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Introduction

The class of differential equations of the form

dx
(1) 'dt_i - fi(x.l,xa, sse g xnlt), 1 s 16 n,

oy ***s Xp and t are real variables has played a pro-

minent part in the mathematical investigation of the physical world,

where Xy X

and the present emphasis on non-linear processes inditates strongly
that its role will not diminish in the future.

Combined with the intrinsic methematical interest of
systems of differential equations 1s the vast range of practical
applications in such diverse fields as aerodynamics, astrophysics,
snd electronics. This combination has resulted in an enormous
mass of sclentific papers, written by specialists in thelr respective
journals. Much of this 1s relatively inaccessible, and for that
reason unknown even to experts in the same field, as the great
amount of duplication of results shows.

Consequently, it was felt that it would be_ useful to
mathematliclians and natural sclentists alike to have the known
results on the behavior of solutions of (1) as t —=)> +00 collected
and correlated. It is hoped that such a survey will stimulate
research on outstanding problems, and prevent duplication of what

is already known.
In order to maske the results of the survey as widely

available as possible, no previous knowledge of differential

equations has been assumed. Further, all nomenclature and notation

is defined st time of use. '
As central themes, three principal properties of solutions

8-7723
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were selected, boundedness, stabllity, and asymptotic behavior.
Alt;hough the first two properties are qualitative, and the third
quantitative, all three are closely interconnected, and 1t 1is

not easy to separate results Into categecries pertaining to one or

the other property.
The restriction to real differential equctions hes material-

1y limited the scope of the results concerning asymptotic behavior.
However, to have included the complex plane would have meant doubling
the size of the survey and introducing many additional complicated
concepts and methods.

Nor is there anything on differentlial-difference equations,
infinite systems of differential equations, product integration,
linear and non-linear Sturm-Liouville theory, and, more generally,
the behavior of solutions as a function of a parameter, iteration,
exlstence and uniqueness theory, topological methods, and many
other fundamental parts of the theory of differential equations.
However, 1in slight compgnsation, difference equations have been
considered, (Chapter IV). |

These topics have not been included either because of
th§ exlstence of comprehensive texts treating the subject in
question, as, for example, 1s the case for linear Sturm-Liouville
theory, or topological methods, or because the subject would require

a separate survey for an adequate coverage.

It 13 a pleasure to acknowledge the helpful criticism of
Professor J.P. laSalle of the University of Notre Dame and of
Professor 8. lefschetz of Princeton University who read parts of

. 8-7723:
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the text in manuseript, and to thank Mr. Newton Hawley for an
excellent job of proof-reading. However, the responsibility for

such errors, omissions, etc. as remsin is solely that of the

author.

Richard Bellman
Princeton University
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CHAPTER I

Boundedness, Stability, and Asymptotic Behavior
of Solutions of Systems of Linear Differential Equations

§1. Introduction
In this chapter, we shall study the behavior as

t —+00 of solutions of systems of linear differential equatlons

of the form

jol

aij(t)zj’ 15 '=: 1512 5mele enghlle

o

V4 n
(1) i _ S

J=1

Unless otherwise stated, the dependent varlables z,

will be assumed-to be real functlons of the independent variable

t, which runs through the interval [to, o ]. The coefficients'

aij(t) will also be taken to be real functicns of t, absolutely

integrable over any finite interval.

The treatment of systems of the form (1) 1s materially
8implified by the use of vector-matrix notations. Iet 2z be an
n-dimensional column vector with the components Zyy Zpseees 2
and A(t) the n x n, K matrix (aij(t)), i,j=1,2,...,n). Then (1)

can be written in the concise form
(2) & . Az,

The magnitude of the vector will be measured by the norm,

n
(3) Hzll = 2 lz.0.

4
. 8-7723



Similarly, the norm for a matrix 1is
n
(s) HAll - lay s(t)].
1,% U
1

It is readily verified that these norms satisfy the

usual rules, namely,

(5) (a) {lz]ll =0, 1f and only if z = 0, the mll-vector;
(d) Iyl L 1yl + Tlzll;
(¢) llczl| = lc| |iz]]l, for any real constant c;
(@) |IA+BIL < T1Al] + 113]1;
(e) 1laBII < IIAll 1B, [lAzl] L TIAFD Jiz]].

The asymbol |A| will be used to represent the deter-
mipant la“(t)l, aagocia'ted with the matrix A. A will be said
to be singular or non-singular, accordingly as |A] = 0 or
IAl 4 0. If A 1es non-singular, A~' exists.

In what follows, our attention will be focussed mainly
upon systems, since any n-th order iinear differential equation can
be transformed into annxn systeni. Thus, 1if

n-1
(6) g%é-tpl(t)g-tn—_‘{l‘r +pn(t)u-o,

one may introduce new variables

(7) u=u,

g%'“e

dgn-
at t - Up:

8-7723
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Tr.on the problem of solving (6) is equivalent to the

problem of 3olving the system
du
(8) =i
t =Y

du
-—g- u

t

3

du
n-1 -
dt Y

du

3. - - -
dt Ppty Pp-qUp =+« "PyYp-

Three related properties of the solutions of (2) will
be considered in thils chapter: boundedness, stabllity and

agymptotic behavior. We begin by making these terms precise.
Definition: A_solution of (2), 2z, will be said to be bounded

if |lz]] 1s bounded as t —) +m.

The definition of stablility 1s more difficult, and

necessarily so. Stabllity is associated with variation, and

before a solutlion can be judged stable, a knowledge of what factors

have changed is required.
Considering an equation of the type given in (2), it 1is
gseen that the solution 1s changed 1f the initial condition, the

value of 2z at t = 0, 1s altered, or if the matrix A(t) 1is

altered.
It 1s reasonable to suppose that in many instances the

solution of the original equation and the solution of the altered

8-7723
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or perturbed system, w;l.ll differ very slightly in properties if
the changes in the initial conditions and A(t) are "small enough.®
Naturally, this last expreasion must be defined carefully. For the
present we use it in an intuitive sense.

In addition to altering A, the form of (2) may be varied.

In place of the linear system (2), the more general system
(9) £ - A(t)z + £(2,1),

where f(z,t) 1s a non-linear vector function of 2z, may be
considered.

In this case, it 18' relevant to ask whether there is any
relation between the behavior of the solutions of (2) and (9). This
is equivalent to examining the validity of using (2) as a first
approximation to (9). This problem will be discussed in Chapter II.

Once we have determined some of the ways in which an
equation can be altered, we turn to the solutior'na and ask what prop-
erties of those solutions are of interest. Clearly, boundedness 1s
one such property; another is the fact that ||z|| —> 0 as
t — +4m. If the solution 1s unbounded, determination of its magni-
tude a8 t —) +e 18 of interest, and we may compare it with

tk at

elementary functions such as » 8 '« Integrability properties

are sometimes of importance. We may wish to know whether

(10) Slizttat, or S l1z11%at,

is convergent.

~7723
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(We shall use the notation

(11) $hizllat ¢ =

to signify the fact that the integral is convergent.)
We are now 1n a position to define a type of stablility of

particular importance in the sequel.

Definition: _The solutions 2z of

(12) %%-f(z,t)

are sald to be stable with regard to a property P under a variation
V of the form of the equation which converts (12) into

(15) gv%v_g S(W:t);.

if every solution w of (13) also has this property P.

In the applications, where only one property is of impor-
tance, and only one type of variation is applied, it is convenient
to say merely "the solutions are stable.”™ Actually, we do this in
Chapter II. However, it must be pointed out that "stable” and
"stability" are sadly abused and overworked words, varying greatly
from context to context. Perhaps the statement that describes the

situation best is that there is no stabllity to the definition of

the word stabillity.
We shall mean, as often done 1n analysis, by

(14%) £(t)~ g(t),

read f(t) 1s asymptotic to g(t), that

B-772s.
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If f and g are vectors, (14) means that (15) holds

for each of the corresponding components.
Subsequently, this definition will be broadened.
We may now define the third of the three properties to

be investigated.
Definition: By asymptotic behavior of z as t —)>»~, we mean
the behavior of z or ||z|]] as t — +e 8s_compared to ele-
mentary functions such as t]‘,:eat.

Thus, for example, we shall investigate conditions under
which

(16) z ~ o8%¢,

where ¢ 18 a constant vector.

If (16) 1s not true, a weaker condition

(17) . 111; lQg—%-l-z—l--l--a, or log llz]]l~ at,
=) +%oo

may still hold.
We shall first discuss with the simplest type of equation

(2), the case where A 1is.a constant matrix. Once these results
have been obtained, we shall possess a unit with which to judge

solutions of (2) for which A 1s not constant.

9 8-7723
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§2. Linear Differential Equations with Constant Matrix

In this section, some results concerning the equation
(1 ) g% = Ay,

where A 13 constant, will be collected for future reference. For

a complete discussion, we refer the reader to lefschetz's monograph,

[(19]. We shall present here a rapid survey of the theory of (1).

Iet us endeavor to obtain a solution of the form

y=- e“c, where ¢ 18 a constant vector. The following linear

homogeneous set of equatlons for the components is obtained:

(2) Ac = Ac.

The well-known necessary and sufficlent condition that ¢
be a non-trivial vector (not equal to the null-vector) satisfying

(2) ylelds the determinantal relation

(3) |]A - AIl = o.

This equation 1s called the characteristic equation of the matrix A,

and the n roots of (3) are called the characteristic roots. A root

2 of (3) determines a solution c('A)ﬁ"t of (1). If A 1s complex,

to obtain real solutions it 1s necessary to take real and imaginary

parts of c(s\)e”‘.
Since y = c(2 )e"t, the geometric location of the roots

in the complex ™ -plane determines the asymptotic behavior of the

solutions a3 t —)>oe. As a consequence of this remark, in theory

at lesst, the problem of the asymptotic behavior of solutions of (1)

10 8-7723
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{
| is completely answered by the rlassical reduction theory of

matrices. In practice, howevar, when the order of the matrix 1is

large and when parameters appear in A, the problem is of great

difficulty. Although there are several usable criteris for deter-
mining the geometrical location of the roots of (3), Routh, Hurwitz,

o etc., the numerical labor involved 1s still great.
let C be & constant matrix, and make the change of

»

/ ,
PSS /2

variable y = Cw 1in (1). The following equation 1s obtained for w:

¥
k|
] o .-
£
| “? It is known from metrix theory that, if the characteristic
*"é roots of A are 7«1 , C can be chosen so that
P L, 0
o (5) C'AC = o
; }J 0 . L
o where

4 7\k o 0 oo

1 . " (6) Ik - . 1 ‘

¥ and several I, may contain the same A, . We shall call the L
elementary factors. The elementary factor is said to be simple if
H - (X'k)o

1 8-7728.
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From (5) it 1s easy to prove that the solutions of (&)
have the following form, if lk is a characteristic root for which

I.k 13 an m Xm, matrix,

’1 Q 0
(7) \ °
TP Cgt) L M T omo | A
. 1
.-'l
"
imk-1il
0
0

This 1s the general form. It 13 easy to see that in parti-
cular cases, if the elementary factors are simple, even 1if 'hk 1s a
multiple root, the powers of t will not occur.

(If ‘Ak is complex, we take real and lmaginary parts of

the solutions.)
Since the solutions of (1) are linear combinations of the

solutions (4), we may state:
Theorem 1. The necessary and sufficleunt condition' that every non-

trivial solution of (1) —> 0 as t —) +00 is that the chafacteriétic

roots of A have negative real parts. The necessary and sufficient
condition that a1l solutions of (1) are bounded as t —) +m» 1s that

the characteristic roots have non-positive resl parts, and that those
with zero real parts are assoclated with simple elementary factors.
If k, k { n, of the characteristic roots have positive real parts,

-there i3 a k-dimensional linear manifold of solutions for which

lyll —> +0 as t—) +o0. 8-7723
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§3. ar Differentia uations with Periodic t

The basis for most results concerning periodic systems is

the following representation theorem:

\ﬂ% 2. Bvery solution of

(1) \ %%-A(t)z,

A{t) periodic with perio has the form
(2) z = P(t)y,

(3) (a) P(t) 1is periodic with period T and non-sigggi;'r*‘; .
(v) vy 1s s solution of an equation dy/dt = By, where
B is a constant matrix.
For the proof, consult Lefschetz [20].

The characteristic roots of B are called the characteristic
expopents of A(t). The following result follows immediately:

Theorem 3. The necessary and sufficient condition that all solutions
of (1) be bounded is that all solutions of dy/dt = By be bounded.

The determination of the characteristic exponents is a
problem of great difficulty, and seems to be essentially of a trans-
cendental, 1.e., non-algebraic, nature. There are some simple criteria
in the case of second-order linear differential equations, which we

shall present in Chapter III, but otherwise very little is known.

13 B-7723
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$4. Linear Different w! Equations with Almost-periodic Matrix

Periodic aystems are a cmall sub-class of a much more

general class of almoat-veriodic systems.

13 sald to be almost-perlodic if

Definition: The matrix A(t)

all its elements are uniformly converrent tr ronometric serles of

the form
oo} iAkt
>, -
(1 aij(t)s =1 Cs -o{t { 0, 7‘1( real.

An almost periodic vector 1is defined analogsously. Here we con-

sider the full infinite t-interval -oo { t ( @.
If the Ak are all integral multiples of & common number

d, A(t) 1s actually periodic. let us exclude this case when we

speak of an almost-periodic matrix. The theory of almost-periodic

systems suffers from a lack of a representation theorem correspond-

: ing to Theorem 2. It 1s stated in Cameron, {7], that no such

representation theorem can exist in general.
For a very interesting paper which may admit of extension,

we refer the readef to Shtokal>. [38].

§5. Some General Theorems concerning Systems

In the succeeding sectlons we shall treat solutions of

equations of the type

(1) dz = A(t)z +w,
dt

where we suppose the behavior of the solution of
B-7723
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(2) a’é = A(t)y

known. To link the behavior of the solutions of (1) and (2),
we shall use Volterra-type integral equations, and express the

solutions of (1) as solutions of a certain integral equation in-

volving solutions of (2).
We shall consistently use the following notations. We

denote by Y the matrix solution of

(3) % = A(t)Y, Y(0) =1I, the identity matrix.
For any solution 2z of (1), y will denote the solution of (2)
with the same initial value, z(0) = y(0).

Then

lemms 1. 2 is given by

t
(%) zZ =y + S Y(t',)?l-1(t1 Jw(t, )dt, .
(o)
If A(t) is & constant matrix, Y(t)Y™'(t,) = Y(t-t,), and

(4) becomes
t

(5) z=y+§ ¥(t-t,m(t,)at,.
(s}

If w(t) = w(z,t), a function of z and t,z satisfies the

Vglterr‘a-tme integral equation
t

(6) . z=y+{ YO (6, Mz, )at,
o

8-7723
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These formlas may be verified by direct subkstlitution.
After the differential equation hes been converted into

an intscral equation, the follcwing resvlt 1s often very helpful:

lemma 2. If u,v 20, and c¢ is a pogitive constant, and

t
(5) uge+ § vt e,
0
then St v(t'.1 )dt‘,1
0

(6) u { ce

This lemms seems to have been used first by Gromwall,
(15], and subsequently by Bellman, [1], [2], [3], Caligo, (6],
Guilano, [16]), and Weyl, [u43].

Part I - Theorems on Stabllity

§6. Equations of the Form dz/dt = (A(t) + B(t))z.

In this section, we begin the discussion of the behavior

of solutions of equatlions of the type

(1) g% = (A(t) + B(t))z,

where the properties of the solutions of

2 3 '
(2) T = Alt)y ,

are assumed known. The magnitude of HB(t)d may be estimited in

various ways. For example, we may require one of the following

16 ' 8-77123
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(3) (=) IB(tW — 0 as t—+m,
®

() SuBit)y ot ¢ o,

oo
(¢) SlB(t)I 2ot (o.
We w.1ll consider variovs cuses of equetions, corresponding,
to choosin: A a constaent ntrix. ¢ perlodic matrix, and so on.
We will identify eech ccse in the headin; by the title "right-hand
side of the form...", where it is understood we mean the right-hend

vice of equation (1).

§7. Rirht-hend S8ide of the Form (A + B(t))z, A Constant.

let ve consider first the case where A(t) = A, a constant
metrix. The following important theorem is due to_HL'l{uwara, [171,
for the case of systems, and to Spath, [39], for the case of n-th

order linesar differential equat'ons.

Theorem 4. All solutions of

(+) 92 . (a4 B(t))2
cre boundec, provided thet the followingy conditions hold

(5) (&) A is constant,
(b) g_ll_s_q_l_utiom; of dy/dt = Ay are bounded.
(¢) §D Bl at ( .
Prcofs of this theorem have also been given by Bellman,
[3), Cesari, [9]), Caligo, [6], Levinson, [2k], and Weyl, [43]. A
related, weaker theorem was given by Dini, [1k4].
We give the proof since it 1s very brief, and illustrates
& method which can be used in many problems of this type.

