

 ARL-TN-0876 ● MAR 2018

 US Army Research Laboratory

User-Defined Meteorological (MET) Profiles
from Climatological and Extreme Condition
Data

by JL Cogan

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TN-0876 ● MAR 2018

 US Army Research Laboratory

User-Defined Meteorological (MET) Profiles
from Climatological and Extreme Condition
Data

by JL Cogan
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

March 2018
2. REPORT TYPE

Technical Note
3. DATES COVERED (From - To)

8 January 2018–1 February 2018
4. TITLE AND SUBTITLE

User-Defined Meteorological (MET) Profiles from Climatological and Extreme
Condition Data

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

JL Cogan
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
Computational and Information Sciences Directorate (ATTN: RDRL-CIE)
2800 Powder Mill Road
Adelphi, MD 20783‐1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TN-0876

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Longer-term strategic and tactical planning need to include the potential effects of the atmosphere on operations as well as test
and evaluation. Estimates of changes in the atmosphere, often forecasted via numerical weather models, have application in
the shorter term of from an hour or less to perhaps 2 weeks. For longer outlooks beyond the skill of forecasting methods,
planners often resort to climate data to provide the required meteorological information. This report investigates the
application of climate data for use in test and evaluation, though the same methods could be applied to planning for other
purposes. More specifically, the method of this report first extracts data including climatic extremes from files supplied by the
Air Force 14th Weather Squadron. It then generates vertical profiles of meteorological variables using height levels and layers
that may be defined by the user.

15. SUBJECT TERMS

climate data, climate data processing, extreme atmospheric conditions, vertical profiles, climate data applications

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

42

19a. NAME OF RESPONSIBLE PERSON

JL Cogan
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-2304
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Tables iv

Acknowledgments v

1. Introduction 1

2. Method 1

2.1 Preparation of the Parameter Files 2

2.2 The Combined Program Procedure 3

3. Input and Output Samples 4

4. Summary and Conclusion 9

5. References 11

Appendix A. Python Script 13

Appendix B. Code for Modified Parts of the C Program 19

List of Symbols, Abbreviations, and Acronyms 32

Distribution List 33

Approved for public release; distribution is unlimited.
iv

List of Tables

Table 1 Sample parameter file (input_pars) for the combined program. YBBN
is the World Meteorological Organization identifier for Brisbane,
Australia .. 3

Table 2 A section of the climate data file from the 14 WS: 18 of 48 columns
and 22 (including the column headers) of 102 rows. The identifiers for
the extreme values are explained in the text (e.g., w80 = 80% wind).
Mean and std refer to mean and standard deviation, respectively, of
temperature (t, in °C), wind speed (w, in ms‒1), density (d, in gm‒3),
and pressure (p, in hPA [mb]). Site refers to the site identifier, obsw to
the number of wind speed observations or samples, and mo and hgt to
month and height, respectively. .. 5

Table 3 A section of the reduced file produced by the Python program. The
header includes the name of the input file, which provides the site and
month (e.g., Fairbanks, Alaska, for January). The column headers have
the same meaning as in Table 2. In this example, the extreme values
chosen were w95, w99, d95_95, and d99_99. Shown are 23 (including
the input filename and column headers) of 103 rows. 6

Table 4 Sample of the parameter file (input_parameters) used for the example
of Table 3. Here the input and output directories are the same, and 4
and 101 are the number of extreme value columns and number of input
data rows, respectively. ... 6

Table 5 METCM structured output for the example in Table 3. The midpoint
of each layer or zone is listed except for the surface (line or zone 0),
which has the surface values. The meteorological data values for each
line are weighted means vs. the values at the midpoints. 7

Table 6 Section of the output for the user-defined height level output. Levels
from the surface through 3000 m AGL are shown. 8

Table 7 Section of the output for the user-defined layer output. The midpoint
heights of the layers are listed except for line 0, which contains the
surface values. The meteorological data values for each layer are
weighted mean values vs. the values at the midpoints. The surface and
layer values up through the 2800–3000 m AGL layer (midpoint at
2900 m) are shown. ... 9

Approved for public release; distribution is unlimited.
v

Acknowledgments

I acknowledge Jeffrey Zautner of the Air Force 14th Weather Squadron for rapidly
and accurately providing climate files with the requested types of data.

