t > t0> provided there exlata a aolutlon u at 1(a), which doea 

not vanish for t1 > t > t . 

A related result la the following theorem due to Polya,  IVT): 

Theorem 53«   Let the eouaticn 

(2) L(u)   -   u(n) + p^t) u^"0 + ...    +pn(t)u   -   0, 

poaaeaa the following property; 

B-7723 
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Property W;    There exlat   (n - 1) solutions    u,, u2,  ..., v^.,, fit 

(2) such that 

(3) 

where 

u,  >    0,   WU^Ug) >    0,   ...  ,    Wtu^Ug,...^.,) >    0, 

a   <   t   <   b, 

(M WCu^Ug,...,^) 
u,      u ,(lc-i) 

u. 
1     "I 

"k   "k ui^) 

Then If   u(t)   vanishes at (n+i) points In (a,b), there 

exists an Intermediate point such that 

(5) U uW )   -   0. 

A somewhat related result, which la a generalization of 

the uniqueness theorem for differential equations la due to Plte,   [a«]. 

Theorem 5U.    Consider the ayatem 

(6) dy '1 X 

where 

(7)' 
n 

I  *1(t,y) --fr^t,*)!^     SJ 1^ I ^ "»kl* 

X2nyk. *k   arbitrary.   Ifit (y, ,y2,.... yn),  (», >*2,...>*n) be twp 

13S 
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aolutiona of (1) auch that 

(8) V1^)   -   *k(tk)'     lc   ■ 1'2'  •••» n'    a ^ ^ 4 b, 

where the t^ are any n points of the Interval (a,b) of length ^  . 

Baa 
i 

(9) ?   > ^ 
to 

Hence If 

S1" 

(10) f j^   (t,0,0,   ...,   0)    -    0, 

no non-ldentlcally vanishing solution of (6) can have all its comoofi- 

eiyta vanish Individually at; polpta Inalde an Interval (a,b) of length 

p, iJ. p aatlafiea (9). 

Since every n-th order linear differential equation can be 

converted into a ayatem of the type (6), the above reault can be inter- 

I preted in terma of the vanishing of the solutions and ita derivatives, 

i cf. Pite, M. 
I 

I If the 1^ are functions of t, l^Ct), condition (9) can be 

replaced by 

(11) n^ rb 
2;        S   \(t)to > 1  . 

k-i a 
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Difference ftauatlona     -     Chapter IV 

1.    introduction 
i 
i In this chapter, we shall consider the behavior of aolu- 

lons of difference equations of the type 

i   ■' (1) Z  (t  +  1) - F(Z  (t),t).    t - 0,   1,  2,   ...     . J 
1 Here, as In the case of differential equations,    z(t) Is an n- 

'•■' dimensional column vector, and   F(z(t), t) Is a vector function of 
% 
i tit). 

i A problem which has been extensively Investigated In the 

-* modem theory of difference equatlon»ls the question of the existence 

$ of analytic solutions of equations such as (i).   There Is an exten- 

f slve literature on this subject, cf.Norlund,  [1], Trjltzlnsky,  [it>]. 

i Recurrence relations of the type (i) occur very frequently In ap- 

': piled mathematics, and then the question of Interest Is usually the 

'J . behavior of   z(t)   as t—^ oo.    If the equation Is non-linear. It 
?! 

Is, In general. Impossible to solve for z(t) In terms of elemen- 

tary functions, and, as In the case of differential equations, re- 

course must be had to other means. 

I The technique of power series solutions of differential 

equations generates recurrence relations of the above form. If we 

consider the differential equation 

(2)        St -  fU),   HO)   - z0, 

and try a solution of the form 

•-7T13 
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oo n 
(3) «   -   *0   ♦        Ij y(n)t , 

upon equating coefficients of   tn, we obtain an equation of type (1) 

for y(n).    This equation, however, la slightly different from the 

one we shall consider below, since the form of P(z,t) changes with t. 

A different technique applied to the differential equation 

(2) yields precisely the form of equation we shall study.    Let us 

try to approximate to the solutions of (s) by means of the solutions 

of 

J {k) 2(W^-m)   .     f(z)f      t-0,h,2h,  ... 

Since difference equations are essentially simpler to 

handle than differential equations, the equation In CO can be used 

to derive many of the properties of the solutions of (2), cf .Bellman, 

[M* 

We shall treat the case where   7(z(t),t) Is approximately 

linear, that Is, 

(5) P(z(t),t)   -     fl(t)2   +   f(r,t), 

where 

(6) l|fU,t) II   / llzll    1   c, , 

and   c.      Is a "small* constant.   The. theory Is completely parallel 

to that for differential equations, and In light of the relation 

between (2) and («0, that la not very surprising. 