17 3-7723
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Uslng, Lemms 1 any solvtlon of (4) satisfies an .nte ral

equation of the form

t
(o) zZ =Yy 4+ -S Y(t - t1)B(t1)z(t1)dt1.
0
According to the hypctheais, Wyl und JY{ are bounded.
Hence
t
(7) nzl € ey vy § UBEDN  Mz(e)N at,.
0
Applying Lemma 2. thls ylelds -
t
op { UBCEN at, c, go WB(t, )l at,

(8) hzk  c,e 0 §c1e

and so by (5c), Hzg is bounded.

§8.. Right-hand Side of the Form (A(t)+B(t))z, where A(t) 1ls

Periodic.

We may state the following intuitive "principle” which
will be illistrated by many of the subsequent theorems: ™Whatever
boundedness and stability results are valild for a constant matrix A,
are valld also for s perlodic matrix A",

This 1s a consequence of the representetion of solutions

of equations of the form

(1) é—i% = A(t)y,

A(t) periodic, given above §3, Theorem 2. Using thls representatlon,
we shall prove the following

18 B-7723
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Theorcam 5. All solutions of,

(

N

) 42w (A(t) + B(t))z

ere bounded, proviced thut the followln: concitions hold:

(3) («) A(t) is _per.odic
(b) sll solutions of dy/dt = A(t)y sare bounded
(c) fo IBY dt { .

The method of proof illustrates & general methnd of

treating equations with periodic matrix.

Let Y be the matrix solution of

N
(s) aﬂt - A(t)Y, Y(0) = I,

and y the solution of
(5) & . Aty
with the same initial value as z. Then z satisfies the integral

equation

(6) e o=y oo § T, B0 et
0

As 8 consequence of Theorem 2, the representation theorem,

y=P(t)w, Y(t)=P(t)W(t), where

8-7723
19
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(7) dw _ aw
at = B &t BN

periodic and non-singular. Thus f#ws , AW}
Furthermore

B constant, and P(t)
are bounded, as a consequence of the hypothesls.

(8)  Y(£)Y '(t,) = P(EIW(EW ()P (£,) = P(EW(t - &P (t,).

Hence
t

(9)  wzn € wyue O WRCEIW W We - g0 WET(E))
0

iB(t,) N Nz(e )W at,

-t
{c1+c2§ WB(t, )M Wz(t, )l dt,.
0

The proof is concluded upon applying lemma 2.
Once it 1s known that W z|ll 1is bounded, one may be

interested in 1lim 2z, 1f 1t exists, or in the oscillatory behavior

t=—>00
of z as t—> w, if the limit does not exist.

Theorem 6. Every solution 9..f

(10) g—g = (A(t) + B(t))z

approaches an almost-periodic vector, which may be the zero vector,

as t~—>+0 , provided that the following conditions hold:

8-7723
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(11) (&) A(t) is either constunt or periodic,
(b) all solvtions of dy/dt = A(t)y are bounded,
o0

(¢) S MBuet ¢ o.

The resault follows read:rly from the integral equation
(6). The case where A(t) 1s constant has been trected by levinson,
(28], .

Whether the sbove theorems remain true, or nct, if we
lighten the condition vpon A(t), and assume it only tc be almost-
periodic, is not known, and seems to present a difficult problem.

If more stringent conditions are imposed upon A(T:), the

.restriction vpon B(t) can be lightened. Thus

Theorem 7. Every solution of

(12) g_g = (A(t) + B(t))z

approaches ze1c as t—)woo, provided that the followins condition:
hold:

(13) (&) A(t) 13 either constent or period::
(b) all solutions of dy/dt = A(t)y —> 0 as t —ew,
(c) 1Bl —> o'as t—D+aw, or, more generwl1ly, ||Bl] is
sufficiently smell tor t 2 t..
§9. irght-hand Side the Form (A+B(t))z with B(t) of Bounded
Veriotion in (t ,o).

As will be shown by an example in Chapter III, the condi-

8-772
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tion WB(t)YW —> 0 1is not sufficient to insure tnat the solution
of

(o)

(1)

§ - (A + B(t))z

o

are bounded 1if the solutions of

d
(2) a%_w

@
are bounded. We have zgen above that S WB(t)A dt ¢ o is

sufficlent for this to be true. However, the integrabllity condi-

tion 1s not necessary, and sometimes too restrictive a conditiori.

?j The following result, due to Cesarl, (9], 1s a generalization of
®
;’; Theorem k.
2
9 gorem 8, All solutions of
! (3) f}% = (A +B(t) + C(t))z
4
are bounded, provided that.the following conditions hold:
|
(4) (a) A(t) 1s constant
> (b) all solutions of dy/dt = Ay are bounded as t —)+ @
®
U (¢) S wdB(t)¥ < o
r "; m
. (4) S neeiat | { o
(e) the characteristic roots of |A + B(t) -NIl=0, as
functions of t, have non-positive real parts for t 2 toe
Condition 4(c) is to be Iinterpreted to mean that every
element of B(t) 1s of bounded variation in an interval [t:o,oo].
22 8-7723
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;16 Right -hand S8ide of the Form (A(t) + B(t))z, The General Case.

Let us now c.:onsider the general case where A(t) is
neither constant nor periodic. This situation is decldedly more
difficult to handle, due to the fact that the kernel Y(t)Y-1(t,)
will not, in the general case, have any particular simple form, as
1t does when A(t) 1is constant or periodic. As seen from the

proofs of Theorems 4 and 5, given the boundedness of solutions of

(1) g% = A(t)y,
and
@
(2) S ¥BeN et ¢ o,

the boundedness of the solution of

(5) - (A(t) + B(t))z)

[+}4
dat
is a consequence of the boundedness of |\Y(t’.)Y-1(t:1 W, for
t:tq 2 t'o'f .

7his 1s to be expected owing to the following result:

Theorenm 9. The necessary and sufficient condition that all solutions
of ' -

(%) | g-%- = A(i)z + £(t)
be bounded for every vector f(t) satisfying the condition
a
(5) S he(e)l at { oo,
23
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is that

(6) Y el eyt Kt

where c, 1s_independent of t and t,.

If the solutions are to be bounded for every vector
satisfying the condition

(1) heee)h € e, € @, t2tg,

hen the necessary and sufficient condition is that
t

(8) Sc.llY(t)Y'1(t1)ll dt,  ¢; < @, t2t,
o

where c, 1s independent of ¢t.

In its original form, the result is due to Perron, [33],
cf. also Caligo, [61. For the proof we refer to Bellman, [45].
We shali refer to this theorem when discussing non-linear systems

in Chapter 1I. -

To obtain boundedness theorems in the gensral case, it
1s necessary to know some simple conditions satisfied by A(t)
which will insure that lY(t:)Y"'(t:1 " < ¢,. In the previous caseu,
because of the functional equation Y(t)¥ '(t,) = Y(t - t,), valid
when A 18 constant, boundedness of Y was sufficient. Since
W y(e)y™"(e,)n L U¥(e)d HY ' (¢, , and by hypothesis, NYU 1is
bounded, it 1s sufficlient to obtain conditions which will imply that

24 Therenk



e

/R

-

. e
ST 2

P

o

RO P T

s

I-22

Ky '(t)ll 1is bounded. The elements of Y,"(t) are cofactors of
elements of Y(t) divided by {Y|. Hence, it 1s enough to have lYl'1

bounded as t —)+m . Now t
{  (trace A) at,

(9) Y] =e

(see lefschetz, [21])). Hence we require
t

(10) tl—%oo go trace A dt > -o.

This oondition is certainly satisfied if trace A = Q.
This 1s perhaps the most important case, and includes the particular

equation

(1) g{% + a(t)hu = 0,

which we consider again in Chapter III.

Thus we have the following result:

Theorem 10'. All solutions of

(12) % = (A(t) + B(t))z

are bounded, provided that the followlng conditions hold:

28 8728
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(13) (a) all solutions of dy/dt = A(t)y are bounded,
t

b 1 (trace A) dt -
(b) t_%nm g ra > o
a

(¢) S tiBnat ¢ o.

For proofs, see Bellman, (3], Caligo, [6], Wintner, [44].

§11. Right-hand Side of the Form A(t) = A + AB(t), A _Constant,

B(t) Periodic

Consider the equation

(M

=i

= (A + AB(t))z

where A 15 a constant matrix, and B(t) 1s periodic with period
T. If all the solutions of dy/dt = Ay are bounded as t —+ m,
all the solutions of (1) need not be bounded, even if A s
arbitrarily small, for, if the period of a solution of dy/dt = Ay
coincides with T, we may have a "resonance® effect. However, it
might be suspected that, 1f no "resonance® effect occurs, then all
solutions of (1) will be bounded for IAl sufficilently small. This

i1s actually so, and we have the following results due to Cesari,

[11].
Theorem il. Consider the equation

= Az + AB(t)z

P
n
~
als

where A 13 g diagonal matrix

B-772%
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’ ‘1*‘ ’ ‘i >0r

B(t) is a symmetric matrix which is periodic, of period T, and

even, B(t) = B(-t), subject to the condition that
T
W @ § B = o
0
(b) Every element of B has an absolutely convergent
Fourier series, and 92 is 8 real parameter.

let w=2%/T, If

Gi ?+6j

(5) mw e , 1,j=1,2,..., m=1,2,...,
¢, -‘J

then there exists a pumber 7\°> o such that for A {A,, the

golutions of (2) are bounded.

For the case of 2nd-order systems, the result can be

generalized.

eorem 12. Consider the 2nd-order system

(6) £ o (A aBt))z
where

8-7723
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(7Y (a) B(t) 1s periodic of period T,
T
() § B(t)at = o

0o
(c) every element of B(t) has an absolutely convergent

Fourier series

(d) the characteristic roots of A are complex c-:-on ugate

Rt 1¢ with real part non-positive.

Then if

(8) mw ¥ 2¢, m=1,2....

there exists a number A,> O, such that for |Al £ A, the
golutions of (6) are_bounded.

Cesari, [11]), showed by an example that the result does not hold in

general for systems of order greater than two.

Part X - Theorems on Boundedness

$§12. Idmits of Solutions of ILinear Differential Equa:ions

In this section, we discuss some results due to Spath,

{39], and, in thelir original form, to Perron, {29], (30]. Consider

the differential equations,

at"”
: 'd% dn-1u
(1) ;ﬁ + ag (-it,_n:T + .0+ AU = 6(t),
Hirs - 8-1729



e A bl A

C sy 'Sal® S

i olatie Lo

BT

I-26

(2) lim ak(t) - &, 1im #(t) = b.

t—>oo t—o
The question arises as to whether

K
(3) 1im u, 1m LU

t—>oo t—>o atk

exist.

This question is answered by the following two propositions:

eorem 13. Consider equation (1) where the ak(t) are constant
and

L4 lim t) = Db
(4) e

en for a solution u which approaches a limit as
t —+m , we have

(5) Hm M oo o1ip %y = ... = 1m % = O
t—oo dt t—om at? t—>m at?

olutions of this t exist if for eve ure imaging

—

root, r= 1w , of the characteristic equation

(6) Paia e sa = 0

of multiplicity & , the integrals

29 0-7723




[ P

&

1

—

SO PP T

B S e e

T

=

T T, T

| bt g i

I-27

@ @ @ ] 00
) 9 e-i'“t\ﬂ(t)dt,g dt,S o v ™% y(tiat, ... go

.
Y 1 ¥-1 1

et by (t)at,
exiat, where

(8) y(t) = @(t) - b,
If 8, % ¢, gall such solutions approach the same 1imit

1im = Db .
(9) t—>00 = /8,

If there are no pure imaginary roots, there is always one

solution which has a finite 1imit. If all the roots have negative

real parts, all solutions have this property. If all the roots have
positive real parts, there 1s only one such solution.

If g 1s the number of roots with negative real parts,
then u(0), u'(o), ... u(g-1 )(O) may be arbitrarlily prescribed and
& golution with finite 1imit having these initial values will exist.

In the case of variable coefflcients, we obtain the

following result, also due to Spath, [39]:

orem 14, Consider the equation

(10) du o+ .an_1(t) a¥ly . + ao(t)u = B(t)
dat? at™!
where
(1) lim a,(t) =a,, 1lim (t) = b.
t—> & x t—>oo £
30 s=r7¥)
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‘ If some of the roots of the characteristic equation are
pure imaginary, let the greatest multiplicity be £ and assume that

@®

(12) x t*'atyat ¢ o,
0

£

PR S A

/

where

n

a(t) = - - bl
(13) (t) k% la, - & (t)] +|@(t) - b

Then equations (10) and (1) have simultaneously solutions

which together with their first (n-1.) derivatives ere bounded.
To every bounded solution u of (1), there exists exactly

opne solution of (10), u, with the property that

s
= mﬁ;i‘_‘-.ﬂm-;:-ﬁjﬂ; ISP

: ¥
i 1, . (1%) ﬁ & ﬁ + 0(') a8 t > o, k=1,2,...,g,
‘ ; at¥  atk

k k
dt dt
t=t A t=t 6

b dy| . &3

i ‘ where g 1is the number of roots of (5) mith negative real parts.

§13. Qensralized Hooke's law
! - . Extending the result that the solutions of

PR

' 2
(1) - g—g-o.aeu-o

b gt e

ARIF

are bounded, we can establish the following theorem:

Y
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eorem 15. All solutions of

2
(2) 42 . (A +B(t) +C(t))z

at?

are bounded, provided that

(3) (a) A 1s a constant, symmetric, negative definite matrix,

(b) B 1is symmetric,

s

n n
(c)  (14cy) ‘5_1. bij(t)xixj. 4 \§=1 8y 3% X5

tZto: c, > 0,

(00]

(@ §  UBvt)l dt ( oo
0
(o8]

(e) S Hoe) dt ¢ .

For the proof we refer to Bellman, [3].

§14. Some General Results on Boundedness.

Iet us examine the'connection between [yl and HNA) as

t —> o. If A 1s a constant matrix, it is known, cf. Lefschetz,

[22]), that the solution of
1
() QI = Ay, y(O) == yo,

may be written
8-7729
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where eM represents the matrix given by the infinite series
(3) 1 okt + A% 4 el 0 ARE W ..
2! " n!
Thus, from (2)
(%) kyv < heht y byl < e il 8 AR

If A 1is a varisble matrix, (2) is no longer valid, but
(4) is. Thus

Theorem 16. The solution of (1) sat%sgigs the inequality
£ naw at,
(5) hyr £ uype

Proof: Converting (1) into the integral equation

&
(6) I = 3,4 S Aydt,
0
we have
t
(7) byl < Ay ¢ é NAY Byp at,

and (5) follows upon applying _emma 2.

53 ) . 8-T123
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An analozous result is due to Kitamura, [18}. Definse,

for the moment only, the norms as

S
(8) Iyl -(kz kalp) » P21,

lAll = max NA(e)xl .

xiy > O Hxy
Then
Theorem 17. t 5
-§ nan et § nan e
0 0
(9) I y(ON e < ye < Ny(oll e

Kitamira ootains a similar, more complicated result for

the equation

(10) %TI - Ay+w.

Related results are due to Toyama, [42].

A consequence of Theorem 16 is the following result of

Trjitzinsky, (41]:

Theorem 18. If

1 d

(1) a% = Ay,

and
®

(12) § nall &t ¢ oo,
0

8-7
34 723
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then
J 1im
(13) g-Sones y
exists.
Cf. also Bellman, (3], Wintner, [ub].
Prjitzinsky, [41], also proved
Theorem 19. If A(t) = (aij(t)) and
(14) lagy(0)] < alt),
then if Y(t) = (yij(t)) is_the solution of
(13) oAy,  Y)=1,
we have t
ntg a(t,)at,
16)  |yyye) - Syl < & (e ° -1), t 2t
if
00
(17) g a(t)at ¢ o,
t
o
there 18 uti
35 '9-7723
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& .
(18) RN
| with the property that Y(+c0) = I.
| The following device 1s often useful. Write
d
.\.{ (19) & = Ay
2] \
-‘H in the explicit form
M n
Y dy
: (20) F o= 2 ety 1w 0 8ty s
‘ g
&
¥
4 Then multiply the i-th equation by y, and sum. This ylelds
{
-
jl g n n
1 2
. (21) 2 dt E g = Z (Bij(t) + aji(t))yiyj'
4 1= 1,J=1
| Integrating between 0 and t, there results
f‘
» n n t =
b
¥4 (22) 3 3% = 3 y,°(0)+2 S i 2 lagy(t)) + ag(t,)) yiyj} dt
; 1= i=1 [] ZL,J-]

i

TR K
8-7723:
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n

n t n
(23) § yia 4 E y12(0)+ go( 1§-‘ , aij(t1) +
n
‘31("1)')( E “712) dt,.

Applying Lemm 2, we have the following result due to
Butlewski, [5], cf. Rosenblatt, [37]), for an espplication:

Theorem 20. If

g Soo'. +a Idt‘<oo
(24) 15 §=1 o 1) i =2
all solutions of (20) are bounded.