Approved for public release; distribution is unlimited.
vi

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
1

1. Introduction

Longer-term strategic and tactical planning need to include the potential effects of
the atmosphere on operations as well as test and evaluation (T&E). Estimates of
changes in the atmosphere, often forecasted via numerical weather models, have
application in the shorter term of from an hour or less to perhaps 2 weeks. For
longer outlooks beyond the skill of forecasting methods, planners often resort to
climate data to provide the required meteorological information. T&E and
operational planning may include knowledge of potential extreme weather
conditions that a system may have to overcome to perform its function, as well as
statistics such as mean and standard deviation.

The Air Force 14th Weather Squadron (14 WS) has climate data for sites around
the world for periods running from several years to many decades. Personnel of the
14 WS can produce tables of climate data having means and standard deviations of
many measured (e.g., temperature) and derived (e.g., density) meteorological
variables at user-requested or standard height or pressure levels from their data
archive. For the work leading to this report, the data lines were at regular intervals
every 300 m from the surface to 30 km. Heights were listed in meters above ground
level (AGL). Users may request additional climate data aside from the “standard”
set of statistics. In this report, extreme conditions for wind and density were
provided for those data lines. An example of an extreme condition for a given
location is the 95th percentile wind speed, which represents the wind speed where
95% of the archived wind speeds for the specified location are lower and 5% are
higher.

The methods of this report were used to extract the necessary data from the tables
supplied by the 14 WS, produce similar tables with only the data needed for the
application, and generate user-specified height level and layer vertical profiles of
the base statistics and user-selected extreme values. A Python program (aka Python
script) was used to revise the input climate tables for processing by an external C
program called by the parent Python script. The C program that produces the
resultant height level and layer vertical profiles is a modified version of the program
described by Cogan (2015, 2017).

2. Method

The method to process the climate files into user-specified vertical profiles consists
of 2 main parts. The first employs a Python program or script (Python 3.5) to extract
the relevant statistical and extreme value data from the large tabular files supplied
by the 14 WS. The output file from the processed climate file becomes the input for

Approved for public release; distribution is unlimited.
2

the external C program called from the Python script. The C program converts the
columns of the processed climate data into vertical profiles of the statistical values
(e.g., mean, standard deviation) of measured and derived variables, and extreme
values of wind speed and/or density, for user-defined levels and layers. The user
selects the extreme values to be processed as well as the vertical height structure of
the output tables. These and other user-defined parameters are read from parameter
files. The Python and C parts may be considered as one “combined program” in the
remainder of this report.

2.1 Preparation of the Parameter Files

Information for running the combined program is entered into a parameter file
currently named input_pars, which is located in the same directory as the Python
script. The first line holds the extreme value identifiers or types for wind and/or
density. An example for an extreme wind identifier is w95 for the 95th percentile
wind speed, representing the wind speed where 95% of wind speeds are less and
5% are more. Similarly as for wind speed, 90th percentile density represents a value
where 90% of the densities are smaller and 10% are greater. However, for the
climate data files received for the work of this report, the density data used to
generate the extreme values were taken from subsets defined by the extreme wind
values. An example of an extreme density type for a given level and site is d90_90
for the 90th percentile density computed using the subset of all data for that level
and site having wind speeds that are greater than the 90th percentile wind speed.
Another example could be d95_80 for the 95th percentile density within the subset
of data for the 80th percentile wind speed. In the parameter file, the wind and
density identifiers can be listed in any order, but those selected should be in the file
provided by the 14 WS. If an extreme value type listed in the parameter file is not
in the input climate file from the 14 WS (e.g., w995 instead of w95), then the
program will continue with the other listed types. It will also print out a message to
remind the user to check the validity of the identifiers listed in the parameter file.

The second line has the directory of the external C program. The location does not
have to be the same as the Python script and, for this report, it was in a separate
directory. The third and fourth lines are the locations (directories) of the input and
output files for the C program. The input directory is the same for the Python and
C programs. The output directory may be the same or different; for this report, they
were the same. Note that the C program uses a parameter file (i.e.,
input_parameters) to define directories and so on. The Python script provides that
file with the necessary information for operation of the C program. Table 1 presents
a sample of the parameter file used by the combined program.

