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1. Introduction and Background 

Proper and detailed identification of short DNA oligonucleotides has been a long-
sought goal of molecular biologists and medical researchers. These nucleic acid 
fragments are used to locate and analyze identical base pair sequences in full 
strands. Compilation of their nucleic acid sequences within a genetic library would 
pave the way for improved forensic analysis, genetic testing, and DNA production 
processes.1 Other medical applications include earlier disease detection to initiate 
gene therapy, as well as a thorough analysis of metabolic behaviors dictated by 
mRNA.2  

Within the submillimeter-wave frequency range of 0.01–10 THz, DNA molecules 
exhibit several types of internal vibrations. The nature of these movements dictates 
biological processes, such as transcription and replication of genetic material.3 
Some occur between base pairs because of their weak hydrogen bonding 
interactions; others stretch, twist, and bend the entire double helix structure.3 These 
features, when measured via terahertz technology, reveal specific features of a 
DNA code.4 This terahertz spectral range has proved difficult to use with organic 
material. The high absorption of water in aqueous solution masks the weaker 
magnitude of absorption in biological materials.  

An emitted terahertz electromagnetic wave released from a semiconductor antenna 
interacts with the array of metal holes along the metal mesh located on the path of 
the emitted terahertz wave. This interference generates surface plasmons—electron 
density waves that propagate laterally across the metal surface. The interference of 
this surface plasmon with the impinging terahertz wave is registered as a plasmon 
peak on a spectrum. The surface plasmon always propagates across the interface 
between the metal mesh and the dielectric (which is the DNA sample in our case). 
Its properties are a function of dielectric properties of both the metal and the 
dielectric. The electrical properties of the dielectric can be studied if those of the 
metal are known. This project seeks to detect the interaction of DNA with surface 
plasmons. 

The Drude model approximation calculates the expected wavelength, 𝜆𝜆, of the 
propagating surface plasmon wave, 

 𝜆𝜆 = 𝐿𝐿
√𝑚𝑚2+𝑛𝑛2 √𝜀𝜀 , (1) 

where ɛ represents the dielectric constant of the DNA material, and m and n are the 
quantum orders of the propagating wave. Our DNA samples’ resonant frequencies 
were obtained on a metal mesh with a pitch (L) of 500 µm.  
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2. Experiment 

Two 16 cm2 stainless steel metal meshes, with a pitch of 500 µm and a hole 
diameter of 200 µm, were sputtered with a 452-nm gold layer. The base pressure 
of 2 mTorr was achieved in the sputtering system. Upon reaching this minimum 
pressure, the chamber was filled with argon gas, and 3 min of presputtering was 
performed to clean the target. The gold thin film deposition time was 4 min and 43 
s at a rate of 84.8 nm/min. A profilometer confirmed the 425-nm thickness of this 
gold layer at multiple surface spots, showing the uniformity of the deposition. The 
resulting perforated foil is depicted in Fig. 1.   

 

Fig. 1 Gold-sputtered metal mesh 

After a day of air drying, the 4- × 4-cm squares were cut down to 2 × 2 cm. Solution 
containing 200 µL of DNA was spin coated onto the meshes at 203 rpm and dried 
at this rotational speed for 10 min. The DNA oligomer sequence used was  
5’-CATTAACGAGTTACTCAATGAGT5CTTTCTG-3’. The following table 
details the solution parameters and concentrations of DNA in each sample that 
contains a tris(hydroxymethyl) (TRIS) buffer solution.  

Table.   DNA sample properties 

Sample no. DNA quantity  
(mg) Solvent volume Mass concentration 

1 0.23 1.0-mL TRIS buffer 0.230 𝑔𝑔
𝐿𝐿
 

2 0.23 0.33-mL TRIS buffer 0.696 𝑔𝑔
𝐿𝐿
 

3 0.00 0.33-mL TRIS buffer … 
 
A Menlo Systems TERA K15 terahertz time domain spectrometer (Figs. 2–5) was 
used to test each sample in transmission mode. A laser, with a wavelength of 1,560 
nm and 120-fs pulse duration, was connected to 2 antennas via fiber optic cables. 
Each mesh was secured to an iris in between the 2 antennas. The DNA-coated side 
of each sample faced the same direction. Nitrogen gas was pumped into the testing 
chamber for 2 h to purge the water vapor. All samples were tested with a 3-mm-
diameter focused beam. Plasmon peaks were detected and analyzed with respect to 
DNA resonance behavior. 
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Fig. 2 TERA K15 terahertz spectrometer. One lens in front of each antenna was used for 
focused beam testing. The iris was placed equidistant from the antenna. 

 

Fig. 3 Focused beam setup (top view) 
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Fig. 4 Rapid scan after aligning the antenna and lenses in free space 

 

Fig. 5 Rapid scan with sample placed in the Iris. The signal height is significantly lower. 
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3. Results 

Samples 2 and 3 were tested under focused beam in terahertz time domain 
spectroscope. The focused beam plots are shown in Figs. 6–8. A plain gold mesh 
without buffers or coatings was compared to each sample in the first 2 graphs. In 
Fig. 8, the samples were directly compared. All plots were normalized by division 
by free space. 