~

$15. mmm_m_mﬂmm

It 1s sometimes of theoretical importance to know that

an equation of the form

(1) g‘tl = A(t)y, A(t) ,continuous

can be transformed, by means of a substitution,

(2) ¥y = B(t)z,

into an equatior{ of the form

37 8-7723
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(3) - A.(t)z,

gl

where A#(t) 1s diagonal or semi-dlagonal. A matrix A 1s senm'-

diagonal if a,, =0 for 1> J or 1 j.
1]

The following results, due to Dillberto, (13], are refine-

ments of results due to Perron, (31].

Theorem 21. (Consider the equation (1). There exists an orthogonal
matrix B(t), such that, if 2z 13 given by (2), then A*(t) in (3)
1s semi-diagonal.

Naturally, the construction of the matrix B depends
upon the knowledge of the solutions of (1).

Theorem 22. (Consider the equation (1). There exists a bounded non-
singular matrix B(t), guch that, 1f 2z 1s given by (2), then A#(t)
in (3) is diagonal.

§16. Qeneralized Characteristic Roots

Consider the equation

(1) g% = A(t)y.
If A(t) 1s constant, the characteristic roots determine

the magnitude of HNyN . If A(t) 1s periodic, the magnitude is
determined by the characteristic exponents. If A(t) 1s a general
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matrix, we reverse this process and determine numbers, which we call

characteristic numbers, in terms of the magnitude of HAyW .

Definition: ¢ 4s e characteristic pumber if

(2) ¢c = Iim Jogilyll .
' t—>oo t

This concept was introduced by Liapounoff, [25i, and
‘ developed by. Cotton, (12) and Perron, [32). Diliberto, [13), used

% ‘
" his results given in the preceeding section to obtain simpler proofs
i of some resuits of Liapounoff and Perron.

b .

;‘ It can be shown that there are only a finite number of

A

qi characteristic numbers. Multiplicity can be defined as follows. Let

H \: . - (3) c1 ( ce("'<cm

{ be the characteristic mumbers. let e, Dbe the number of linearly

independent solutions of (1) with ¢, as characteristic number. Let

i
Lf zl e, +6e, be the number with Cpos and so on. Then e, is the mlti-
B4 . . plicity of Cys» O, that of Cys and 80 on. Furthermore, n = Zpk.
We shall glve two results of Perron, [32].
o Theorem 23.

t .
0-1723
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(1) Z Cy w3 im %— g Re(trace A) dt.:
' k=1 t—> 0

" Theorem 24. If ¢, 2 c, .+.2 C, are the characteristic numbers,

where multiple characteristic numbers are written as many times as

they occur, of

5 d
(5) S = At)y

and d, £ da, ... £ d,, those of the sdjoint eguation -

(6) =" "XA(t),

&

(1) ck+dk20, k=1,2,...,n.

Part 3 - Theorems on Asymptotic Behavior

§17. Asymptotic Series

Let us consider.the behavior of a function f(t), defined

over the positive real axis, as t —) o. Suppose that

(1) 1im f(t) = a,
t—> +mw

8-7723
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If we are interested in the finer details of the behavior
of f(t), we must examine the difference f(t) - a,. Suppose that
this difference tends to zero like 1/t. We then examine

(2) lim  t(f(t) -8,) = 8,
t—+® '

sssuming that this limit exists. Contimuing in this way, we may

form

a
(3) t2(e(t) -8, - _t‘_ )

and investigate its limit as t —> +00.

If f£(t) has the property that constants 88,800,804,
exist having the property that

(4) Um  (£(t) -8,) = O,
t—D+mw
1im tB(2(t) -no-_‘1_ -‘3-1\- a, n=1l,2,..
t—+m e B!

f(t) is said to have an asymptotic expansion, and we write
®

£t~ 2
(5) ()~ &

tn

Although the sequence of functions t © 4s most common,

we might also consider asymptotic developments of the form

Q 81723
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a

(6) £(t) ~ a4 E o ¥ (),

where W’k(t)! 13 an arbitrary sequence of functions which approach

O as t — o, and the g, are defined by

(7) 8, = 1im f(t)
t—>+ n-1
[£(t) -a) + Z & ¥, (t) ]
a, = lim e
bt p ()

It follows from (4) that

N
(8) ey - 2 &) ¢ S,
=0 th tN+'|

for t above a certaln value.

N
From this, it 1s clear that the partial sums 2-.., ant-n
n=0

furnish approximations to f(t) for large values of t. However,
o o)
-n

this does not imply that the infinite series apt
=0

for any finite t, no matter how large, since the a, may increase

converges

very rapldly. For example, it 1s easy to show, by repeated integration
by parts, that for t > O,

+ 2! _ _3! + e
£ t*

®
(9) ot St e ¥ ds N _1_ -1
2

B-1723
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However, the infinite series on the right diverges for all finite ¢t.

To make the most advantageous use of asymptotic series,
it is necessary, since the series usually diverges in practice, to

choose N, the order of the partlial sum, so that the error term

cNHt'(NH) in (8) above is & minimum. Thus N will be a function

of t. Using the exact formula

@ ®
t - 1 1 - -8
(10) e g %‘dﬂ-f T g et u_I)PT!+ (-I)Dh!et S enT ds,
t t t 8
t
and the estimate
fo'e}
(11) ‘n!et S e S ds \ { _n! )
t sn+1 tn+1

it 1s seen that N should be chosen to be [t] or [t]-1 1if t

The first important asymptotic series was that of Stirl.ing
for log "(z). This may be obtained by integrating by parts the
integral in the following formula

(12)  log M(z)=(z -3 1logz-z+L logen

(e ]
e §(—— - -1 £
A 1-e°X x 2 x 2




4

/

e M

/

o

L;_.&;Q'Am-_g.qm‘é I IS

Wi Ty~

I-1

where the rcul part of 2z 1is poglitive,

The leplace transform
o]

(13) F(t) = S f(s)e % ds
0

19 the source of many asymptotic developments obtained by means

cf repeated integration by parts.

let us now discuss the application of asymptotic series
to the differential equations. The first systematic use of asymptotic
serles 1s due to Poincaré, [35], although a specialized theory was
considered independently by Stielt jes, [u40]. Poincare applied his
theory to differential equations, for which it was invented, while
Stielt jes was interested in the moment-problem and continued frac-

tions.

That the application to differential equatlons 1s successful
13 due to the fact that asymptotic serles possess many of the

properties of convergent series. We state these properties as a lemma:

lemma 4., If
Q@ a
(14) £(t) ~ b3 ant'n, g(t) ~ 2 bt 1,
=0 _ 0 B
then
0]
(15) £(t) + g(t)~ 2 (a  +by) ™D,
=0

8-7723
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(16)  f(tle(t) ~ 2. et™®, cp= 2 by
=0 k=0
(o0}
(17) AL £'(t)~ 2 4™,  then d = -(n-1)a,,,
D=2
@
' a t(071)
(18) if a~a, = 0, S f(t)dt ~ n .
t D=2 (n-1)

From these properties, it follows that if £,00,...2(8)
: ' (n),
2

have asymptotic developments, then P(f,f',...,f where P 1is
a polynomial in its variables, also has an asymptotic development,
obtained in the obvious manner. Perhaps the maln problem in the

application of assymptotic series to differential equations is the

following: ®Given an asymptotic series, divergent‘for all finite
t, which formally satisfies the equation P(f,f?,. ..v,f(n)) = 0,
under what conditions is the series an asymptotic expansion of &

solution of this differentigl equation”
Por & discussion of this problem we refer to Borel, (4],

Remoundos, [36].

The general problem of the asymptotlic development of solu-

tions of equations of the form

1
(19) - %% - A(t)y.

p<172y
45 3
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shere the elements of A(t) are volyneomials in t was first wttacked
by Poincaré, [(35]. His rese.i-ches were .continued by Horn; Birkhoff,
cnd Trjltzinsky. The latter ave zn essentiully complete zolutlion
to the protlem og fur =g az;mptotlc representution was concerned,
wnd also .orn.idered the reoresentuation of the zolution by means of
converent ructorial series.

For o complete diz.vzalon of the methods and results of the
above-cited zuthors It i: necessur; to enter the comdlex plane.
Since we have acreed to limit cur discvrssion to the behavior of solu-
tions on the real axls, we shall refer the reader to Horn,

Trijitzinsky, [#7], . where extensive references are given.

In thls chapter, we shall consider linear equations and
give a partial answer to the question above. In Chapter II, non-

linear ecquations will be considered.

The concept of asymptotic development can be generalized.
If there exist functions an(t), y(t), #(t), where Y(t) — o,
and the an(t) are bounded, wlth the property that

N
() = o) 2, %t , Py
™0  ¥(t)" wt)l

where E,(t) — 0 as t — co, we write

46 B-7723
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£(t) ~ pt) 2 nlt)
; =0 Y(t)"
l
1
ji This definition coincides with the former definition
. \ . for the case P(t) =1, WYW(t)=1t, a.n(t) -8, .
Co
‘:: . §18. Asymptotic Development of Solutions of Linser Differentisl
',‘ Equations
{ In this section, we consider the linsar differential equa-
-"5 tion
’I
X
i
(1) g _
3 £ - A(t)z,
g
¥ : where the elements of A(t) have asymptotic developments of .Lue
i form (5) of the previous section. Let us further assume that the
| elements of % p130 possess asymptotic developments.
1 The following result is due to Hukuwara, [17]:
E“_ 1' : Theorem 25. Conaider the equation (1) where
g . i
(2) (a) every element aij(t) of A(t) has an asymptotic develop-
ment
. ®
: 6, (K)
aij(t)"' 1.] — ’
] _ =0  tK
L}
:
47
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LIRS ) % of Ao =

{(b) the characteristic roots 'A], 7\2, 3 "

(aij(O)) are all distinct.

Then there exist n linearly independent solutions of (1),
z(1 ),2(2),...,z(n), naving the asymptotic expansions

[e0)
ALt ’ i
(3) MO DR A S i(__)_ :
k=0 tk

where_the a.k(i) are constant, posgibly complex, vectors.

If the A , are complex, it 1s necessary to take real and

imaginary parts of the z(i) to obtain real solutions. Since com-

plex A 1 occur in conjugate pairs, no additional solutions are

obtained in this way.

§19. Asymptotic Development of Solutions of Linear Differential
Equations - Periodic Coefficients

Consider the equation

(1) - A(t)z

o.lcm
ctN

where every element a, j(t) of A(t) has the generalized asymptotic
development

. AP,
48 72
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= (k)
(2) o (t)n 2, Cap (%)
J K 2
k=0 t
where cij(k)(t) is continuous and periodic of period T.

For this case Carleman, [8] proved the following theorem

analogous to Theorem 25.

Theorem 26. Consider the equation (1), where

(3) (a) every element of A(t) bhas an asymptotic development

of the form (2),
(b) the characteristic exponents, Ry hgyene, 0, associated
with the matrix CC = (cij(o)(t)) are sll distinct,
(c) &) -o; skwk, 143, k=0,1,2,... .
T
Then there exists a fundemental system of solutions of (1),
2(1 ),2(2)’.“,2(n), having asymptotic developments
) "kt fk & (k) (4
(%) z ~ e t Z 2 3
2 =0 tI
where the dJ. (k)(t) are continuous periodic vectors of period T.
o §20. A(t) 1s*almost-constant”
We shall say that the matrix A(t) 1s "almost-constant”
whenever there is 8 constant matrix A such that
49 2-7723
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(’) l..;n l’\(t) = :1.

t—>w0
Tae ‘veblem .o tn relote the tehcvior of WzW  ws ¢ —> D
where =z sotlefles
(2) €2 o At)z
to the behavior of Yy . where cetisfies
d
(3) aitl = Ay.

Thié problem was first cons idered by Poincaré, [34], for
n-th order linear differential equations, under certain restrictive
conditions. These restrictlons were removed by Perron, [27]. [28].
His results were in turn improved by Lettenmejer, [23], end Hukuwara,

(7l.

The following result is due to Lettenmeyer. [23]:

Theorem 27. Consider the eguaticn (2) where

(4) (a) 1lim  A(t) =A

t—o
(b) the characteristic roots of A, \1 me"" )n? are all
3
distinct.

mwen there exist n linearly independent golutions of (2),

50 8-7723
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2(1),2(2),'..’2(n), Such that

(5) 1im log Nz _ R(A )
t—>0 t

Here, as usual in analysis, R(7\k) stands for real part

of %1{.

Specializing this result to n-th order linear differential

equations, we obtain

Theorem 28. Consider the differentisl equation

(6) u(®) p,(t) u(B-1) - + Pp(t)u =0
where

1im t) =
(1) (8) £l P (t) Py

n =
(b) the roots 20T PYRRRRS of 2 pkrnk =0 are all real

k=0
and distinct.

Then there exist n linearly independent solutions

u(1),u(2), .“u(n), guch that
. i (k)
(8) lim gt

—_ e Tx*
t—m u(k) _

Further results, which are not of such simple nature, may

51 - 8-7723
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be obtained in the case cof multiple roots. We refer to Perron,

(28], Lettenmeyer, [23].

! - For the case of real, simple characteristic roots, we may

J also obtaln more precise results for systems. Thus, we have Bellman,
i (3]:

~. Theorem 29. Consider the equation

5 (9) dz
3 at (A + B (t))z
!
ﬁ where
:ﬁ L
i
§ (10) () A 1s a constant matrix, all of whose characteristics
{ .
4 roots Ny, A,s...; A, are real and distinct
4
A
; (b) NBH —> 0 as t —*w.
¥ .
Y Then corresponding to any characteristic root Ak’ there
i is & solution z(K) satlsfylng the inequalities
4 t
A | (1) cyexp (A t-d, § 11BN at) ¢ 1z
D v t
1 o]
i} t
4‘ .
< ¢, exp (th + d, S [IBIl at), t 2_to, c, ¥ 0.
t
o}

If we put a further restriction on B, we can obtain

aysmptotlic results.
' 8-7723
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Theorem 30. If in eguation (9),

(12) (&) A 1is a constant matrix with reel, distinct cheruacter-

istic roots, '»\1, 12,..., an 5
fo's)

) S BN dt { .

Then corresponding to any characterlstic root ak, there
18 & solution z(K) having the property that

-2t
' k), K

(13) lim z2\%g -
t—>o0 :

where is & non-zero constent vector.

Cx

Specializing this result to the case of an n-th order

liiear differentlial equation, we obtain

Theorem 31. (Consider the equation

(14) u.(n) + p1(t)u(n-1) + e 4 pn(t)u = 0

ere

(15) (8) 1lim  P(t) = By,

t—w
o)
() § P - Blt)] dt < oo, P LSSHE 00 Y
(c) the roots r,,r,,...,r, of 2 PKrn'K-o are real
K=0

end distinct.

8-772
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Then there ex:st

n

i.ne.rly _néesendent

. olitions

Uy sty e ey Ups with the »roperty that

(1) 1lm
t—>00

lin
t—>00

Theorems 30 .nd 31 are cdue in their original form to

Dini, {14], end Love, [20], and in their final form to Dinkel,

u.c

d

dt

=15
k il

(6],

where the case of multisle characteristic rcots is also considered.

B-7723
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CHAPTER II
NON-LINEAR DIFFERENTIAL EQUATIONS

$1. Introduction
In this chapter we shall study systems of non-linear

differential equations of the form

}21CL
ctin

(1) = F(z,t),

where F(z,t) 18 a non-linear vector function of: z. Equations

of this type are of great importance in celestisal méchanics, which
accounted for the original interest in these problems. Recently,
they have also become of great importance in the study of mechanical
and electrical circults as the need for greater precision and

“explanation of new phenomena has sorced physicists and engineers to

consider non-linear equations.

We shall consider the case where
(2) F(z,t) = A(t)z + £(z,t),

and Uf(z,t)| 1is small compared to Hzn as Bz —> 0. A

" simple example of this would be where every component of f(z,t) is

a power series in 21525 00052p, begining with terms of the second

degree.
Since it 1s usually not possible to solve (1) explicitly

in terms of known functions, it is necessary to develop some other
®

means of determining the behavior of the solution. Of particular
§-7723 .




interest In many physical problems 1is the behavior as t —)+wm.

J , There are several different approaches to this question.
Perhaps the one that is most intuitive is that which proceeds as
follows. Let A(t) be a constant matrix, with characteristic roots:

having negative real parts. Then all solutions of

¥ 1 (3) QI it AY
& \‘ dt
‘. }4 are bounded and —> 0 as t —)+m. Hence, we may expect that, if
¥ I z(0)§ 1is sufficiently small and MWf(z,t)W / Wzl 1s also

P sufficiently small for M zIll small, the behavior of the solutions of

(4) = Az + f(z,t)

alR

will parallel that of the solutions of (3). We shall see that this
expectation is valld. The problem stated preclsely 1s to examine

& J the validity of the first approximaticn -- equation (3) -- to
equation (4). This problem was first investigated by Poincar:a, and
£ then extensively and intensively treated by Liapounoff in a classic
b ' memoir. However, the problem has not been completely solved, and

1 many questions remaln unanswered.