Approved for public release; distribution is unlimited.
3

Table 1 Sample parameter file (input_pars) for the combined program. YBBN is the World
Meteorological Organization identifier for Brisbane, Australia

w90 w95 d90_90 d95_95
/data/user/C_progs/Climate/
/data/user/pyfiles/Clim_data/YBBN/
/data/user/pyfiles/Clim_data/YBBN/

Although the Python script generates the input_parameters file for the C program,
there are others within the C program’s directory that are necessary for the program
to operate. Those other parameter files contain the height structures needed for the
output vertical profiles. One has the height structure of a computer meteorological
message (METCM) and produces values for the surface (aka zone 0) and layer or
zone values from the layer adjacent to the surface to as high as the uppermost one
with a maximum upper boundary of 30 km. The filename is metcm_lvls. The
second has a user-defined height structure, where the user defines the height levels
(layer boundaries), and is named usrmsg_lvls. Separate output files are produced
for the listed height levels and the layers defined by those levels. For the layered
output, the surface value is the same as for level 0. If one of the “lvls” files is
missing or has a different name (e.g., metcm_lvls1), the C program will continue
to run, but will skip the generation of the respective vertical profile. If both are
missing or have different names, the program will not produce an output file and
print an error message (i.e., “No met messages computed. Need height structure
input files.”).

2.2 The Combined Program Procedure

The combined program (climstat_all.py) includes code provided by Reen (2017)
that produces a log file (clim.log) that contains additional statements as needed that
should assist in debugging and reduces the number of “housekeeping” statements
printed to the screen. After checking to make sure that the input_pars file has the
correct extreme value identifiers and directory paths, the procedure to run the
program is straightforward. To run the combined program, enter the following:

python3 climstat_all.py PATH_AND_INPUT_FILENAME,

where the use of all capital letters indicates a generic name, in this case the path
and filename of the input file.

For example,

python3 climstat_all.py /data/user/Clim_data/KTUS/Climate_KTUS_mo6,

Approved for public release; distribution is unlimited.
4

where Climate_KTUS_mo6 is the input filename. Here KTUS refers to the Tucson
International Airport and mo6 indicates month 6 or June. The output file from the
Python script has “_out” added to the end of the filename (e.g.,
Climate_KTUS_mo6_out).

The processed climate file with “_out” added to the input filename becomes the
input file for the external C program. That program (convertclim) is called from
within the Python script. The C program is nearly the same as that described in
Cogan (2015, 2017), but was modified to read in and process a variable number of
extreme value columns as well as the columns for the means and standard
deviations. Certain variables were either included or excluded from the output
relative to those produced by the previous versions of the C program. For example,
density, which appears in the input climate data file, was included, but wind
direction was excluded, since it was not in the input climate file. If it is run as a
standalone program, a user would enter, for example, the following:

./convertclim Climate_KTUS_mo6_out.

The output file from the combined program, or the standalone C program, will have
“_METCM” added to the input filename for the output with the height structure of
a METCM and “_USRLVL” and “_USRMSG” for the user-defined level and layer
output, respectively (e.g., Climate_KTUS_mo6_out_USRMSG). Appendix A has a
listing of the Python script except for the large definition that includes logging code
and Appendix B contains the code for modified parts of the C program.

3. Input and Output Samples

The typical input file from the 14 WS for the work of this report is a large file in
comma-separated value (csv) format, which is readable using MS Excel. One file
was produced for each site and month. However, to make it readily readable for
many computer programs, each csv file was converted to a standard text file (no
commas). In this process, the name was changed to match the site name and month.
For example, the climate data for Fairbanks, AK (PAFA) for June was converted
to a text file and renamed to Climate_PAFA_mo6. To cover the largest likely
number of extreme values that could be applied to potential applications, 36
extreme value columns were included by the 14 WS along with 8 columns of means
and standard deviations plus the heights (0 through 30 km), the number of wind
speed samples for each line, and the location identifier and month (location and
month the same for all lines). Table 2 has a section of one of the files from the 14
WS.

Approved for public release; distribution is unlim
ited.