 

Fig. 6 Bare gold mesh compared to mesh coated in sample 2. A distinct DNA resonance is 
present at 1.4 THz. 
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Fig. 7 Bare gold mesh compared to mesh coated in sample 3. The effect of TRIS resonance 
is present at 1.5 THz. 

 

Fig. 8 Samples 2 and 3 on gold mesh. DNA has a distinct resonance effect from the TRIS 
buffer alone. 
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The Drude model approximation (Eq. 1) was used to first correlate with the pitch 
of the metal mesh. Using our first peak value of 0.58 THz, present on all 3 graphs, 
we calculated L to be 516 µm. 

 𝐿𝐿 = 𝜆𝜆√𝑚𝑚2+𝑛𝑛2

√𝜀𝜀
 = 

(𝜈𝜈𝑓𝑓)√02+12

√1
 = 

299792458 ms
0.58∗1012Hz

 = 5.16 x 10−4 m = 516 µm . (2) 

Using L in the second-order peak calculation, 

 𝜆𝜆 = 𝐿𝐿√𝜀𝜀
√𝑚𝑚2+𝑛𝑛2

 = 516 µm
√12+12

= 364 x 10−4m x 1
299792458ms

= 0.823 THz . (3) 

This approximation is close to the 500-µm pitch of the material’s circular holes, 
even though the approximation assumed square holes. The 516-µm value was used 
in subsequent calculations.  

Under the focused beam, the TRIS buffer exhibits resonant behavior at 1.5 THz, 
whereas the resonance frequency is closer to 1.4 THz for the sample that contains 
DNA.  

The presence of DNA on the spin-coated samples was confirmed using a laser 
microscope image, magnified by a 5× lens (Figs. 9 and 10). 

 

Fig. 9 Interface of DNA layer and plain mesh in the corner of sample 2 
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Fig. 10 Side profile of sample 2 from a laser microscope. The DNA layer was determined 
to be about 27 µm thick. 

4. Discussion 

Surface plasmons were successfully generated on both the DNA-coated and plain 
metal mesh samples, indicated by the spectral peaks. A nonlinear interaction, 
generated by application of a focused terahertz beam, to a sample that contains both 
DNA strands and TRIS, caused the resonance peak to shift from 1.5 to 1.4 THz. 
This result indicates that the low terahertz spectrum is a good candidate for DNA 
testing in this experimental configuration. The result can be significantly enhanced 
if the idea of overlapping resonances is applied to investigate the DNA samples 
where the plasmon frequency of the terahertz surface plasmon is matched with the 
resonant frequency of the DNA sample. This was not the case in the current 
configuration, where the first-order surface plasmon peak has been demonstrated 
at 0.58 THz.  

The proposed approach uses a set of standard sample preparation techniques, such 
as gold thin film sputtering and a standard spin coating technique for DNA 
deposition. The sputtering and spin-coating process could be scaled up to larger 
batches to test for consistency among identically prepared samples.  

In this proof-of-principle experiment, only the resonant frequency of a specific 
DNA sample in the terahertz spectrum was identified. By tuning the surface 
plasmon frequency of the sample by adjusting the specific pitch between the holes, 
we could achieve greater details and more specific terahertz readings to identify 
molecular movements and nucleic acid sequences. Comparison of DNA samples 
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with minute differences in base pairs or molecular motions with this surface 
plasmon technique could identify resonant frequencies of specific DNA features. 
A surface plasmon library of genetic spectral data could be compiled to study 
oligomers in greater detail.  

5. Conclusions and Future Research 

Spin coating of DNA and gold sputtering is a successful preparation method to 
fabricate DNA samples for terahertz investigation. The proposed terahertz 
technique is a promising method to identify DNA molecules due to prevalent DNA 
resonant behavior in these frequencies. This work lays the foundations to a 
relatively inexpensive and precise technique to classify nucleic acid.  

The next objective is to prepare samples embedded with resonant gold 
nanoparticles in order to investigate the resonant behavior changes in the DNA 
sample as a function of the gold nanoparticles’ shape or plasmonic activity. 

The random orientation of DNA with spin coating does not allow for specific 
alignment of the sample with the polarized electromagnetic field produced by the 
terahertz spectrometer. Using nanopores, carbon nanotubes, and other electrically 
conducting porous structures, DNA strands can be guided through these holes with 
an electric field.5 The entire structure can be oriented parallel or perpendicular to 
the electromagnetic field of a terahertz system.6 Aligning the structures parallel or 
perpendicular to the terahertz field polarization will significantly enhance the 
response of the DNA structure under investigation and analysis capabilities of the 
proposed setup.  
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