Of at least as great importance as the behavior of solu-

GRS ERE O . it

tions as .t —)+co, and intimately connected with it, is the

¥

question of the existence of periodic solutions of (1). This question

1s now of great importance in connectlon with electronics. However,

8-7723
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II-3

we shell not ccnsider the topic here, since it is not pozsible to
present it =imply and in few pares, and since it is treuted at
length in the ecsily aveilable monocroph of lefschetz, [17). Never-
theless, we shell discuss some restltz concernin. the nuture of the
solutions of (1) when F(z,t) 1s periodic n t, or is derived
in & special manner from & periodic function.

Finally the asymptotic behavior of solutions of (1) will
be considered, and, more specifically, the behavior of solutions

of equaticns of the form

_Gu -
(5) P(u,—5t— »t) 0,

P & polynomial, as t —>+00. This problem has relevance to the
problem of the behavior of the solutions of second-order linear

differential equations.

§2. Methods

Although we shall not give any proofs, some dlscussion of

the methods vsed in obtazining. the results glven below seems in order.

Foremost is the method of integral eq-stions. The 1link between the
solutions of (3) and (4) of §1 is icornished by the following lemms:

Ilemms 1. Let y be the solution of

1 g i
(1) st o= Aty

with the same initial value a2 z. Let ¥Y(t) satisfy

61 8-17123
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) 3% = A(L)Y, Y(0) = I.
Then every solution of

(3) g%% = A(t)z + f(z,t), 2z(0) = Z

gatisfies the intepral equation
t

(%) z = y 4 S Y(t)Y-1(t1)f(z,t1)dt1.
0

As always 1n the theory of differential equations, the
advantage of using an integral equation in place of the original
ditferentisl equation lies in the smoothing propertles of the integral
operator as contrasted with the harsh behavior of the derivative.
Thus, for example, if two functions are close, integrution preserves
this closeness, while differentiation may not even be applicable
to the functions if they are merely continuous.

z_gncé the integral eduation has been obtained, an immediate

technlque 13 the method of successive approximations. Form the

sequence
(5) 20 = Y
t
Zngr ™ Y+S Y(t)Y-1(t,)f(2n,t,)dt1, n o= 0,1,...
0

8-7723
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It is now not difficuvlt to show, under verious assumptions
concerning the nature of A(t) and f(z,t), that the seguence izn}
converzes to a solution 2z of (4) and thence (3), having meny of
the properties of Yy .

This furnishes a constructive proof of the existence of
various classes of solutions. If we are merely interested in prov-
in;, the existence of certain solutions, we may regard (4) as an

equation of the type
(6) z = T(z),

where T(2) 1is a non-linear operator defined by the right-hand side
of (4). The existence of a solution of (4) now depends upon the
existence‘ of a function 2 satisfying (6). Considerins 2z as a
point in en abstract space, we require a "fixed-point"™ of the trans-
formation T(z). Such a fixed-point will exist for a large class
of operators, to which T(z) belongs, as was first shown by Birkhoff
and Kellogg, [3 ]. For an application of this method to the prob-
lems of this chapter, see Hukuwara, [!4], Bellman, [! ].

Another method of approach is by means of difference

equations. We approximate to the differential quotient by quotients

(1) 2(t + h%- z{t) . A(t)z + f(z,t), t = O,h,2h,...

This method will be discussed in detail in Chapter IV.

68 -7723
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A method of an entirely different type depends upon the

connection between differentlal systems of the type

dz dz2 cz

1
(8) m - F—e(—zy - vee = W

and linear partial differentlal equations of the form

n
(9) I (z) Su_ _ 4
k=1 K 32,

This method is discussed by Liapounoff, [19], and used to
treat some cases not amenable to the prevlious methods. Since
Liapounoff's memoir has been reprinted [19]. and is readily wvailable,

we will not enter into & discussion of thls method.

§3. Stability

We shall use the word stable in the followlng sense:

Definition: A solution 2z of

(1)

&R

- F(z,t)

1s said to be stable if every other solution w, for which the
difference ||w(to) - z(to)\] 1s sufficlently small, {non-zero) re-

mains within a certain neichborhood of 2z for t > to; that is, if
§ 1s sufficiently small and

.
B-7723
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(2) llw(to) - z(to)ll {s ,
then
(3) Ewit) - 2z(6)0 < pls), t2t,.

In many important cases;

(b) 1im Aw(t) - z(t) = oO.
t—)+m

To 1llustrate this concept, let us consider the equation

-

(5) 92 o Az +f(z,t)
where A 1s constant and £(0,t) = 0. Here it is clear that 2z = 0
is a solution. The question arises as to whether it is a stable
solution. Under the condition that all the characteristic roots of
A have negative real parts, it is, as we shall dilascuss below.

\ For further discussion of stability we refer to Fejer, [t0],
Horn, [13], I.efschetz, {17), Levi-Civita, [1€], [ ], Liapounoff, [19].

$§4. The equation dz/dt = Az + f(z,t), A constant

In this section we shall begin answering the question railsed
in the previous section concerning the stablilityof 2z =0 as a

solution of




II-8

(1)

Dalﬂ-
ct|N

= Az + f(2z,t),

where A 1ls & constant matrix.
The following results are due to Perron, [28]). Other less
general results were obtained by Lispounoff, [!19], Poincaré, (30],

Bohl, (¥ ], Cotton, [%].

eorem 1: If f(z,t) is & continuous function of 2z for Hzll { c,

and

(2) (a) Nf(z.t)l — 0 as Wz — 0, uniformly in ¢,
nzu

(b) all the characteristic roots of A have negative real parts,

then
(3) (a) z =0 1is a stable solutiom of (1),
(b) every solution z for which Wz(O)\ 1s sufficiently
small, has the property that, 8zW —> 0 as t — .

We shall use the term instable to indicate that 2z = 0 1is

not gtable. We then have the following result:

Theorem 2. If f(z,t) is a confinuous function of z for Wz|l Cqys
aend

(&) (a) |f“§"t u —>0 ag W1z¥ — 0, uniformly in t,

{b) at least one characteristic root of A has positive real part,

then 2z = 0 13 instable.

68 8-7723




T Y S

B e it - 5

At e

il

.
b e

3

II-9

There atill remeins the possibllity of conditional sta-
bility, that 1s, if not every solution for which Wz(O)l| 1s small
remains in a bounded neighborhood of the origin, at least some sub-
manifold of solutions remains in a bounded neighborhood. We expect
this to occur if some of the characteristic roots of A have nega-

tive real parts. That this is true 1s shown by

Theorem >. If
(5) (a) f(z,t) is 8 contimious function of MzR for wzn Cys
(d)  Mf(z,,t) - f(z,,t)0 € Wz, -z 4 , whemever
Cbzgn (8(e), Mz n £ s(€),
(c) k of the characteristic roots of A have negative
real parts, and n-k have pgéitive real parts,

then there exists & k-dimensional manifold of solutions of (1) which

—> 0 g8 t—> oo, apd for Qahich Nz(0)W C § implies that Wz(t)M

€ e(8) for t 20, and an (n-k)-dimensional manifold for which
conditi t valid.

If some of the (n-k) characteristics roots with non-negative
real parts have zero real parts, we can only say that there exist at
Jleast a k-dimensional manifold of solution with the above property.
We shall discuss later the case where characteristic roots with zero
real parts occur, and we shall see that 1t is quite difficult to
ascertain the general behavior.

The condition HNf(z,t)l /Mzw —)> 0 as MzW — 0
is clearly satisfied if every component of f(z,t) 1s a power series

L 8-7723
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in the corponents of 2, lacking constant and first-de ree terms.
This was the cuse discussed by Liapouvnc{f &and Polncaré. Nati:rally,
far more procise results can he obtained in this case, and we wlll
refer to thls topic again beliow.

It shouvlé elso be mentioned that this condition k(a) can
be weukened to || f(z,t) || { €1 z || whenever |] z || {$(e).

Ths above theorems illustrates the fact that esgentislly
the behavior of the =olutisns of (1) as t — +0 1g cdeterminzd

by the behavior of the solutions cf

(3) dy
&t Ay

33 t —+mo.

§5. Continuation

In the previous section, the cases where the characteriastic
roots had either positive or nezative real parts were treated. In
this saction we shall treat the case where the characteristic roots

may have zero real parts.

Theorem 4. If
(1) (a) all the sclutions of dy/dt = Ay are bounded as t —) o
(b) Ilf(z,t)mlliilIZIlf(t), whenever || z || { 8 (¢),

where S f(t)dt < o,
thep 2= 0 13 a steble splution of

8-7723
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\2) g% = Az + f(z,t).

For & proof, with more restrictive conditions imposed
upon f(z,t), we refer to Bellman, [1 ). The theorem in its
present form is due to levinson.” It may also be shown that 2

approaches an almost-periodic vector as t —)+m.

§6. A(t) a periodic matrix

As shown in the first chapter, results valid for A
constant carry over to A periodic, as far as boundedness 1is con
cerned. Thus we have the following theorem:
Theorem 5. If

(1) (a) gll sclutions of dy/dt = A(t)y — 0 &s t —+m,
A(t) periodic,
(b) I f(z,8) /Il 2zl —> 0 as |1z ]l — o0,

then 2z = 0 1s = stable solution of

(2) & o A(t)z + £(2,t)

and, in addition, every solution for which || 2(0) || 4is suffici-
ently smell —) 0 &3 t —+m.

This theorsm is of some interest in the theory of varie-

*icnal equations. Supposc that we have a system

*Written commnication to tﬁe author.

% 9-7723
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(3) g% - f(z,t)
which we know possesses a periodic solution. In some cases, it
is of importance to know the behavior of "nearby" solutions. It
may even be true that any solution which comes sufficlently close
to this periodic solution must approach this solution more and more
closely a8 t—)+00.

To decide this, let p be the glven perlodic solutlon
and set Z = p + w Assuming that the c'omponents of f(z,t) are
analytic functiohs of the components of z, we have

() & o R wrpawt) = (pt) + J(f(g'“). W,

J (f(g,t)) 1s the Jacobian matrix (:_;;_ \ , or

(5) & oo SEE) wa .

which is an equation of the type treated in this section, provided

f(p,t) 18 a periodic function of t. This will certainly be so,

if, as is usually the-case, f(z,t) does not contain t explicitly.
To decide whether or ot w —) 0 as t —)+o0, whence

g —) p, 1t 1s thus sufficient to consider the first approximation

(6) @)

Ly | 8=T728°
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A more general problem is furnished by (3) when the

solutions are almost-periodic. Whether or not the analogue of
Theorem 5 is true is not known.
§7. Qeneralizations

The previous results can be generalized to include equa-

tions of the form

(1) g% - Az + f(z,_dz_ ,t)..
dt

We have the following result, cf. Bellman, [} ].

Theorem 6. If
(2) (a) k, 1 {k {n, of the characteristic roots of A have

negative real part

(b) 11 £(u,v,t) - £lu,v,,t) 11 € elllumug b+ Ivev 1],
whenever |lull, llull, J1vll, Ilvy]] are all less than
§(e),
then (1) has & k-dimensional manifold of solutions which —> 0 as
t —) oo. -

§8. A(t) is a variable matrix’
If A(t) 1is a variable metrix which 1s not periodic, it
1s necessary to impose some more stringent restrictions upon A to

conclude from the boundedness of the solutions of

1 .
() I . Ay,

the boundedness of the solutions of

n

——— — T e —
AN L S T R N AL
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(2) a-z = A(t)z + f£(z,t).

This 13 due to the fact that the functional equation
Y(t)Y'1(t1) = Y(t-t,) 1s true only 1f A 1is a constant matrix,
and if A 1s not constant or perlodi~ there i3 generally no simple
way of treating Y(t)Y ' (t,) as a function of two variables, t
and t,. For a dlscussion of cases where Y(t)Y'1(t1) may be
handled easily, we refer to Trjitzinsky, [31]. ‘

As discussed in the first chapter, if |]Y(t)]] is

bounded as t —> m, and

t
(3) . o Um S trace A dt ) - o,
t —+00 0 c

then llY“(t)[l will also be bounded. The most important example
of this condition being satisfied 1s when truce A = 0.
We have the following result, Bellman, (! ].

Theorem 7. If
() (a) all solutiohs of dy/dt = A(t)y are bounded as t—>) o
8 . :
(b) S trace A dt ) -
t—)+@ Jh

~ .

(¢) lif(z,t)]] £ e£(t) ||z]l, whemever ||z]l { §(¢e),

Q@
and ( f£(t)at € oo,

then z = 0 1s a stable solution of (2)]. .
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§9. A general condition
The following theorem emphasizes the fact that the
boundedness of the solutions of non-linear differential equations

depends essentially upon the boundedness of the solutions of first

approximation.

eorem 8. The necessary and sufficient condition that the solution

of
(1) &£ o Att)z + Plz,t)

be_bounded for every vector function @(z,t) which is bounded for
te

t >0 apd ¢ arbitrary i1s that the 11

(2) O E L Az s i)

possess only bounded solutions for all @(t) satisfying the condition

(3) Hew)l ey, t20. )
If this condition 1s satisfied and

(¥) Iecz,e)ll £ 1zl

for |lzll ¢ s(e), then 2z = O is a stable solution of (1), and
lzll — 0 a8 t = o.

If (2) possesses only bounded solutions for all $(t) satis-
fying the condition




o

II-16
. ®
4 (5) § o et ¢, '
1 then z = 0 13 a stable solution of (1) if
'I ™
- (6) ez, 0011 € lzliee),  § f(t)at < o,
{
3
. for Ilzll ¢ $(e).
i\“ We refer to Bellman, [} ], for the proof.
) y §10. A_Counter-Example
‘,‘ At this point, it might be suspected that a result of
1
4 the following type would be true:
B/ *If all solutions of
i
S“‘ 1) d .
; ‘ § - ey .
1 —> 0 as t—>+m, then all solutions of
i q
, - (2) E o= At)z + #2)
y do likewise provided that ||#(z)]| / Ilz]l — 0 as |lzl] — o,
apd |1z(0)]] 1s sufficiently small?
&
E 3 That thls is pot true 1s shown by the following example
i of Perron, [a%]:
d
(3) E%‘ - - e.y1, ('8. > 0),
d:r2 — 0 Sy

Ft = (sin log t + cos log t - 2a) ¥,-

The general integral is

7 W
8-7723 . ;
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(u) v, - c, 2
(sin log t -28) t

which —> 0 as t—>+x, for a ) 1/2.

Now consider the no:n-linear system

dz
)

dz2
T~ (sinlog t - cos log t - 2a) z, + 2,

2

The general integral 1s

{6) z, = c,e +

(sin log t - 2a)t -
(ce + 012 . t, sin log t

By ™ e at

o L}

It may be shown easily that if 1< 2a (1 + o2 F
z, —> 0 &3 t—)+00 only if c, = 0. Thus the condition |l z(0) |l

sufficiently small does not entail ||z]] — 0 as t—>+00.

§11. One characteristic root zero

We now turn to the difficult question -f decliding stability
when some of the characteristic roots of A are zero. We begin
with the simplest case where one characteristic root 1is zero. 1In
this case, contrary to the results above, it 1s not sufficient to

consider the linear terms alone, and the nature of the non-linear

terms is critical. For this reason the results are quite complicated,

78 8-7723
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end we refer to the memcir of Liapcunoff, [19], and later papers

of Malkin, (as], (ae), [ ], [ 1, [ 1.
By means of a transformation to polar coordinastes, the

case wherethere are two complex conjugate roots with zero real parts

can be reduced to the case of one characteristic root zero. This 1is

also discussed by Liapounoff, [49].

§12. Asymptotic behavior of solutions

The question of the asymptotic behavior of solutions of

= Az + f(z,t)

Q.lo.
ctN

(1)
leads to the study of the geometric nature of the solutions con-

aldered as curves in z-space.

Since a detalled discussion of the two-dimensional case is

given in Jefschetz, [17), we shall not enter 1nto the subject here.
We also refer to papers by Martin, [27], Petrowsky, [29], Poincaré,

(s0], [ 1, t ]. Weyl, [3%], and Yosida, [35].

For a general treatment of asymptotic solutions of non-

linear differential equations we refer to Trjltzinsky, (3t ], [32].

§13. Transforumamtion of equations

1: many cases, 1t 13 possible to find transformatlons of

the variatle u:{ich reduce

§-7723
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= Az + f(z,t)

D.'D-
N

to various canonical forms, which are easler to treat.

We refer the interested reader to Dulac, [9 ], lefschetz,
[*1], MecMillen, (1), [ 1.

§14. All characterisi:c > ofts Zero

While it is difficult to obtain results for the case where
some of the characteristic roots ere zero, Maillet, [22], [a3], [at],
has treated some. cases, important in applications, where all the

characteristic roots are zero. His chief result, [Q4], 1s the follow-

ing:

Theorem 9. Consider the systems

() g% - B(y)
(2) 9 o opz)+ wiz), )

where all the components of @(y) are homogeneous polynomiels in
¥ysTps--+s¥y, of degree p > 1, podd, and ¥(y) has terms of high-

g!: Qrdel" 1n y1)y2)""yn'
Let b; be the coefficient of yip in @,(y). Then the

necessary and sufficient condition tha! the solutions of (') — O
as t —> o isthat b, {O.