5

Table 2 A section of the climate data file from the 14 WS: 18 of 48 columns and 22 (including the column headers) of 102 rows. The identifiers for the
extreme values are explained in the text (e.g., w80 = 80% wind). Mean and std refer to mean and standard deviation, respectively, of temperature
(t, in °C), wind speed (w, in ms‒1), density (d, in gm‒3), and pressure (p, in hPA [mb]). Site refers to the site identifier, obsw to the number of wind speed
observations or samples, and mo and hgt to month and height, respectively.

Site mo hgt meanw meant meand meanp stdw stdt stdd stdp obsw w80 w90 w95 w99 d80_1 d80_5
PAFA JAN 0 1.5012 -20.33 1373.5 994.73 1.9422 10.824 68.466 14.653 2777 2.1 3 4.1 9.3 1239.7 1280.2
PAFA JAN 300 5.2091 -14.57 1289.7 955.66 3.5622 10.336 57.776 13.788 2767 7.9 10.1 12.1 16.3 1172.4 1198
PAFA JAN 600 6.7947 -13.21 1232.8 918.58 4.0231 9.7338 50.071 13.103 2767 10.1 12.3 14.3 18 1137.9 1159
PAFA JAN 900 7.7302 -12.13 1180.2 883.14 4.4385 9.4717 44.922 12.65 2767 11.4 14 16.2 19.3 1092.9 1116
PAFA JAN 1200 8.2238 -11.67 1132.6 849.14 4.8697 9.044 40.421 12.56 2767 12.1 15.1 17.4 22.1 1054.2 1073.7
PAFA JAN 1500 8.5772 -12.06 1090.2 816.31 4.9361 8.3294 35.278 12.289 2763 12.3 15.5 17.9 22.6 1024.2 1039
PAFA JAN 1800 8.9143 -13.12 1052.1 784.74 5.144 7.7342 30.826 12.085 2762 12.85 16.2 18.7 23.3 995.1 1007.8
PAFA JAN 2100 9.2704 -14.47 1016.4 754.27 5.3161 7.2882 27.159 11.904 2762 13.3 16.5 19.7 24.3 963.6 977
PAFA JAN 2400 9.6718 -16.02 982.62 724.89 5.5764 7.0221 24.337 11.759 2762 14 17.2 20.3 25.9 934.7 946.5
PAFA JAN 2700 10.088 -17.69 950.34 696.56 5.8752 6.8542 22.034 11.69 2761 14.8 18 20.8 27.8 907.4 917.2
PAFA JAN 3000 10.555 -19.44 918.97 668.99 5.9937 6.7304 20.042 11.717 2760 15.3 18.8 21.7 28.2 880.5 888.8
PAFA JAN 3300 10.954 -21.25 888.58 642.28 6.2093 6.6539 18.386 11.698 2759 15.9 19.6 22.5 28.8 853.1 861
PAFA JAN 3600 11.394 -23.11 859.24 616.49 6.4786 6.6284 17.028 11.673 2758 16.5 20.6 23.4 30.3 825.2 833.5
PAFA JAN 3900 11.922 -25.01 830.85 591.6 6.7248 6.6025 15.758 11.653 2757 17.1 21.5 24.4 32 796.3 806.6
PAFA JAN 4200 12.508 -26.92 803.27 567.59 7.0985 6.5567 14.633 11.609 2756 18.1 22.6 25.7 34.2 769.9 779.7
PAFA JAN 4500 13.146 -28.89 776.61 544.36 7.5154 6.5563 13.648 11.572 2756 19.2 23.7 27.4 36.4 746.5 754
PAFA JAN 4800 13.779 -30.87 750.71 521.97 8.0209 6.5337 12.75 11.502 2755 20.2 24.8 29.2 38.2 721.8 728.9
PAFA JAN 5100 14.527 -32.82 725.61 500.45 8.4821 6.4866 11.954 11.404 2752 21.4 26.5 30.3 40 696.3 705.1
PAFA JAN 5400 15.25 -34.8 700.94 479.48 8.8886 6.4488 11.246 11.446 2750 22.6 28.2 31.9 40.2 672.4 681.5
PAFA JAN 5700 15.903 -36.78 676.92 459.22 9.3559 6.3539 10.65 11.358 2746 23.6 29.5 33.7 42.3 649.4 657.8
PAFA JAN 6000 16.545 -38.73 653.48 439.68 9.8203 6.2262 10.076 11.279 2746 24.4 30.7 35.1 44.8 629 634.9

Approved for public release; distribution is unlimited.
6

The Python script reduced the number of columns by keeping only those columns
of extreme wind or density that were identified by the user in the parameter file and
removing certain columns of redundant information. For example, the site was
identified in the filename and did not need to be repeated as a separate column.
Table 3 presents a section of the reduced file Climate_PAFA_mo1_out.