•    The Idea of approximating to a differential equation by a dif- 
ference equation Is a very old one, and has been used by many 
authors. 

I 
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As In the case of differential equations, the equation 

* » 

(7) y(t + 1)   -     Ay(t), 
| • 

I 
where A Is a constant matrix can be completely solved In terms of 

i 
^ elementary functions.    To treat the non-linear equation 

: \ 
^ (8) z(t + 1)   -   Az(t) + f(z) , 

■ i 
% we shall express    z    in terms of y.    Here a peculiar difficulty 

arises.   This nay only# be done if   det A ^ o, or, equivalently, if A 

has no zero characteristic roots.    If   det A « o,   .we see from the 

matrix equation 

i 

1 
*■ 

| (9)        Y(t + O - AYU),   Y(o) - I , 
.1 

:j 

A that  Y(t) is singular for every t > o. This Is in contrast to the 
1 
j ' state of affairs for differential equations, where Y(t) is never 
)< 

singular, as long as A(t) is integrable. This difficulty is not 

serious. The zero characteristic roots may be isolated, and the final 

results are analogous to those for differential equations. 

"1  . 
j 
'I        >        2. The equation  y(t + 1) - A y(t), A a constant matrix. 

To solve the equation 

*\i 
(i)        y(t + i) - Ay(t),  t - o, i, z,  ... , 

where A is constant, set y(t) » c ^ , where c is a constant vector, 

and ^ is a complex constant. Upon eliminating > , we obtain 

14S 
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.< 

(2) %c      -     Ac, 

whence If c la non-trivial, 

(3) ^ I A -AI I   -   o, 

the familiar characteriatlc equation. To every roco \  of (3) 

there correspooda a aolution of (i), 

CO y -  c(A )7k
t . 

If A is a multiple root of multiplicity k, there will cor- 

reapond k aolutiona of the type, (in seneral), 

(5) 0,00^,. c2U) t^*, ... , o^CK)  t^"1 ^t . 

If 'X la complex, the real and imaginary part a of the above 

•] aolutiona fumlah the real aolutiona of (1). 

If det A Ai o, the n aolutiona found in thia way constitute 

a fundamental aet. Let V be the solution of 

(6) Y(t + 1) - AY(t) ,  Y(0) - I . 

Then Y(t) la unique;* for if W   - Yü   la another aolution, 

(7) Y(t + 1)   U(t + 1)    -   AY(t)U(t), 

or since  Y(t) la non-singular, 

(8) ü(t + 1)   -   U(t)   -   U{0)  . 

If A has zero characteristic roots, we may put A into the 
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form 

(9) 
» 0        B /    , 

where L,  la a matrix of order k corresponding to a k-multiple zero 

root. 

Since   L1    Is composed of matrices of the type7 

i o 

along Its diagonal and   det B ^ 0, the solution of (6) will have the 

I form 
1       . /0      0       \ 
I    ■ «ID Y(t)   -      ^0    Yi(t))    ( 

I   - 
-' «here Y1  la non-singular.   Hence, If we are considering the linear 

• case, the zero characteristic -poots may be Ignored.   However, In 

treating the perturbed linear equation 
I 

J (12) z(t + 1)   -     (A + B(t)) z(t) , 

or the non-linear case 

(13) z(t + 1)   -   Ar(t) +   f(z,t), 

the zero characteristic roots must be considered. 

I-T72) 
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.; 

Prom the form of th a iutlon it ia seen that the 

circumference of the unit circle In the complex plane la a bound- 

ary of two regions of importance In the dlscuaalon of the bound- 

edneaa of solutions of the difference equation. To roots lying 

inside the unit circle there correspond manlfolda of solutions 

tending to zero as t —>oo; to roots lying outside the unit circle, 

there correspond manifolds of solutions tending to oo aa t —> oo ; 

roots on the unit circle present either case, depending upon the 

form of their elentntary divisors. 

3.  An IaiPort.«mt. T^ttttyt 

let us consider the two equations 

(1) y(t + 1) - A y(t) 

(2) z(t + 1) - A z{t)   + wCt) 

? where   det A   ^   0 and A is a constant matrix.    The following result 
.1 
i] 

Is then valid. 