The solutions of (2) —)> 0 as t —)+m if the solutions

Z s-7129
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II-=0
|
: of (1) — 0 as t —+m», znd the soluticns of (2) thern have .
" the form
: =
. o _ —
! (3) zymzym.m oz o= 0, Z5m (€4 B(t)) (as t) ,

J= i+, 142,...,

€. % 0, where 1lim € .(t)=0, and

1
(4)  yy =y, = .uy, =0, yj-cj(a+t)"p, J=14+1,142,...

ig = scelution of (1).

‘v

eorem 10. If » 1s cven, the above cond:tions, plus the additional

restricticns thet ¢i(y) - )ixi(y), where X, %s homoceneous of

desree p - 1, and that the inttial valves are positive and suffici-

entlix cmell, are pecessary and sufficient that the solutions of (2)

SR T N T S

v w e ke,

—> 0 ag t —+00 when the seme is true of the solutions of (1).

{ §15. Soluticns in trigonometric form

Although we shell not discues the general theory of solu-

1 tions of equations of the type
4l
() g—g = Az + ¥(z,t)
' where f(z,t) contains trigonometrlic terms and the characteristic
roots of A have zero real pert, since there are expositions of
this thevry in lefschetz, (!/7], and Kryloff and Bogoliuboff, [1&],
; .
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the 10llowing result due to Bohl, [§ ], descrves mention.
" Theorem 11. Consider the equation

(2) g% - Az + f£(z,t)

where

(3) (a) po characteristic root of A has zerg reel part,
(b) ez, 0)1/1z11,  1l£,(2,t)11° are sufficlently smell
for !lz]! small, uniformly in t
(c¢) f(z,t) L1s obtained by the substitutiong ug = z/ctK in

the vector w(u1,u2,...,um,t), which is continuous for

all U and periodic with respect to the ug of period

ope, where «y % 0, and no Telstion of the form

—

m A
Z cx/ug = O, ~-
Km1

Cx integral exists. . '“

Then, provided that c¢ 1s sufficlently small the:-.x"e existe .ons and

only one solution of (2), defined for all t, such that ||z|| ( e —— o~
for a1l t. e _componerts this solytion are trigonometric series

5
Ne ..

of the form -
- \,_\\\‘
. .\
" llfz(z,t)ll denotes the maximum of the norms of °f, (z,t)N
1
the subscript signifies partial differemtiation with respect to that \

e
variable. Ry
8-7723
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(“) Zx - 2‘ 21K, K- 1,2,...,1’1,
1-1 'y
| ) upiformly convergent for all t, where each term Zx is_a poly-
} nomial in cos zvt/d\L, sin art/uL, L=i1,2,...,M
\‘\ﬁ L w(u1 ,ua,...,um,t) has continuous partial derivatives
! with respect to uy and t wup to the entth order, then each 24
3 N
_" can be represerted by a uniformly and absolutely convergent series
3 R
) the £ S
¥ )
“'f (5) 2 a, v cos 2‘!‘(v11:/-t1 + d1) ee. COS 2""(vmt/anm + dm)
%‘ ) 1 L AN ] m i
S
“ V"‘-.,;!h" !Q -
: v 0,1,2 and d 0 or —
L] L S - e - .
j N N T e S
~¥ §16. _megpittyde soluti ns of non-linear differential equations
\u Iat P(x1 ’xe,of%qr
N J\ e L -‘..'\ | X1 ,Xa, s e e ’xn’
e - e e iy ..'E' \'b“
! . (1) ™~ T P(t,u,dt,.. "dtn°1 ) S
¥ ey ety e .
-_f;:,:\.‘““:“” Sl e . = . 3 Wim‘m‘h
N The problem or e.atimting the behavior of real coi
LGSR '”":"*m\,_.,k solutions of (1) as ‘t ——>+q> wa&first attacked by Borel, [ ¢ ], ﬁis“‘x
& \’f‘ e, :‘ o RPN g
Kok Sl O = ..teaglfs-uer@ in turn, refined bynndelof s [ao]. The result of
e T "‘ﬁm&o’}_fgy R :
Ty ‘--{‘;- = g -t:\\ T - - "
3 A5 - ~Jheorenm 12. i’ S H ;;gabtggnti ous solution of
- ~ - S =
: T - - - - “er - _
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() P(t,u,58)= O,

ioF ¢t 2 t,» where P is & polynomigl, then if a(t) is any
reel function with the property that ag t —+x

=3 —’L.“_u—— ——— -

- SRR VR

o adit ,_mp,,.‘«f 3

- (3) Bt) o, =12
t
we_have
t
St a(t)dt
(%) ful € e 0 - t2t .
N 1f P(t,r,g%) is of de;xree m .n t, then thers exists
& constent ¢, such that
c +IM+1
‘U
{ (5) lul € e 5 t2t, .
b
: The first pert of. the theorem with &(t) = e® is due to
1 Borel. o

It was shown by Vijayeraghaven, [83],. that the snslogous
t
result with exp(ee ) 1in place of e® is notl true for equations
1 ' 2
% : of the form P(t,u,g—‘t’,}, d—% ) = 0.
) at

For equations of the fcrm

A (6) du _ t
3. at, (u,t

where P and Q are polynomials, much more preclse results are

avallable. Equations of this tyve were investizated for t complex

p-7723
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by Boutroux. { 7). «nd oy Hord; . [12], for t rezl. We :hall

present the regults of Herdy.

Theorsm 13. Anv solution of

(7( du Eigéz}
dt Qu,t
conbinuous for & > to lg ultmetely monotonie. together with its

derivatives, &nd sotisfles one of the relaticns

Gy /ey
(8) L~ ¢, t € . u o~ (t 103 t) 3

where p(t) 1s = volynomial, C,,C, cLre inte ers.

Any solution of P(t,u,u') = 0 2etisfies elther

. c,
(9) wl et
nr

Cy
cst (1 + &(4))

(10) u = (- E(t) _> 0,

gs t — 0.

All sclutions cof the latter cl.gs are monotonic, toiether

with their cderivatives.

Herdy .;ives 3some further results on the behavior of solu-

tiong of
n
du = Plu,t
(1) () Qurt
8-7723
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Fowler, [11], considerec the equ=tion

(12) du _ t
at2 Q(u.t) ’

ané proved

Theorem t4. Jf W 1ig & continucug solutlon of (12) with continucus

filrst and second derlvatives, for t > to, then there exist constants

c,,c?,cych such thet either

2
(13) lal € eyt

or

c,
c3t O + g(t))
(14) W= e ,

where €(t) — 0 g8 t .

$17. Asymptotic Behavior of 8S8olutions of a Specisl Class of Equations

In the first chapter we discussed the behavior of solutions

of equations of the form

n
(1 ty u¥)(t) = o,
) ank()u (t) = o,

where ak(t) ) &, & constant, as t—+ .

These results have bsen considerably extended by Koksma,

[15], who considered the more zenersl equation

n ,
) Z e ) et = r(tu, auer,..., oM
k=0 . ath .

-7723
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CHAPTER III

ON 7HE SOLUTIONS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

¢.. Introduction.

The second order linear differential equation,

(1) a2 (k)@) + Lita=o,

is of great importance in mathematical physics. It arises naturally
from boundary-value problems in the theory of partial differential

equations, occurs in the simpler form

' 2
(2) i_g + &a(tiu=o,

as an analytical expression of Newton's laws of motion in dynamics,
and 1s, again in the form (2), & fundamental equation in quén’cum
mechanics (one-dimensional).

The mathematically trivial, but physically important,

equatioxi where a(t) = + a2

can be completely integrated. 1In one
case, all solutions are periodic, with period 2 ¥ /a, have an
infinite number of zeroes in the interval (0, 00), and do not tend
to any limit as t —>00; in the other case, all solutions are
ultimately monotonic, thus have at most a finite number of zeroes
in (0, 00), and -)>) 0 or + oo as t -)+00.

This chapter will be devoted principally to investigating
which of these properties are retalned by solutions of (2), and under

89 8-7123
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what conditlons. Specifically, we are interested in the bounded-

ness or unboundedness of the solutions as t-»+ee , thc number of

zerces of solutlions in the interval {t,+ee}, and the asymptotic
behavior of the solutlion. As before, all_ terms such as bounded,
positive and so forth, shall refer only to the interval (t, +oee],

t, > 0, unless specifically stated otherwise.

§2. A Preliminery Transformation.

Henceforth we shall consider equations of the form

d®y

2 + a(t hJ = 0 »
dt

(1)

since the substitution

1 “pat
(2) U = v e ° . '

@liminates the middlz term in

| 2

i du du
, { (3) gt2 + plt)gg + althu = o,
' ] and_ ylelds the following equation for v
" 4
. (4) %y 1 2/

: a‘g*-,(Q(t)'gdp/dt-p Jv. = 0,

[ ] .-
? i
3'r,
E

8~7723
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The problem of eliminating the two middle terms in
(5) Pu L opy8 L g 4 = o
a2 RS e Atlse

is much more difficult but has been solved by Fors: th.
By means of the transformation above, all theorems stated

in terms of equation (1) have analogues for (3).

§3. The Boundedness of Solutions of u" + a(t)y = 0.
I1et us now discuss sufficient conditions for the boundedness
of all solutions of

(1) a%y + a(t)u=o.

Several important criteria may be derived from the following
simple inequality:

Theorem 1. of a(t) > 0 for all t » 0, then any solution of (1)
satisfies the inequality

2 Cy t la'(t
(2) u® aTt) exp ( ‘o _B{?}’ at )
Broof: we have

(3) u'u" + a(tluu' w=o,

Integrating between 0 and t, and integrating the second term by
parts,

o1 8-7723
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2

' 2
(8) u— a(t)i-= a(o)uZ(o) + u;(ole + St a'(thl at
o 2

Thus,
2 t g
(5) a(tlu- ¢ c, +( la(t) a(t)ue at.
2 o al(t 2
Applying lemma - of Chapter I,

£
6) .a(t)® { c, exp ‘%t;
( a \-21 2 ( So B.a : dt\ .

cf. Bellman, [S51], Cacclioppoll, {ts].

As consequences of Theorem 1, we have the following

resulte:

Theorem 2. _All solutions of (1) are bounded i1f a(t) > 0, a'(t) > o0,

t >to.
Theorem 3. All solutions of (1) are bounded 1if a(t) D¢
13 of bounded variation in somse intgrval (te, o= }. In rticular,

all solutions of

1>0,§_1’£

. \ |
(1) du , (8 +4(t)u=0

at?

are bounded if

92 B8-1723
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(8) (8) &®+8(t))> BPD0, tDt Do
[ J
(b) E ag (o,
(o]
Theorem 2 i3 due to Blernacki, [ 7], Osgood, [¥!], and
Theorem 3 to Caccioppoli, ([i5], and Wiman, (S5%], independently.
For the above unified presentation, see Bellman, [ §].
Equation (1) corresponds to the system
(9) u1|- u2
!
u, = -a(t)u1
The mytrix
(10) At) = ( 0 ‘\
-a(t) o
has tracz zero, and thus a corollary of Theorem 10 of Chapter I
is the following result:
Theorem 4. All solutions of
oy, (o
(1) 5 * (a(t) + b(t))uw=w O
dt
are bounded, provided
s-7723
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(12) (a) All solutions of u"™ + a(t)u = 0 are bounded,
(b) X [b(t)] dt  oe .

In turn, a corollary of thils result 1is

ror
”. % .

Theorem 5. If

(13) Clae at (o,

3 i 4
JOP__ VRO A.“L.J__‘

all solutions of (10) cannot be bounded.

It follows from Hukuwara's result, Theorem % of

Chapter I, that all solutions of (7) are bounded if

e vadeiin 10 e bl "‘

]
(14) S (é(t) at (o .
!I
|
4 Combining Theorems 3 and 4, we obtain the more general
¢ ) result:
4
5 Theorem 6. All solutions of
a2y 2 '
(15) — + (8 + #(t) + y(t)hu=o0
dt

are bounded if

94 B-7723
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(16)

III=7

(8) a®+ #(t) > BF Do t) ¢,

(b) S d' oo,

t.
[

() E ¥l gt ¢ o .

Butlewski, [}, general;zed Theorem 2 and proved

Theorem 7. All solutions of

(17)

(18)

(19)

(20)

(o). artn -0

are bounded, provided,

(8) a(t)>o, O(t) >0, s (a(t) 8(t)) D0, t Dt
All soiutions of

S Gu S 2141

at (o (t)dt) + E 521+1(t)u ' -0

are bounded, provided,

(8)  0(t) >0, 8y (t) >0, & (Sa1ar (VIO (L)) 5 g 45 ¢

95 8-7723
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The following results due to Murray, [%#6], are also

e A mma g .

appropriate here.

Theorem 8. The equation

|
2
J (21) 24 - ¢(tu=o0
dt
:\“{ solation bounded Sor
; 1 _M_h'avem~ erony Bound of -N< t{+oo 1f ¢(t) >q > 0,
' &' r ~< t ( . '0
‘? I
3

(22) (a) 0 b2 $(t) (a2, -mlt (oo,

(b)  IW(t)} { ¢, -t (oo,

A ’i’:';&. b "“i

1s one and only one solution of

7 there one
{
;‘11
: 2
i
, (23) du - ¢ (thu= ¥(t),
¥ dt
i ghich 1s bounded for - st (.
b 4 This result can be extended to equations of the form

(24) (k(t) ) - d(t)u=o,

provided 0 { a { k(t) { b, and continuous.

# The trivial solution u= 0 1s, as usual, ignored.

96 8-7723
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III-9

§4. Counter-Examples.

The question arises as to whether or not the hypotheses
of the previous theorems were too restrictive. Intuiltively, one
might expect that the condition #(t)-» 0 as t-»ess would be

sufficient to ensure the boundedness of all solutions of

(1) % + (82 + Q(t)u = 0.

This was actually stated by Fatou, [/8], but shown to
be false by means of a counter-example by Perron, [%#2], cf.
Caccioppoli, ['5), Wintner, [55). We shall give a specific
counter-example due in slightly different form to Wintner, [55],

and then a general method of constructing counter-examples.

Theorem 9. The equation
has unbounded solutions.
Another immediate way of realizing that the condition
¢(t) » 0 as t>+e might not be sufficient to ensure bounded-
ness of the solutions of (1) is to note that the theory of the Mathieu

equation shows that the condition

2

(3) o < af ¢ &% + ¢ (t) ¢ &

is not sufficient to ensure boundedness of solutions of (1). We

shall discuas this condition later.
§-77123
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Wintner's general result 1s the following:

Theorem 10. If

(&) g(t)=»0, g'(t) 0 a3 t-Pses,
then

t
(5) u= exp ( § g(s)cos ds) cos t

0

1s a solution of

42
(6) ét—:+ (1 + &(t))v=o

’

where ¢ > 0 as t - +oe

Choosing g(s) = cos s/g, we see that the conditions
g(t) >0, g'(t) > 0 are satisfied, while u 1s unbounded.

levinson, [35], gave a counter-example of a different

type.

Theorem 11. Consider the equation
a%y 2

(7) == 4+ (a+ P(t) Jumo

Let o« (t) be a monotone increasing function such that
o!(t) = 0(1) a8 t->+0. . Then there exists a ¢ (t) such that

for large t

8-7723
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t
8 § ety at Ca(t),
0

and (7) has & golution satisfying

(9) um  loglul 5 2

t-> oo

§=. L -stability.

On the above results we have considered the property
of boundedness of solutions of

[

(1) + a(t)u= o0,

at?

We now consider the property of solutions belonging
to LT(0, ), P> 1. A function u 4is said to belong to

LP(0, = ) 1f

(2) C 1u® o (-
0

Generalizing results of Weyl, [5!/]), and Carlemen, [11],

Bellman, [6 ],' proved

Theorem 12. If all solutions of

2
(3) :t—g + a(t)u=o

® Theorem 4 of Bellman, {{ ], is incorrect.

99 8-7723
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belong to LP(O,- ) and LP'(O, e® ), where
(%) 1<{pg2<p', M/p+1/p=1,
then all soluticns of

dau'
(5) S (a(t) + P(t) )u=0

dt
belong to LF(0, ee ) and LF'(0, se ), prov.ded that
(6) bpeel ey 0ot > gy

The moat interesting case of the above theorem 1s

P =p'=2. For the case p = 1, ths result becomes
Theorem 13. If all solutions of

2
(7) d—g + a(thu=o0

dt

*

are bounded and belong to L(0,ee )}, then all solutions of

d2u
(8) — ¢ (a{t) + P(t))u = o

dt
belong to L(0, » ) and are bounded, provided that
(9) Io(e)l £ ey, L2t

A consequence of these theorems is the following
* L(0,e ) = L'(0, e ).
B-7723
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Theorem 14. If
(10) la(t)l ¢ e , t D>t
all solutions of (7) cannot belong to 1°(0, e ). nor can they ell

be bounded and belong to IL(0, me ).
For alternate proofs of the above, see Wintner, [56).