Table 3 A section of the reduced file produced by the Python program. The header
includes the name of the input file, which provides the site and month (e.g., Fairbanks, Alaska,
for January). The column headers have the same meaning as in Table 2. In this example, the
extreme values chosen were w95, w99, d95_95, and d99_99. Shown are 23 (including the input
filename and column headers) of 103 rows.

The Python script fills the parameter file input_parameters used by the C program
with the input and output directories defined in the file input_pars (used by the
combined program), the number of extreme value types (e.g., 4 for the example in
Table 3), and the number of data rows (e.g., 101 for the example in Table 3). The
input and output directories can be the same or different. Table 4 shows a sample
input_parameters file that applies to the example used in Table 3.

Table 4 Sample of the parameter file (input_parameters) used for the example of Table 3.
Here the input and output directories are the same, and 4 and 101 are the number of extreme
value columns and number of input data rows, respectively.

/data/user/Clim_data/PAFA/
/data/user/Clim_data/PAFA/
4 101

/data/user/Clim_data/PAFA/Climate_PAFA_mo1
hgt meanp meanw meant meand stdp stdt stdd stdw obsw w95 w99 d95_95 d99_99

0 994.73 1.5 -20.33 1373.5 14.65 10.82 68.47 1.9422 2777 4.1 9.3 1473.8 1447.2
300 955.66 5.21 -14.57 1289.7 13.79 10.34 57.78 3.5622 2767 12.1 16.3 1370.9 1331.7
600 918.58 6.79 -13.21 1232.8 13.1 9.73 50.07 4.0231 2767 14.3 18 1305.5 1266.7
900 883.14 7.73 -12.13 1180.2 12.65 9.47 44.92 4.4385 2767 16.2 19.3 1240.8 1211.6

1200 849.14 8.22 -11.67 1132.6 12.56 9.04 40.42 4.8697 2767 17.4 22.1 1191.6 1164.4
1500 816.31 8.58 -12.06 1090.2 12.29 8.33 35.28 4.9361 2763 17.9 22.6 1144.4 1128
1800 784.74 8.91 -13.12 1052.1 12.09 7.73 30.83 5.144 2762 18.7 23.3 1097.2 1092.5
2100 754.27 9.27 -14.47 1016.4 11.9 7.29 27.16 5.3161 2762 19.7 24.3 1055.8 1041.6
2400 724.89 9.67 -16.02 982.62 11.76 7.02 24.34 5.5764 2762 20.3 25.9 1021.6 1004.3
2700 696.56 10.09 -17.69 950.34 11.69 6.85 22.03 5.8752 2761 20.8 27.8 984.8 968.4
3000 668.99 10.55 -19.44 918.97 11.72 6.73 20.04 5.9937 2760 21.7 28.2 946.4 928.6
3300 642.28 10.95 -21.25 888.58 11.7 6.65 18.39 6.2093 2759 22.5 28.8 914.2 897.6
3600 616.49 11.39 -23.11 859.24 11.67 6.63 17.03 6.4786 2758 23.4 30.3 883.3 868.4
3900 591.6 11.92 -25.01 830.85 11.65 6.6 15.76 6.7248 2757 24.4 32 854.5 838.8
4200 567.59 12.51 -26.92 803.27 11.61 6.56 14.63 7.0985 2756 25.7 34.2 824.2 810.6
4500 544.36 13.15 -28.89 776.61 11.57 6.56 13.65 7.5154 2756 27.4 36.4 797.3 783.4
4800 521.97 13.78 -30.87 750.71 11.5 6.53 12.75 8.0209 2755 29.2 38.2 766.8 757.3
5100 500.45 14.53 -32.82 725.61 11.4 6.49 11.95 8.4821 2752 30.3 40 739.2 732.7
5400 479.48 15.25 -34.8 700.94 11.45 6.45 11.25 8.8886 2750 31.9 40.2 712.8 707.9
5700 459.22 15.9 -36.78 676.92 11.36 6.35 10.65 9.3559 2746 33.7 42.3 688.7 680.7
6000 439.68 16.55 -38.73 653.48 11.28 6.23 10.08 9.8203 2746 35.1 44.8 665.8 656.1