Lemna 1.   We have 
t 

(3) z(t + 1) - y(t + 1)    +   ^   Ylt-t.)   WCt.), 
tro 

where   y( t)    is the solution of (1) with the **™ff ^tlal value as 

z, and Y ia the solution of 

(M Y(t + 1)   -   AY(t), Y(o)   -   I 

Proof; We use the method of variation of parameters. Let 

1-772} 
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(5) I   -Yu 

Then 

(6) Y(t+l)u(t+i) - AY(t) u(t) + w(t), 

'\ and since ^(t+i) - AY(t), detYito, 

\ 
1 (7)        u(t+i) - u(t) +  Y'^Ct+i) *»(t) . 

i ■ Thus 
% 

\ (8) u(t+l) - u(0) + S? Y '(t.+l) «(t,); 

J   ., whence i 
i (9)    z(t+i) -Yu - y(t+i) + 21 Ytt+OY'^t.+l) w(t.). 
,!  '. t^o '     1 

\ 
i 

■ 

^ show that 

-J 

1? 

i 

This la the general result that holds for A a variable 

matrix which is non-singular. If A is constant however, we shall 

(10) Y(t+i) Y'1(t1+i) - YU-t,) . 

This follows from the uniqueness of the solution of (k). 

The right side is a solution with the value I at t - t^ and the 

same is true of the left side. Thus equality for all t. 

If A has zero characteristic roots, we write it 

(11) A - C_1  (  1    \  C ■■ t: n 
•-77M 
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where    C    ia a non-singular elementary matrljc,    det B ^ 0, and L^ 

la the matrix corresponding to the multiple zero root.    The 

change of variable  Cz - z   tranaforma (2) into 

(12) z(t+t)   -       (    1       ' \     i(t)    +    Cw(t). {::) 
Now decompoae z Into the two vectors    z1, z2, where z1  la 

a k-dlmenalonal column vector, k the multiplicity of the zero 

characterlatlc root, 

then (12) becomes 

(U) z^t+i) - L,    z,      +   w, 

(15) z2(t+l) - B z2 

where 

(16) Cw ■ (a 
Equation (15) nay now be treated by means of Lemma 1, 

and (H), because of the special form of L1, may be handled directly. 

1*.    The Linear Equation        z(t+l)   -    (A+B(t)) z(t). 

The analogue of Hukuwara'a theorem for differential 

equations. Theorem U of Chapter 1, la valid. 
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Theorem 1.    I£. 

(1) (a)   A la a constant matrljc. 

i • (b)     f; IIBU) ||   <   oo  , 
t-o 

^ (c)   all solutions of y(t+l) - Ay(t) are bounded. 
\ 

1 

1 

then all solutions of 

(8) r(t+i) - (A + B(t)) zCt) , 

are bounded. 

Thei?e arise extra complications due to the possibility of 

i det A being zero, but these may be taken care of without undue dlf- 
1 
| flculty. 

■1 5.   The Non-Llnear Equation   r{t+i) - A2(t) + f (z)    :    I 

| Before proceeding to the discussion of the boundedness of 

3 the solutions of the non-linear equation when A Is a constant, we 
'i 

shall exhibit an example due to Ta LI,   [15], an analogue of one of 

Perron for differential equations, Illustrating the dangers of Intui- 

tion. 
'ij 

| Theoreip 2. There exists equations of the form 
C] ' 

(l) y(t+l)   -   A(t) y(t), 

wltft    l|A{t) |i  bounded, ylth the property that every solution of 

(1) -^- 0 ja   t-^*oo, any such   that not every solution of 

(2) z(t+i)   -   A(t)z(t)    +   f(z) 
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where   f(z)    la a non-linear term, tends to zero aa t—> oo, and auch 

that there exist unbounded aolutlona of (2). 

An example la 

(5) y^t+l)   -   e^y^t), 1/2 <a<   ***    , 

y (t+i)   -   e(8ln:i08 (t+1) ■2a)(t+1) " i3ln l08 t-2a)t y (t)j 

z^t+i)   -   e"a z^t) 

z2Ct+i) .(aln log (t+i ) -2a)(t+1) - (sin log t-2a)tz (tj + 

z^Ct)  . 

6.   The Non-Linear Equation   z(t+l) - A2(t) + f(z)  :  II. . 

TÄe following result Is due to Perron,  [»]: 

Theorem 3.   If.   k,    k i n, gf the characteristic roota of A lie In- 

side the unit circle, tb^re la a k-dlmenalonal manl fold of aolutlona 

fit 

(1) z(t+l)    -   A z(t)   +   f(z) 

whlfo —$■ 0   aa. t —^+00, provided that 

(2) llf(z)  ll/ llzll ->   0 

If all characterlatlc roota lie Inalde tbft y^^ SiJSSlft« 

Qverr aolutlon of (1) ^or which ||z(0^||    la aufflclently small 

ISO 
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v- 

approaches zero aa t —> oo, provided that (a) holda. 