Theorem 1k was extended by Wintner, [56], to

Theorem 15. If

(1) la(t)] ey -t Dt

then if & solution u of (7) belones to L2(0, e ), du/dt also
belonss to LZ(0, » ). This is true if only

(12) alt) < B 5 )ty -

i

(13) (a) a(t) o, t) t,

(b) la(ty) ~alt,)| < ¢, Jt; - t, |

upiformly in t, and t,, then all solutions of (7) cannot belong
2
to L (0, 00 ).

If (11) holds, and & solution u of (7) belongs to LZ(o, s ),

101 B-7723
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then u(t) -0 a3 t—p soe, u1(t)-’0 83 t=o>e+0e, and no
other linearly independent solution of (7) can remsin bounded.

§~. Asymptotic vior of Solutions of u" % (32 +¢(t) Ju= o0,
Although the asymptotic behavior of solutions of the

linear system

(1) a}t’: = Ay

has already been discussed in Chapter I, we shall consider the

equation
d%u 2

(2) =5t . (8% + é(t) Ju = o0
dt

separately, since more precise results may be obtalned. The first

results in this direction are due to Poincar'e, [{4¢], and Kneser, (32].

The following result, due to Hartman, ([26), 1s a considerable im-

provement of Kneser's result:

Theorem 16. Consider the equation

(3) ﬂ- (1 + g(t))hu = o0,
dt?

where for some p in the interval 1  p 2,

(4) § 1e(t)l Pat (oo .
(o]
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Every solution of (3) is a linear combinstion of two
solutions, u,, u,, possessing the asymptotic forms,

t
(5) u, ~ exp(t+%§’(s)ds) y oy~ oy,
)

1 t
u, ~ exp (-t -5 S ¢(s)ds) PENEE I
o
as t-veos .

A companion result 1s due to Wintner, [57]:

eorem 17. If

(6) (8) #(t) is of bounded varistion in (-, e ), and ’

) § leenzat (e,
f

©

then every solution of

(7) gﬂ;—-r (" +4(t) Jum= o0
dt
has the form
) t
(8) u = C, cos ( 02 +t+3 S ¢(s)ds) + &(t),
o

where € (t)»0, €'(t)—20, gs t—> o ,

103
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If ¢(t) is merely of bounded variatiopn, then every
golution of (7) has the form

| t i
( (9). u(t) = Cycon (Cus § (v 4 ¢(s)f aa) + £(t)
0
3
B
.\‘\; If ¢(t) possesses an asymptotic series expansion as
t»ene,
. a ' a
(19) ¢(t)"'t—§+...+-t—g-+...,

then the solutions will also have ssinrtotic representations:

Theorem 18. Every solution of

A 1 2
‘gi (11) g—‘;— - (8% + 9(t) Ju= 9,
3 dt
4
H
where ¢(t) satisfies (10), is a linesr combination of two solutions

.

¥

.11
K 7 b b
v.' ".‘i (12) u1 ~ eat (bo + t‘_1 + ¢« o« + t—g + ¢ n) 9

j

g u, ~ e-at (co 2% 40 S )

t n
t

g Every solution of
b
E
¥ 104 8-7723
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2
du 2
(13) a2 + (85 + ¢$(t) Jum=mo
is & linear combination of two solutions, U, u,, such that

d d
14
(18) u, ~ cosat (d;+ T+ + Bl
t

e e
u, ~ sinat (e°+t_1+,,,+_%+...)
t

This theorem is due to Kneser, [32], [33].

§7. The Liowvillc-Jeffries-Wentzel-Kramers-Brillouin Approximation.

The system of differential equations

av
(M e - g1, E- -y,
of fundamental importance in wave-guide theory, upon eliminating 1,
yields the equation

@ i @ - e

In this ferm, the equation iz of the type discussed pre-
viously. However, often the equation is non-integrable; which is
to say, its solution cannot be rcpresented in terms of the classical
functions of mathematical vhysics, associated with the names of
Bessel, Hermite, lapuerre, legendrc, etc. Nevertheless, since the
bchavior of V ast — s+ 1s often of considsrable moment, some
approximate means must be devisec tc determine thls behavior.

Such a method has been cbtained. In this country, it goes under the
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name of the WKB (Wentzel-Kramers-Brillouin) method; in England,

——

it 1s commonly called Jeffries! method, and it turns out, like so
much else in the theory of differential equations, to be due to

Liouville, (37]). In discussing the method, we shall follow the

presentation of Schelkunoff, [#9), and rigorize the procedure

using a result due to Hartman.
The first step is to transform (2) into an equation of

= .

o

e
. . . / .
VI Sy t/‘ 4.

simpler type. Let
t
(3) K= 2/Y, L =12y, e =¢({( J2zx o ,

where we assume that Z > o, Y > 0, for t > t,. Substituting,

we obtain the following equations for I and V:

TS
AR et I

2 v(q) _ K.(8) dv(e)- -
,J (+) dg;; 9. RASL o1 V(e) =0
B
1 3
2 ® 1(0) + 581 L) - 16) -0,
] d°2
» 4 '
A where. K(0) now denotes the function
z(t(e

1 (t(e) )
i (5) ¥(t(e) )
|

To eliminate the coefficients of dv/de and dI/de ,

e

i set
P 1 _ L

k] (6) V = K@6)2 V, I = Ke271,

4 108
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thus obtaining for V and T :

_ ) S
(7) (8) T - (14 42 - S )T = o
1 2 "
= X K =
, () I* - (- 2= + T = o.
: VK2 2K )

At this point, we deviat2 from Schelkunoff's discussion

and apply Hartman's result, Theorem 1o. Thus

Theorem 19. If
oo -]
|2P " p
(8) %ﬂ%“ d e ,d S\K—-l d (oo,

for some p in the range 1 { p { 2, every solution of 7(a) is a

e e e e e e, e w—

]
o e’*%S(Lﬁ_'th K”) ae

(9) u, - 2K

0
e
-0-1— K'a K"
u2“’e 2‘%&5“)—'21()69
o]

A similar result holds for the solutions of 7(b).

§&, The Asymptotic Behavior of Sciutions of (tau')' +Db t8u? = 0.

In the previous section, we have glven a method of
obtailning the asymptotic behavior of & large class of linear differential

107 8-7723
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equations. Studying the question of asymptotic behavior more

closely, we conslider the equation

2 .
(1) ':—t‘é + p('f)é-‘f + q(tlu= o,

where p(t) and q(t) are asymptotic to elementary functions of
the form taebt as t-—+0e . Seeking to determine the behavior
of the solutions with greater exactness, we may ask the following

questions:

(2) (a) When do only monotone solutions exist P
(b)

(c)
?

(d) How do monotone solutions behave ag t-»+oe °,

=

o only non-monotone golutions exist ¢

en

S

en do both types occur ?

(e) Do non-monotone solutions behave like sine-curves?

The systematic answering of these questlions was undertaken

by Fowler, (a23), for the equations

3) = t* ) + bt%® - 0,

%—(Bat g—g) + bedttSyt = o,

and for the equation

108 8-7723
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where g(t) and f(t) are asymptotic to elementary functions.
Fowler's results are too extensive and intensive to be
presented here, containing as they do, almost complete answers to
the questions of (2).
A particular equation of the type (3) sbove, 1is

Emden's equation, which 1s of considerable importance in astro-

phyeics,
(5) ag—(tag-%) + t3u® - 0.

This equation, and the general class (3), were further
investigated by Fowler, [21], [22], and by Sansone, [4%).

9. Asymptotic Behavior - Continued.
Considering the equation

2
(1) g;g + f(thu = o,

we may ask for simple conditions to set upon f(t) which will
determine the behavior of u as t-—s+ee . One such condition
is that

(2) Tt 1ty &t <o

III-21

It my be shown that this implies that 1im du/dt exists. Actually,

Teoe

109
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this is a special case of a result due to Haupt, [27]:

m 20. Consider the equation

n-1
k
d™ du
(3) ok z Bacl®) S = 0,
k=m0
where
(%) § fa®)] 7'at <o, k=1, ... n
Then the following limit exists:
(s) m  d* 'y

t e Al dtn“

A less general result was given by Caligo, [le], for

n=2, The case n = 2 was proved in a simple manner by M. Boas,

R. P. Boas, and Levinson, [9 ], and a proof of the general case,

based on the same method, given by Wilkins, [52]. Another proof

was given by Bellman, [§5].

§10. Perlodic Coefficients.

Consider the equation
2
(1) du . ¢(tu = o ,

at?

where ¢(t) 1s a periodic function of t.

110

The noted equations of

8-7723



P .

" _" ’ .
et i M . G p—

£ g 1 ,‘

III-2%

Hill and Mathieu are included in this category. The general theory
of this equation is not simple, and we refer to the monograph of
Strutt, [so]), for particulars. We are interested in conditions en-
suring the boundedness of solutions of (1). From the representation

theorem we know that solutions of (1) have the form

n,t n2t
(2) u = C1e P,(t) + Cee 1?‘2(t)1

where M,, M, are conjugate, and -P1(t)1 Pe(t), periodic functions.
In what follows, we shall be interested in boundedness over the
interval -0 { t {+e ., Thus iIf u 1is to be bounded, My ™,

must be pure complex.
The first result in this direction was obtained by

Liapounoff, (36].

Theorem 21. JIf
(3) (a) ¢(t) is continuous with period T,
(b) ¢(t) > o,
T
() %mm < um,

then all solutions of (1) are bounded for -e t ( o

111 B-7723
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For a discuassion of the geometric significance ot this
result, together with a generalization, see Adamoff, [t ], [ ].

If the equation isa written in the form

2
(%) g:%+(a+b\li(t))u-o,
where
(5) (a) a > o

T
(b) S ‘P(t)dt = 0,
0

it might be expected that for b samall enough, the solutions would
be bounded. This theory was developed by Poincar'e, [ 1; see Strutt, [5¢.

However, the general problem of the boundedness of solutions
of (4) has been solved, in many important cases, by Borg, [!°], using
variational methods. Borg considers the following problem:

* Qiven equation (4), where

(6) (a) w(t) has period w ,

X 4
(b) S()W(t)dt = 0

1

w UL
(c) (;— S 1Y) P dt)? = 1, for some p 2,
0 .

to determine the regions of the (e, b ) plane where all solutions of
(4) are bounded in the interval -9 { t ( os .

112 B-7723
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Borg considers only the most important cases, p =1, 2, oe

The case p = oo corresponds, by virtue of the equation

Ll s
- . P P
(1 mxleml = m (5 Solut)\ dt) :

valid for continuous ¢ (t), to the condition

(8) mx (¥ () £ 1 .

oeETtE W
For p = 1, Borg derives Liapounoff's result. For p = 2,
he obtains
Theorem 22. JIf
(9) (a) @ (t) is continuous with period T,
(b) ¢@(t) > o,
¥/2 dae 4
@ § etmiae ¢ 2\ Y ee
x> 1+8in° @ ’
(o} 0
the solutions of
(10) Qi + ¢(thu = 0
at?
are bounded in the interval - a{ t ( +e .

13




'

b s g5t

B R N LTy

1I1-20

Thc case p m=no ylelds

Traoorem 23. If
(1) (a) ¢ (t) 1s continuous with period ¥ ,
(b) o(t) > o0

() max ¢ (t) < 1,

sbte ™

all solutions of (10) are bounded in the interval -e{ t (+es

Furthermore, if
2 2
(12) 0(a%g ¢#(t) b7,

e R e e e e e e e

be bounded 1is that (82, b2) contaln no square of an integer.
As consequences of these results, Borg derives the
curves Jefining the boundedness regions of the (e,b ) plane.
For other results concerning the solutions of (1), we

refer to Hainel, {a5], Haupt, [a7]), Wiman, [5%].

§11. Almost-periodic Coefficients.

As mentiored before, there 13 very little known about
the solutions of equations with almost-periodic coefficients. The
chief handicap 1s the lack of a representation theorem analogous

8-77 Z.
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to that for equations with periodic coefficlents. However, there

is the following result due to Favard, [19]):

Theorem 24. Consider the equation

2
(1) % L, Pt = o0
dt
where
(2) (a) all solutions of (1) gare bounded for -ee{ t {+er .

(b) ¢(t) is almost-periodic in the sense of @hr,'

Then there exists a form
(3) F = au® + 2buv + cv© ,

a, b, ¢ constants, which is almost-periodic, and such that

F ) k > o, forall t, whereu, v aré two solutions of (1).

The general solution of (1) has the form

t t
C
(1) u=0, (F cos(St ® dt) + ¢, [F sin( {o,% it ) ,

(o}

* Which 1s equivalent to saying that ¢ (t) is a ugifom limit of
trigonometric polynomials of the form ZCk e 2k , where the ) X

are not necessarily commensurable.
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where C 13 g fixed constant, and 01, C2 are arbitrary constants.
For related results pertaining to equations with quasi-
periodic coefficlents, see Murray, (4] .

§12. Oscillation of Solutions of u” + ¢ (t)u = o.
In addition to the question of boundedness of the

solutions of

2

du
(1) — + (thu=0

dt? ¢ ’
there 1s the question as to how often any particular solution
vanishes 1in the interyal [to, t], as t=+00e . If 8ll solutions are
monotone, it 1s clear that each solution vanishes at most once. For

further use, we introduce the following:

Definition. If a solution of (1) has an infinity of zerces as
t»vee , it 13 said to be oscillatory; if not, it is said to be
nopn-ogcillatory.

There 'is a close connection between the boundedness and

oacillation of solutiona. However, oscillatory solutions may be
unbounded, and vice versa.

The first rééqiis concerning the oscillation of solutions
of second order linear differential equations were obtalned by Sturm.
8ince then a vast body of research has arisen connected with this
topic. However, since most of this has been done in connection with

eigen value theory, we shall refer the interested reader to Bdcher,

(8 ], or Ince, [30], and go on to discuss some problems connected

116 8-7723
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with the behavior of solutions of (1) over an infinite interval.
We shall begin with general properties and then, by

imposing more restrictions upon ¢(t), obtaln more precise results.

Kneser, [3%)}* pointed out that the following results

were immediate consequences of Sturm's results:

Theorem 25. If

(2) () ¢(t) is continuous for all finite t ) tos

(b) lim ¢(t) > o0,

t s

then every solution of (1) which has a continuous first derivative
1s oscillatory.

Theorem 26. JIf

(3) (a) ¢(t) is continuous for all finite t ) t_,

(b) ¢(t) <o, tp t,,

then (1)has no oscillatory solutions. Every solution with a

contimious first derivative must be monotonic and —> 0 or + o as

t>+0e ,

An immediate application of this result is to the solutions

of Bessel'!s equation

2 2
y Jl Qu 1-p_

#Kneser's original statement is incorrect, cf. Fowler, 23], p. 290.
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The substitution v= ut yields

| 2 : a2
| (5) L, 1+ Sy vmo,
i dt t
\i which 1s amenable to Theorem 25.
l\:{ The above theorem may be obtained by comparison with
" 42 "
] (6) >+ 8°u = 0.
‘1 dt
T
L ‘q With this fact in mind, it 1s clear that if we possess sufficient
'? information concerning the solutions of
[
k 2
‘ \7) ua + a(tlu=o
H dat
;
,'.!' where a(t) is an elementary function, we may obtain other oscillation
i theorems. A simple choice for a(t) 1s 1/4t2, since the substitution

!
1 t = e reduces (7) to an equation with constant coefficients. Thus

we have the following result of Kneser, [S#]:

A
L]
».ﬂ Theorem 27. If
| (8) () @(t) is contimous for all finite t) &, ,
(i (b)  m t2¢(t) < 1/k,
’ toee

all solutions of (1) will be oscillatory.

R
. 118 8-7723
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solution will oscillatory. .

For a generalization ot this result, see Hille, [a%].

Kneser, [34]), also considers the more general equation

(10) &% + fth=0, n>e2

Powler, [23], extended Kneser's results, and there are also
extensions by Pite, [20], who considers the equation

n

-1
(11) du |, ) u 4 gtlu=o .
dtu dtn-1

Kneser did not use the Sturmlan comparison theorems to obtain
theorems 25, 26, 27, and thus was able to treat more general cases

where the comparison method would fall.

§13. Oscillation of Solutions of wu® + f(u,t) =o0 .

Kneser, [34), extended his results of the previous section

and proved theorem 28. Consider the equation

2
(1) 'g;% = f(u,t),

where

(2) (a) f(u,t) is continuous for all u, for t 3 to,
(b) f(u,t) has the same sign as u,
(c) A solution of (1) is determined by the values of u and

8-7723
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u' g int in the interva to‘t(oo

Then only one of the functions u, u' can vanish,at most

once,for t 2 tys

Purthermore, as t — o, two cases are posgible,

(3) (8) u—>+ oo monotonically, or
(b) u and u' —o, both monotonically, one increasing, the

other decreasing.