Approved for public release; distribution is unlimited.
7

The Python script then calls the external C program, which in turn produces vertical
profiles for the METCM and the user-defined height structures. Table 5 presents
the output for the METCM structure for the example in Table 3
(Climate_PAFA_mo1_out_METCM).

Table 5 METCM structured output for the example in Table 3. The midpoint of each layer
or zone is listed except for the surface (line or zone 0), which has the surface values. The
meteorological data values for each line are weighted means vs. the values at the midpoints.

Tables 6 and 7 present sections of the user-defined height level and layer structures.
For the example in Table 3, the filenames are Climate_PAFA_mo1_out_USRLVL and
Climate_PAFA_mo1_out_USRMSG, respectively. In Table 7, the midpoint of each
layer is listed except for line 0, which has the surface values.

METCM output for Climate_PAFA_mo1_out

Line Height Wind_Speed Temperature Pressure Density w90 w95 d90_90 d95_95
(m) (kn) (K*10) (mb) (g/m3) (kn) (kn) (g/m3) (g/m3)

0 0 2.9 2528 994.7 1373.50 3.0 4.1 1452.40 1473.80
1 100 5.3 2548 981.6 1345.57 5.4 6.8 1412.60 1439.50
2 350 10.4 2586 949.4 1281.71 10.2 12.1 1327.72 1362.08
3 750 14.0 2605 900.7 1206.81 13.1 15.2 1250.82 1273.69
4 1250 16.1 2613 843.6 1126.23 15.1 17.4 1165.10 1184.00
5 1750 17.2 2602 789.9 1058.77 16.0 18.6 1089.38 1105.84
6 2250 18.4 2579 739.4 999.62 16.9 20.0 1023.99 1038.85
7 2750 19.8 2552 691.9 945.23 18.1 21.0 965.39 978.19
8 3250 21.2 2522 646.7 893.78 19.5 22.4 909.55 919.74
9 3750 22.7 2491 603.9 845.10 21.1 23.9 858.87 868.92

10 4250 24.5 2459 563.6 798.95 22.8 26.0 813.11 820.17
11 4750 26.6 2426 525.5 755.13 24.7 28.8 768.40 772.27
12 5500 30.0 2377 472.6 693.20 28.5 32.5 705.34 705.58
13 6500 34.3 2312 408.6 616.12 32.7 37.8 627.83 628.04
14 7500 37.7 2252 351.7 544.52 35.7 42.6 557.12 557.48
15 8500 39.7 2207 301.7 476.85 38.0 45.1 491.83 495.59
16 9500 38.7 2187 258.3 412.25 36.6 43.2 432.26 432.34
17 10500 36.5 2190 221.1 352.39 32.6 38.4 375.59 376.60
18 11500 35.0 2202 189.2 300.00 30.3 34.6 316.75 324.54
19 12500 35.2 2211 162.1 255.91 29.5 33.7 268.99 270.70
20 13500 36.3 2214 138.9 218.88 29.8 33.9 229.32 230.08
21 14500 37.7 2214 119.0 187.60 31.1 35.2 195.79 196.99
22 15500 38.8 2212 102.0 160.87 32.6 36.7 167.57 168.84
23 16500 40.2 2210 87.4 137.96 34.6 38.4 143.79 144.40
24 17500 41.6 2208 74.9 118.33 36.9 41.0 122.68 122.64
25 18500 43.2 2206 64.2 101.47 39.0 43.6 104.89 104.64
26 19500 44.7 2206 55.0 87.02 40.9 46.0 89.95 89.27
27 21000 47.5 2204 43.7 69.29 44.8 50.3 71.43 70.65
28 23000 50.9 2206 32.1 50.91 49.3 54.7 52.38 51.63
29 25000 53.5 2213 23.6 37.41 53.0 59.4 38.26 37.66
30 27000 56.1 2221 17.5 27.54 57.0 65.6 27.98 27.51
31 29000 58.6 2230 12.9 20.27 58.9 68.6 20.57 20.11

Approved for public release; distribution is unlimited.
8

Table 6 Section of the output for the user-defined height level output. Levels from the
surface through 3000 m AGL are shown.