Similarly, we have, Bellman, [I]: 

Theorem k.   If all aolutlona of 

(5) y(t+i) - Ay(t), 

A a conatant matrix, are bounded, then all aolutlona of 

(M 2(t+1)    -   A z(t) + f(z,t) 

■^ 

are bounded, provided that 

(5) (a)    l|f(z,t)||/l|z||    i   g(t),     II  z ||  £   c,  , 

ÜO 

(b) %   g(t)dt       <    00   , 

(c) ||z(0)||   la aufflclentlT amall. 

For a further dlacuaalon of xun-llnear difference equations, 

containing resulta corresponding to theorem 8 of Chapter 2, we refer 

to Ta U,  [IS]. 

7-   A aymptotlc Behavior of Solutions. 

Since all the class leal orthogonal polynomials, e.g. 

Legendre, Laguerre, Hermlte, Jacob!, satisfy recurrence relations 

of the type 

(1) Pn   +   a^a, x)   P^    +   a2(n,x)   P, n-2 0, 

I f 

the Inportanpe of an investigation of the limit 

1B1 
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n-i      n n 

(2) lira _Pn__ 

^^ pn-i 

by means of the theory of difference equatlonatto the theory of the 

convergence of the orthogonal series 

>       la readily seen. 
i 

This Investigation was begun by Polncare, [ii], and continued 

by Perron, [H]. Independently of Perron, Pord, [•»], using methods of 

Dlnl, [3], began the study of the more general question of the 

asymptotic behavior of solutions of difference equations of the form 
?•* 

I 

\ (»») z(t+i)   -    (A + B(t)) z(t), 

i 
where A Is a constant matrix, and    ||B(t)|| —^   o as t —^- oo  . 

We shall begin by presenting Polncare's original result. 

I Theorem U.   Consider the difference equation 

n-1 
(5) u(n+t)    +      JT        ajjCt)   u(t+k)   -   0, 

k«0 

where 

11m 

n-i 
(6) (a)   ti^ V^-   "   «he' 

(b)   the equation   r      + J      ai,r^   -    0 has 

all Its roots real and distinct. 

Then the limit 

(7) llm u(t-t-n 
t-* oo       u(t)        "   rl     ' 

1» 
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exists and   r.    Is a root of the equation of   6(b). 

There are generalizations of this result due to Perron. 

For these results, and references, we refer to Norlund,  [^]. 

If Instead of a result such as (7), we wish a result of the 

form 

(8) u(t)     «-       r^ 

It Is necessary to know something of the order of magnitude of 

a^ - a^tt) as t—} oo . The following result Is due to Pord, (5]: 

Theorem 5. Consider the difference equation pf (5)» where 

(9) (a)    la^ - ak(t)|   £   ♦ (t) ,   as.   t->oo, 

(b)        JL   ♦(t) <   oo   , 
■i      . t 

| n Si1 k i   . (c)   the roots of   r" +     21    a(,r   - 0, real or 
I      • . ~     . k-o    * 

I complex. are distinct. 

If all the roots have the same modulus. 

j (io) u(t)   -     2L  cr*   +   Ir.l*  e(t), 
i 

where      c (t) —■} o   fia. * —> oo. 

This result may be extended to obtain a result corresponding 

to Theorem 31 of Chapter I. 

The second order equation 

•-my 
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(11) u(x+2)    +   a0(x)u(x+i)    +   a1(x)u{x)   -    0 

was considered In detail by Ford,   [5], where other references are 

given.    As application. Ford shows that various asymptotic formulas 

for the Legendre polynomials may be derived. 

8. Magnitude of Solutions of Non-Linear Difference Equations. 

Results analogous to those obtained for differential 

equations have been obtained by Lancaster,  [7], and   Shah  [is]. 

9. Difference Equations with Arbitrary Real Spans. 

The difference equation 

(1) 21    ag(t)    u(t+dj      »      0 "a* '     '      a 
3=- 

where the d   are real but not commensurable Is much more difficult. 

Generalizations of Polncare's and Perron's results to this case have 

» been given by Bochner,  [a], and Martin,  [%]. 
,, The study of equation (1) requires much more complicated 

mathematical apparatus than the case treated previously.    The limiting 

case of (1), namely, differential-difference equations of the type 

n     n-1 

(2) ^(t+än'     +      ^    £ a^t)   ^luU+dj)   -    o 
dt j.i    i-o   1J        dt 

has been studied by Hllb, [fc], where further references are given. 

The non-linear equations corresponding to (1) and (2) have 

been studied by Bellman. 
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pertaining to one or the other property.  The restriction to real differential equations 
has materially limited the scope of the results concerning asymptotic behavior. 
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