In the simple case f(u,t) = f(t)u, we have the following

result: Theorem 29. JIf
(&) (a) u®" = f(thu
(b) f£(t) >0, ¢t >,to,

(c¢) f£(t) has s contipuous first derivative for t > tos

there exlsts one solution — 0 as t — o, and all other such are

constant multiples of the first.

This may be compared with the following result of Bdcher,

[$], cf. Osgood, [%i]:
Theorem 30. If

(5) (a) u® = f(thu
(B) 0 <y € £(t) £ ¢,

This, in turn, is anmalogous to a theorem of Wintner's, [57):

120 8-1723.
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Theorem 3'. Consider the equation

. .
(6) Q—ég + (1 +d(t)u = o,
at

where d(t) >0 as t —00.

If (6) has one sojutiop u-—>0 ags t —>w®, there 1
apother ution which —=?o00 g8 t —m . .
As Wintner points out, this is a consequence of the fact

/

that the Wronskian

.3
Fd >
et . M . M

-:? (1) W(t) =
X
‘ >§‘v of any two solutions u, v of an equation of the form
K :
' (8) €U, f(th = o
b at
i
i is a constant.
{ Using Kneser's methods, Butlewski, (1 ], (3], [I4], extended
- Kneser's results, and proved
i Theorem 32. Consider the equation
4
' ’ (9) = et) )+ rut) = o,
y '
: | cN where
4 H
E 3 (10) (a) o6(t) is differentiable for t 2 to’
! (b) e(t)>0, t >t ti&? 1/6(t) > o.
i - (c) f(u,t) is continuous inu and t for t 3 to
2

121
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A solutionp u of (9) is determined by the values of
u and u' at any point in the ipterval o ) t 2 ty.
f(u,t) has the sigpn of u.

If m u(t)=gdo, 1im f(u,t) Do,
t >® t— 00

If lim u(t) =g <o, 1lim f(u,t) € 0,
t—s 00 t—,m

Then every solution of (9) 1s osc.llating..
The following result was obtained by Picard, [45):

Theorem 33. If

(1) (a)
(b)
(¢)
(d)

(o)

8(t)= 1,
f(u,t) increases constantly as u does, u ) o,
f(o,t)= o,

:_u f(u,t) > 0, and decreases as u increases, u ) 0,

-f( -u,t) has same properties as f(u,t),

every solution of (9) is osclllating.
The folldwing result was obtained by Milne, [ 39):

Theoren 3.
a2 L

dt
where

Consider the equation

+ d(t) f(u) = o

(13) (a) d4(t) i3 positive, contimious, monatone increasing,

and bounded for t 2 ty

(b) f(u) is odd, monatone increasing, and |f(uy)-f(u,)!

122 B=-7723
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|
} (c)g%-o,u-u,,for rrz._‘,o,

(d) lu1l < a4, f(u1) = 0,

' ' Then u 1s oscillatory, and its amplitude decreases monstoni-

J Butlewski, [13], pointed out that results similar to those
X ‘J . of theorem 32 can be obtained for

'ﬁ (14) & (op t)f (o, ) o Flet) E L) sty =0

‘?

-q‘ As corollaries of theorem 32, we have the following results:
-‘% Theorem 35. Consider the equation

¥ n

‘ d_ u 2141

j 0 & (e @) « = 4,0 & 2o,

J . .

.{'3 .

{‘JI (16) (a) o(t) is differentiable for t 2 to,

3l

i (b) ¢ 21+1(t) 1s continuous and positive for t 2 tos

{ (¢) 1im 1/e(t) > o,

t— o0

3

(d) 1lim ¢ (t) > o.

1. . t— 21+1
) ‘} ‘
W Then every solution is ogcillatory.

i Theorem 36. Conslder the equatior

]

i~ | an @ (et)P) + e@) fw = o

' where
i " 8-7723
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(18) (a) 1im 1/6(t) > o,

t—> o

(b) eo(t) is differentiable for t 3 tys
(c) ¢ 1lim o6(t). > o,

e 3o o]
(4) 1im f(u) > o, 1im f(u) € o0,
u — +Q@0 u —» -

(e) f(u) 4is continuous for all finite u, ¢(t) for t 2 to'

Then every solution 1s oscillating.
The equation

2 .
(19) ;‘t—; + f(x) = g(sinw t)

is important physically. For reference to previous work on this
equation, and its physical origin, we refer to John (31 ]: where varilous
boundedness and oscillation properties of the solution are given.
Butlewskl (i%#) also obtains results for non-oscillation,
which generalize theorem 28. He also investigated the zeroces of solu-

tions of systems of differential equations of the type

(20) oy,
FdE = &y By, + 8, (8) 7,

dy2 .
I 821 (£) 7, + a,, (t) ¥, ,

Butlewskl, [1%4].
§14 Megnitude of QOscillations of Solutions of u® + ¢(t)u = 0.

In this section, we shall discuse the equation

*For a comprehensive report, see Friedrichs and Stoker, [f].
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) ) (1) 13% + $thu = o
dat

with particular reference to the following questions:

(2) (a) What sre the magnitude and frequency of the oscilla-

tions of solutions of (1)?
K (b) What is the megnitude of du/dt?

ki By imposing some conditions upon ¢ (t) which are satisfied
for a large class of elementary functions, these questions may be ans-
wered completely. However, we shall begin with some general results

first.
Theorem 37. 1If

S G g o ot w

(3) (8) $(t) >0, t2t,, &(t) 200 ast —ow,

(b)  ¢(t) 1s wonotone increasing,

_—e e
.

then every sojution of (1) —0 g3t —wm.
This result is due to Armellini, [3].
If an additional condition is placed upon ¢ , we can

estimate the order of smallness of uast — . Thus:

Theorem 38. If

(4) (8) ¢'"t) Do, tit,

. (b) ¢'(t) 4is non-incressipg,
y (c) tlim $(t) = o,

—» 00
every solution of (1) — 0 gs t —co. However, 1Tim  lu(t)[§(t)]
t — 00
is positive.
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By analogy with the equation

2 .
(5) gtJal + aau - 0,

we might expect that the quantity ,I;(t) would play an important
role in determining the oscillation of the solution. This is
actually so. Let us begin the discussion with the following result

due to Petrovitch, [#):

Theorem 39. Consider the equation

2
(6) :TQI' - ﬂt)u,

in which ¢(t) > 0 for a & t€ b. [et u be the solution satis-
fying the boundary condition u'(to) = 0, aét ,&£b. Thenu

writt
T =T
(7) u = Q_%_ )
where
(8) T = (t-to)llp(s) , toe8 &ty

and s depends on t
Thus the solution 13 comprised between

(9) T, T, T, T,
e - and e "+ °— ’
2 2
where
126 8-7723
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(1) T, =(t -t) {Ime(s), T, = (t -t,)d 1m # (),
t°‘~ s ¢t.

If ¢(t) < o, the solution in the interval between two

successive zeroes, t1, t2, has the form
(11) u=cos T, T-(t-to) J-qp(s), t,e8 st

Thus

v

(!
N T Y = 1 1

Hence the length 1, of & half-wave satisfies the in-
equalities

(13) — < 1 s t.e8 ¢t,..
TR(-¢(N) ! Jim-en * ! 2

In connection with the above results, the following results

are interesting. The first is due to Osgood, [%1], the second to
Murray, (%),
Theorem 4o0. JIf

(14) $(t) >0, t O t,,

the general soluytion of (6) bas the form

L t

§ A e, GRS
t o

(o]
u = C, 9o +020

(15)
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III-4o0

where N, (t), %2<t)>,o, t > t,, and bounded if ¢(t) is.
Theorem »1. n:'

(16) (a) ¢(t)>o,
(b) ¢ (t) is monotone,

the amplitudes of solutions of (1) vary monotonically, increasing
when ¢(t) is a decreasing function, dec;gasigg otherwise. Furthep-
more if ¢(t) remainé finite as t — oo, the amplitudes remain above

a certain bound, depending upop u(o).
Ascoli, (4], considerably extended Osgood's results and

M{“.A&..&uﬁ_f M/_A_i.«_____._-.__.' =

2
oo

ey Al o

s
PR

proved the following:
Theorem 42. If

(17) (a) ¢(t) 1s_monotone,

(b) ¢(t) — a2 as t — oo,

then, if u satisfies (1)

(18) 1im max Ju] = c,
t— o0 o0sgsst

1im mwx.. |u'] = c,
+t—> 0 0éss¢t

and ca - ac1 .

1L ¢(t) is nop-decreasing, max

0é3e¢t

lut]

13 pon-

R TR AR AU T

ipcreasing, and approaches 8 finite limit as t -2 00, mx Ju?!|
; O¢ss t
13 _nou-decressing, but may approach o 83 t — oo.

8-7723
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If ¢ (t) 1s non-incressing, the above results hold

. with u and u' interchansed.

Theorem 39 shows the importance of the quantity 1 #(T),

and we shall now discuss more precise results. Bilernacki, [7],

showed
Theorem 43. If
(19) (8) ¢'(t) Do, t 3 t,,

(b) ¢'(t) is pop-decreasing,
(c) ¢(t + 1/ [g®)) / ¢(t) —18 t Do,

every solution of (1) —0 as t — oo. However, 1im Ju(t) {é(t)l
TH o
is positive.
Milloux, [38), took up this question using the transformation

(20) u = pPCOS O, 8 = ¢ S%& s

used by Fatou, [it], which reduces (1) to the non-linear equation

2 2
(21) d_,g - c_} + r¢(t) = o0
at r
His result is

Theorem 4. If u gatisfies (1), and
(22) $(t) >0 as t—om,
then for intervels  (t,, t,), such that

(23) é(t,) é(t,) =1 g8 t,,t, —oo
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we have
A/

(2%) u = JT (L) O+ e(t)), t¢étgt,

1/h
where e(t) —0 a3 t —oo. Hemce Iim l¢(t)/ ul > JT.
t >m

Continuing in this vein, Wiman, [5¥], imposed the following

condition upon ¢ (t):
Condition A.

(25) A, Y =

$(t)

This holds if, for example, ¢1/¢5/2 —>0 ast — .
Using this condition Wiman, [5Y], proved
Theorem 45. If condition A is satisfied, where ¢ (t) —>o as
t -—-Dco, then if A(t) is the interval between two successive

zerces of a solution of (1), we have

(26) un AW {e(E) _ 1
t—o v
Purthermore, if both ¢ and ¢ ' satisfy copdition A,

the amplitude of u is of order ¢(t)™'/*, and that of u' of order
¢ (t)'/* a4t the zerces of u, as t —®.
Related weaker results were proved by Horn,
Using Condition A, Wiman proved:
Theorem 46. Jf conditiop A is satisfied, apd u satisfies
(27) u* =  @(t)h,
8-7723
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where ¢(t) > o, then
28 1im "'12'1"""' - 1 ’
(28) t—> o0 u]¢(t)

iu Jonesral, but there exist solutions for which

(29) 1im 2 = =2
t— o0 u J¢(t)

For further results on the magnitude of the oscillations, we
rei'er to Blernackl, (7], who considers non-linear equations, Fowler,

3}, Milloux, (as], Wiman, (5], [ ], and Wintner, (55).

§18 Non-Oscillation Theorems.

We now consider some conditions which ensure that po solu-

tion of

2
(1) du . Pt = o

are oqcillatory.
One of the principal tools in the study of the linear

equation (1) is the non-linear Riccatl equation

(2) g% + vZ 4+ 0(t) = o,

satisfied by v = u'/u,
The connection between the two has been known ever since

Buler, and (2) was used by Poincaré, (#¢]g In the form of the non-
8-7723
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linear integral equation

(3) w tsoo 2dt+t§°° ¢ (t)dt w = tv
. t ’ ’

it 1s used by Hille, [¥9]), to derive the results below.

T}le_q_m 47. If (1) admits one solution such that

(%) 1lim u = 1 5
t =
then its gepseral solution hasg the
(5) u = c1( 1 +E1(t) ) + cat( 1 +!2(t) ),

where !1, "2 —>0 as t—w.

eve golut ] -os8ci 0

Theorem 48. If

©
(6) § tlg)at ( o,

there 1s a solutiop u of (1) such that 1im u = 1 . Mpeover,

.t
o)
(1) Ju - 1] € ( exp St tl$lat- 1) .

Conversely, if ¢ (t) hag constant gigp, and there exists

u uch that 1;lj.m u—>1, the ¢(t) satisfies (b).
E5ren then :

Theoreg 49. If

1723
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o0
(8) C t2lgt)at ¢ o,

lim (u~-t) = o.
t— o

there is & solutiop u of (1) such that
Iy  ®(t) has constant sign for large t, (8) is necessary

cient t lim (u -t) = o.
t —o0

Theorem 50. If

(9) (a) m(t) 1s a positive nop-decreasing functiop,

oo

) § alt)g ¢ o,
t
thep if (1) has pon-oscillatory solutions, we must have

(10 fo,u(t) l¢(t)] ot < o

Theorem 51. (Consider the two eguations

(1) (8) u" + #,(thu = o,

(b) v* + @ (tW = o,

Define

8

(12) g(t) = t § 6 (t)at

8("

Bo(t) = t .St ¢,(t)at
I the solutions of (a) are npon-oscillatory, and

133 8-7723
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(13) 84 > 8 » t s to ’
then the solutions of (b) are pon-oscillatory.

15, Non-Qscillatiop Theorems continued. Consider the

equations

2 du .
t = p1(t) at ~ pa(t)u - q(t) = o0, ¢ *tO’

Q0.

(1) (a)

o,

2
Y- pt) $E - pitw - alt) > o,

b
) e

where u(to) = u, = v(to), u'(to) - u(; - v'(to), and

Py» Py, 4 are contimuous functions for t > t,.

It 1s clear that v ) u in some interval t, ) t ) t,, and
the question arises as to the length of this interval. The original
result is due to Tchaplygin, and a partial converse to Petrov,
43). The ‘result below gives tﬁe best possible,bound, and is due to
Wilkins, [53].

Theorem 52. [let u, v gsatisfy i(a) and 4{(b). Then v ) y for

t, > t > t,, provided there exists & solution u of 1(a), which does
pot vanish for t, > t ) t,.

A related result is the following theorem due to Polya, M7):
Theorem 53. Jet the equaticm

(2) L) = uf®up ey u®M 4 0 sp(t)u = o,

gegs the low rope s

8-7723
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Property W: There exist (n - 1) solutions uy, Uy, eees Upgs OF
(2) such that

(3) u, > 0, W(u,u) ) 0, ..., W(u,u,eeeup,) > O
a (t {0,
where
u, ul ... u§k-1)
(4) Weay g eenty) = |y
' k-1
u uwoo u)

Then if u(t) vanishes at (n+1) points in (a,b), there
exists an intermediate point such that

(5) L u(y) ) = o.

A somewhat related result, which is a generalization of

the uniqueness theorem for differential equations is due to Pite, [20).

Theorem 54. Consider the system

dy
(6) g
dt = ‘5’1(y1,y2, ceey Yn,t) ’
where
n
(1) | $.(t,y) - F4(t,2)] ¢ k% Loy -

for v, ®, arbitrary. et (¥,,3,s+-+» Jp)» (¥),%,...,%) be two

8-7723
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golutions of (1) guch that .
(8) yk(tk) - k(tk)' k = 1,2, ;--:. n, a¢ tk $h,

where the t, are any n points of the interval (a,b) of lengthp .

Then
(9) P> :
9 n
Z &
ke
ence 1
(10) "'1 (t,0,0, ..., 0) = 0,
po pon-identically ygm_.sn;gg solution of (6) can have all its compopn-
ents vanish individually at points inside an interval (a,b) of length

p, if p satisfies (9).

Since every n-th order linear differential equation can be
converted into a system of the type (6), the above result can be inter-
preted in terms of the vanlishing of the solutions and its derivatives,

Cf. Fite’ m.]o
If the 1, are functions of t, 1, (t), conditlon (9) can be

replaced by

kw1

8-7723
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. Introduction

In this chapter, we shall consider the behavior of solu-
ions of difference equations of the type

(1) z (t +1)=PF(z (t),t). t=0,1,2, ... .

Here, as in the case of differentisl equations, z(t) is an n-
dimensional column vcctor, and F(z(t), t) is a vector function of
z(t).

A problem which has been extensively investigated in the
modern theory of difference equationsis the question of the existence
of amalytic solutions of equations such as (1). There is an exten-
sive literature on this uubject,' cf.Norlund, [9]), Trjitzinsky, [1e].
Recurrence relations of the type (1) occur very frequently in ap-
plied mathematics, and then the question of interest is usually the
behavior of z(t) as t—> oo. If the equation is non-linear, it
is, in general, impossible to solve for z(t) in terms of elemen-
tary functions, and, as in the case of differential equations, re-
course must be had to other means.