USER DEFINED LEVEL OUTPUT for Climate_PAFA_mo1_out

Level Height Wind Speed Temperature Pressure Density w90 w95 d90_90 d95_95
(m) (kn) (K) (hPa) (g/m3) (kn) (kn) (g/m3) (g/m3)

0 0 2.9 252.8 994.7 1373.50 5.8 8.0 1452.40 1473.80
1 50 4.1 253.8 988.0 1359.53 8.1 10.6 1432.50 1456.65
2 100 5.3 254.8 981.4 1345.57 10.4 13.2 1412.60 1439.50
3 200 7.7 256.7 968.4 1317.63 15.0 18.3 1372.80 1405.20
4 300 10.1 258.6 955.7 1289.70 19.6 23.5 1333.00 1370.90
5 400 11.2 259.0 943.1 1270.73 21.1 24.9 1315.13 1349.10
6 500 12.2 259.5 930.8 1251.77 22.5 26.4 1297.27 1327.30
7 600 13.2 260.0 918.6 1232.80 23.9 27.8 1279.40 1305.50
8 700 13.8 260.3 906.6 1215.27 25.0 29.0 1260.27 1283.93
9 800 14.4 260.7 894.8 1197.73 26.1 30.3 1241.13 1262.37

10 900 15.0 261.0 883.1 1180.20 27.2 31.5 1222.00 1240.80
11 1000 15.3 261.2 871.7 1164.33 27.9 32.3 1205.37 1224.40
12 1100 15.7 261.3 860.3 1148.47 28.6 33.0 1188.73 1208.00
13 1200 16.0 261.5 849.1 1132.60 29.4 33.8 1172.10 1191.60
14 1300 16.2 261.4 838.1 1118.47 29.6 34.1 1156.93 1175.87
15 1400 16.4 261.2 827.2 1104.33 29.9 34.5 1141.77 1160.13
16 1500 16.7 261.1 816.3 1090.20 30.1 34.8 1126.60 1144.40
17 1600 16.9 260.7 805.7 1077.50 30.6 35.3 1111.43 1128.67
18 1700 17.1 260.4 795.2 1064.80 31.0 35.8 1096.27 1112.93
19 1800 17.3 260.0 784.7 1052.10 31.5 36.3 1081.10 1097.20
20 1900 17.6 259.6 774.5 1040.20 31.7 37.0 1067.67 1083.40
21 2000 17.8 259.1 764.3 1028.30 31.9 37.6 1054.23 1069.60
22 2200 18.3 258.2 744.4 1005.14 32.5 38.7 1029.50 1044.40
23 2400 18.8 257.1 724.9 982.62 33.4 39.5 1006.90 1021.60
24 2600 19.3 256.0 705.8 961.10 34.5 40.1 982.77 997.07
25 2800 19.9 254.9 687.3 939.88 35.5 41.0 959.43 972.00
26 3000 20.5 253.7 669.0 918.97 36.5 42.2 936.90 946.40

Approved for public release; distribution is unlimited.
9

Table 7 Section of the output for the user-defined layer output. The midpoint heights of
the layers are listed except for line 0, which contains the surface values. The meteorological
data values for each layer are weighted mean values vs. the values at the midpoints. The
surface and layer values up through the 2800–3000 m AGL layer (midpoint at 2900 m) are
shown.