The technique of power serlies solutions of differential

equations generates recurrence relations of the above form. If we

consider the differential equation

(2) £ - 2, 20 =z,

and try a solution of the form

s-7723
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J (3) z =z, 4+ 5 y(nlt ,

upon equating coefficients of t2, we obtain an equation of type (1)
for y(n). This equation, however, is slightly different from the
one we shall consider below, since the form of F(z,t) changes with t.

A different technique applied to the differential equation

(2) ylelds precisely the form of equation we shall study. Let us

try to approximate to the solutions of (2) by means of the solutions

Ay

/7
/

of

(k) Z + — - f(Z), t-O,h,2h, oo

Since difference equa.tiohs are essentially aimpler to
handle than differential equations, the equation in (k) can be used
to derive many of the properties of the solutions of (2), cf.Bellman,

("

— Mdu‘g”l; o

We shall treat the case where P(z(t),t) is approximately

ety WA ool o

linear, that 1s,

(5) P(z(t),t) = HA(t)z + f(z,t),
1 where
4
E (6) Nez,e) 1/ izl € e,
o
and c, is a "small”® constant. The theory is completely parallel
- to that for differential equations, and in light of the relation

between (2) and (4), that is not very surprising.
# fThe idea of approximating to a differentisl equation by a dif-
ference equation 1s a very old one, and has been used by many

authors. 142 _ o o - SN 2415
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As in the case of differential equations, the equation
(7) y(t + 1) = Ay(t),

where A 1s a constant matrix can be completely solved in terms of

elementary functions. To treat the non-linsar equation
(8) z(t + 1) = Az(t) + £(z) ,

we shall express g 1in terms of y. Here a peculiar difficulty
arises. This may only be done if det A ¥ 0, or, equivalently, if A

has no zero characteristic roots. If det A= 0, we see frouw the

metrix equation
(9) Y(t +1) = AY(t), Y(o) =1,

that Y(t) 1s singular for every t > 0. This 1s in contrast to the
state of affairs for differential equations, where Y (t) 1is never
singular, as long a8 A(t) 1is integrable. This difficulty is not
serious., The zero characteristic roots may be isolated, and the final

results are analogous to those for differential equations.
2. The equation y(t + 1) = A y(t), A g constant matrix.
To solve the equation

(1) y(t+1) - Ay(t)’ t-o’ 1, 2’ ses
where A is constant, set y(t) = ¢ A t, where ¢ is a constanrt vector,

and A 1s a complex constant. Upon eliminating ‘,\t, we obtain

143
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(2) Ac = Ac,
whence if ¢ is non-trivial,

(5) . 'A"AI' n 0,

the familiar characteristic equation. To every roce A of (3)

there corresponds a solution of (1),

(%) vy = c(a)ab.

If A 1s a multiple root of multiplicity k, there will cor-
respond k solutions of the type, (in eeneral),

(5) e A%, ) tat, L, gy T

If A is complex, the real and imaginary parts of the above

solutions furnish the real solutions of (1).
If det A& 0, the n solutions found in this way constitute

a fundamental set. Let Y be the solution of
(6) Y(t+1) = AY(t) , Y(0) = I.

Then Y (t) is unique; for if W = YU 1s another solution,

(7) Y(t+1) Ut +1) = AY(t)U(t),
or since Y(t) is nmon-singular,
(8) D(t+1) = U(t) = UG) .

If A has zero characteristic roots, we may put A into the

144 . ' 0-1723
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form
. L, 0
(9) A =
(o] B 0

where L, is a matrix of order k corresponding to a k-multiple zero

root.
Since :I..1 is composed of mstrices of the type,

(10) ‘e

along its diagonal and det B & 0, the solution of (6) will have the

form

0 0
(1) Y(t) = (o Y1(t)\ ,

where Y1 is non-singular. Hence, if we are considering the linear
case, the zero characteristic »ools may be ignored. However, in

treating the perturbed linsar equation

(12). Z(t + 1) = (A + B(t)) 2(¢t),
or the non-linear case

(13) z(t + 1) = Az(t) + f(z,t),

the zero characteristic rqots must be considered.

1723
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From the form of th o lution it is seen that the

" ecircumference of the unit circls in the complex plane 1s a bound-

ary of two regions of importance in the discussion of the bound-
edness of solutions of the difference equation. To roots lying
inside the unit circle there correspond manifolds of solutions
tending to zero as t — 00; to roots lying outside the unit circle,
there correspond manifolds of solutions tending to w as t —w o;

roots on the unit circle present. elther case, depending upon the

form of their eleientary divisors.

3. An Important lemms

1et us consider the two equations

(1) y(t + 1) = A y(t)

(2) z(t + 1) = A z(t) + w(t)

where det A # 0 and A 1s a constant matrix. The following result

is then valid.

lemms 1. e_hav

t
(3) 2t e )=yt o) o 2y V(e -t WE),
1-

where y(t) 1s the solution of (1) with the same initial value as
z, and Y 1s the solution of

(&) Y(t+1) = AY(t), Y(0) = I

Proof: We use the method of variation of parameters. Let

8-1723
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(5) z =Yu
Then
(6) Y(t+1) u(t+1) = AY(t) u(t) +w(t),

and since Y(t+1) = AY(t), det¥Y ¢ O,

(7) (1) = u(t) + Y 7(t4) w(t) .
" Thus
! =}
(8) u(te1) = u(0) + 2 Y Tty 41) wity);
"= 3
whence
t
(9) 2(t+1) =Yu = y(t+1) + ton(tn)Y“(t,n)u(t,).

1

This 1s the general result that holds for A a variable
matrix which is non-singular. If A is constant however, we shall
show that

(10) Y(t#1) Y7 (t,41) = Y (t-t,) .

This follows from the uniqueness of the solution of (4).
The right side is & solution with the value I at t = t,, and the
same is true of the left side. Thus equality for all t.

If A has zero characteristic roots, we write it

(11) A = ¢ (L‘ o\ c
o B

147
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where C 13 a non-singular elementary matrix, det B & 0, and L1 ' \

13 the matrix corresponding to the multiple zero root. The
change of variable Cz = z transforms (2) into

L, o\ -
Z(t) + Cw(t).

(12) Z(t+1) = (
0 B

Now decompose z into the two vectors z,, 52, where 51 1s
a k-dimensional column vector, k the multiplicity of the zero

characteristic root,
) z 4
(13 2 = ~
Z,

then (12) becomes

(14) z,(t+1) = L, 2, + W o
(15) 22(t+1) = Bze + W, ,
where

(16)

Q

-

.;
——
= =)

n -
\/

Equation (15) may now be treated by means of Lemma 1,
and (14), because of the special form of L,, may be handled directly.
b, e Linear Equation z(t+1) = (A+B(t)) 2(t). ’ ‘
| The analogue of Hukuwara's theorem for differential

equations, Theorem k of Chapter 1, is valid.

8-7723 b
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eorem 1. If

() (a) A 1s a constent metrix,
(b) §; IB(t) Il ¢ o,

t=0
(c) all solutions of y(t+1) = Ay(t) are bounded,

then all solutions of

(2) z(t+1) = (A + B(t)) z(t) ,

are bounded.
There arise extra complications due to the possibility of
det A being zero, but these may be taken care of without undue dif-

ficulty.

5. The Non-Iinear Fquation z(t+1) = Az(t) + f(z) : I

Before proceeding to the discussion of the boundedness of
the solutions of the non-linear equation when A is a constant, we
shall exhibit an example due to Ta 1Li, [15]), an anslogue of one of
Perron for differential equations,illustrating the dangers of intui-

tion.

Theorenm 2. ere exists ti ft

(1) y(t+1) = A(t) y(t),

with ]lA(t) || bounded, with the property that every solutiop of
(1) > 0as t—m, apd such that pot every solution of

(2) g(t+1) = A(t)z(t) + f£(z)

149 8-7723
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where f(z) 1is s non-linear term, tends to zero as t—> oo, apd such
that there exist unbounded solutions of (2).

A a) is

(3) 7, (t+1)
To(t+1) =
Z.I (t+1) =

22(t+1 ) o

e™® y,(t),

X 4
1/2 {a( B&— |

o(s1nlog (t+1) -2a)(t+1) - (sin log t-2a)t 7,(t),

e 2 z,(t)

o(8in log (t+1) -2a)(t+1) - (sin log t‘23)t22(t) +

212(t) A

6. The Non-ILinear Equation 2z(t+l) = Az(t) + f(z) : II..

The following result is due to Perron, [w0]:

Theorem 3. If k, k { n, of the characteristic roots of A lie in-
gide the unit circle, thepe 13 a k-dimensional man' f0ld of solutiong

of

() z(t+1)

Az(t) +

£(z)

which —> 0 as t —>+o0, provided that

(2) lHez) 11/ 1zl = o

as llz]] —> o.

all characteristic

every solution of (1) for which ]|z(0)]]

150
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approaches gero as t —) o, provided that (2) holds.
Similarly, we have, Bellman, [I]):

Theorem 4. If all solutions of
(3) y(t+1) = A y(t),
A g _constant matrix, are bounded, then all solutions of

(&) z(t+1) = A z(t) + £(z,t)

are bounded, provided that
(5) () Mzt 11/ Nzl £ at), Ml 21l £ ¢,

(o)

(6) 3 glt)t < o,

(¢) 1lz(o) 1l clent

Por a further discussion of non-linear difference equationa,
containing results corresponding to theorem 8 of Chapter 2, we refer
to Ta 11, [15).

7. A_symptotic Behavior of Jolutions.

Since all the classical orthogonél polynomials, e.g.
Llegendre, laguerre, Hermite, Jacobi, satisfy recurrence relations

of the type

(1) P, + a(m, x) P, + &,(n,x) P, = 0,

the importance of an investigation of the limit

112y
10
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by means of the theory of difference equations,to the theory of the

convergence of the orthogonal serles

(3) = s P

I

is readily seen.
/
This investigation was begun by Poincare, [i12], and continued

by Perron, (/). Independently of Perron, Ford, [4], using methods of

Dini, (3], began the study of the more general question of the
asymptotic behavior of solutions of difference equations of the form

(&) z(t+1) = (A + B(t)) z(t),

[IB(t)Il—>» oast —> o0 .

where A 1s a constant mtrix, and s
We shall begin by presenting Poincare's original result. :

Theorem 4. Consider the difference equation

n-t

(5) u(n+t) + Z e’k(t) u(t+k) = o0,
k=0
where
(6) (8) (2155 a(t) = &, :
-1
(b) the equation r® + kz akrk = 0 hag
wu( .
i
all its roots real and distinct.
Then the 1limit '
(1) lim u(ts+1) )
t— u(t) = a2 ) -
152 . .. ‘
{
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exists and r, 1s 8 root of the equation of 6(b).
i

There are generalizations of this result due to Perron.
Por these results, and references, we refer to Norlund, [?].

If instead of & result such as (7), we wish a result of the
form

(8) u(t) ~ ot

it 1s necessary to know something of the order of magnitude of
8, - & (t) as t—> . The following result is due to Ford, (S5]:

Theorem 5. Consider the difference eguatigg of (5), where

(9) (8) lay - & (t)]  ¢(t), 88 t—> o,

oo}
(b) 2 .(t) { o ’
t

n-1
(c) the roots of r"+ kZ ak!J‘ = 0, real or
= .
complex, are distinct.
all the ts have the u 5
e t t
(10) u(t) = 2:1 Cry + Irgl” e(t),
where &(t) —> o0 as t —> . :

This result may be extended to obtain a result correspbnding

to Theorem 31 of Chapter 1I.

The second order equation

-1725
183
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(1) u(x+2) + ao(x) u(x+1) + 31(x) u(x) = 0

-

was considered in detail by Ford, [S), where other references are
glven. As application, Ford shows that various asymptotic formulas

for the legendre polynomials may be derived.

8. Magnitude of Solutions of Non-Linear Difference Equations.

Results analogous to those obtalned for cdifferential

equations have been obtained by lancaster, [7], and Shah [i13].

9. Difference Equations with Arbitrary Real Spans.

The difference equation

n
(1) E' ag(t) u(t+dg) = o

where the ds are real but not commensurable is much more difficult.

Gensralizations of Poincaﬁg's and Perron's results to this cace have

been given by Bochner, (2], and Martin, ([g].
The study of equation (1) requires much more complicated

mathematical apparatus than the case treated previously. The limiting
case of (1), namely, differential-difference equations of the type

n
(2) Yy (teay) 2 Z: (t) diu(t+dj) = 0
dt 1J dt
j=1 1=0
has been studied by Hilb, [&], where further references are given.
The non-linear equations corresponding to (1) and (2) have

been studied by Bellman.



P

- H ™
o) o i / 5
s L BRSNS, SRR 2 .

e

2 mp ad

1.

12.

13.

14,

Y

Bellmsn, R.,

Bochner, 8.,

Dini, U.,

Ford, W.B.,

- m— .-

Hilb, oO.,

LA A A )

Bibliography - Chapter I¥ , . .
N L

¢

On the boundedness of solutions of non-~linear
differential and difference equations, Trans.
Amer. Math. Soc., vol. 62 (1947), pp. 357-86.

Allgemeins lineare.Tifferenzgleichungen mit
asymptotisch konstante Koeffizienten, Math. Zeit.

33 (1931), pp. 426-50,

Studl sulle equazioni differenzialil, Annalil di
Mat., ser. 3, vol. 3 (1899), pp. 125-183.

Sur les equations lineaires aux dif.erences
finies, Annali di Met., 13 (1907), pp. 313-328.

On the integration of the homogeneous linear d.f-
ference equation of the second order, Trans. Amer.

Math. Soc., 10 (1909), pp. 319-336.

Zur theorle der linearen funktionalen differential-
gleichungen, Math. Ann., 78 (1917), pp. 137-170.

lancaster, 0.E., Some results concerning the behavior at infi-

Martin, W.T.,

Norlund, N.,

Perron, O.,

- - -

Poincaré, H.,
Sh&h, S.Mo,

Spath, H.,

nity of real continuous solutions of algebraice
difference equations, Bull. Amer. Math. Soc. 46
(19%0), pp. 169-177.

Linear difference equations with arbitrary real
spans, Acta Math..,. 69 (1938), pp. 57-98.

Differenzrechnung,Berlin, 1924.

Uber Statilitat und asymptotisches Verhalten der
Integrele von Differentialgleichungssystemen,
Meth. Zeit., 29 (1929), pp. 129-160.

Uber die Poincarésche lineare Differenzgleichung,
J. reine angew. Math. 137 (1910), pp. 6-64.

Sur les equastions linfaires aux différentialles
ordinaires et aux différences finies, Amer. Jour.
of Math., vol. VII (1885), pp. 203-258.

On real continuous solutions of algebraic dtffer-
ence equations, Bull. Amer..Nhth. Soc. 53 (1947),

pp. 548-558.

Uber das asymptotlsches iVer;ﬁéiten der Losungen
ni.chthomogene linearer Differenzgleichungen, Acta
Math. 51 (1928), pp. 134-108, h

158 8-7723



] \ i
- -2 - i \
15, Ta Li Die Stabllitatsfrage bel Differenzengleichungen,
J Acta. Math., 63 (1934), po. 99-141.
.J 16. Trjitzinsky, W.J., laplace integrala and'facr.ortal series in
i the theory of linear differential and linear dif-
ference equations, Trans. Amer. Math. Soc., vol.
i 37 (1535), pp. 80-1ko.
:
3
. ]
1
b
i
]
3
;3
{
.
y
{
g
3
- i
| -
g
(;:
b g
E
Y 2 156 0-7723
b &
:

Y
PR T
A




TITLE: A Survey of the Theory of the Boundedness, Stabiiity, and Asymptotic Behavior of ﬁ;’:m67523
Soiutions of Linear and Non-Linear Differential and Difference Equations (None)
| AUTHOR(S} :Bellman, Richard . ORIG. AGENCY NO.
ORIG. AGENCY : princeton Univ., Mathematics Dept., N. I. | mm( one)
PUBLISHED BY :Office of Navai Research, Washington, D. C. NAVEXOS P-596
DATE , U.5. QLASS commv LANGUAGE PAGES | NLUSTRATIONS
Jan '49 Unciass. English 156 (None)

ABSTRACT:

A survey was made of the theory of the boundedness, stabiiity, and asymptotic behavior
of soiutions of iinear and noniinear differentiai and difference equations. Boundedness
and stabliity are quaiitative properties, while asymptotic behavior is quantitative; aii
three are ciosely interreiated, and it is not easy to separate results into categories
pertaining to one or the other property. The restriction to reai differentiai equations
has materially iimited the scope of the results concerning asymptotic behavior.

| DISTRIBUTION Copies of this repurt citainable from CADO.

DIVISION:Sciences, General (33) SUBJECT HEADINGS: Equations, Differentiai
SECTION: Mathematics (3) Equations, Linear
Centrol Air Documents Office AIR TECHNICAL INDEX

Wright-Patterson Alr Force Basa, Dayton, Ohio USN Contr, No. N8-ori-105