4. Summary and Conclusion

This report presents a method to process climate data files from the 14 WS for
different sites and months. The input climate data files have columns of means and
standard deviations of measured and some derived meteorological variables along
with numerous columns with extreme values of wind speed and density, which are
reduced to a more manageable form using a Python script. An external C program
called by the Python script converts the processed climate files to tables that have
the height layer (zone) structure of a METCM plus the surface values and/or height
levels and layers as defined by the user plus the surface. The user can select one or
more of the 36 extreme value types for processing and define the height structure

USER DEFINED LAYER OUTPUT for Climate_PAFA_mo1_out

Layer Height Wind Speed Temperature Pressure Density w90 w95 d90_90 d95_95
(m) (kn) (K) (hPa) (g/m3) (kn) (kn) (g/m3) (g/m3)

0 0 2.9 252.8 994.7 1373.5 5.80 8.0 1452.4 1473.80
1 25 3.5 253.3 991.4 1366.52 7.00 9.3 1442.5 1465.23
2 75 4.7 254.3 984.7 1352.55 9.30 11.9 1422.6 1448.07
3 150 6.5 255.7 974.9 1331.6 12.70 15.7 1392.7 1422.35
4 250 8.9 257.6 962.0 1303.67 17.30 20.9 1352.9 1388.05
5 350 10.6 258.8 949.4 1280.22 20.30 24.2 1324.1 1360.00
6 450 11.7 259.3 936.9 1261.25 21.80 25.7 1306.2 1338.20
7 550 12.7 259.7 924.7 1242.28 23.20 27.1 1288.3 1316.40
8 650 13.5 260.1 912.6 1224.03 24.50 28.4 1269.8 1294.72
9 750 14.1 260.5 900.7 1206.5 25.60 29.6 1250.7 1273.15

10 850 14.7 260.9 888.9 1188.97 26.70 30.9 1231.6 1251.58
11 950 15.2 261.1 877.4 1172.27 27.60 31.9 1213.7 1232.60
12 1050 15.5 261.3 866.0 1156.4 28.30 32.7 1197.1 1216.20
13 1150 15.8 261.4 854.7 1140.53 29.00 33.4 1180.4 1199.80
14 1250 16.1 261.4 843.6 1125.53 29.50 34.0 1164.5 1183.73
15 1350 16.3 261.3 832.6 1111.4 29.70 34.3 1149.4 1168.00
16 1450 16.6 261.2 821.8 1097.27 30.00 34.6 1134.2 1152.27
17 1550 16.8 260.9 811.0 1083.85 30.40 35.1 1119.0 1136.53
18 1650 17.0 260.6 800.4 1071.15 30.80 35.6 1103.9 1120.80
19 1750 17.2 260.2 790.0 1058.45 31.30 36.1 1088.7 1105.07
20 1850 17.4 259.8 779.6 1046.15 31.60 36.7 1074.4 1090.30
21 1950 17.7 259.4 769.4 1034.25 31.80 37.3 1061.0 1076.50
22 2100 18.0 258.7 754.3 1016.56 32.10 38.2 1041.3 1056.40
23 2300 18.5 257.7 734.5 993.88 33.00 39.1 1018.2 1033.00
24 2500 19.1 256.6 715.3 971.86 34.00 39.8 994.8 1009.33
25 2700 19.6 255.5 696.6 950.42 35.00 40.5 970.9 984.67
26 2900 20.2 254.3 678.1 929.43 36.00 41.6 948.2 959.20

Approved for public release; distribution is unlimited.
10

of the output vertical profiles. The combined program in its present form only
processes climate files of the type and format shown in the report. However, with
fairly minor modifications, the combined program should be able to process other
versions of the climate data files.

Approved for public release; distribution is unlimited.
11

5. References

Cogan J. A generalized method for vertical profiles of mean layer values of
meteorological variables. Adelphi (MD): Army Research Laboratory (US);
2015 Mar. Report No.: ARL-TR-7434.

Cogan J. Evaluation of model-generated vertical profiles of meteorological
variables: method and initial results. Meteorol Appl. 2017;24:219–229.

Headquarters, Department of the Army tactics, techniques, and procedures for field
artillery meteorology. Washington (DC): Headquarters, Department of the
Army; 2007. Field Manual No.: FM 3-09.15/MCWP 3-16.5.

Reen B. Army Research Laboratory (US), Adelphi, MD. Personal communication,
2017.

Approved for public release; distribution is unlimited.
12

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
13

Appendix A. Python Script

Approved for public release; distribution is unlimited.
14

This Appendix contains a listing of most of the Python 3.5 script (aka program) that
reads in a climate data file from the Air Force 14th Weather Squadron (14 WS),
extracts only the user-requested columns of extreme wind speeds and/or densities,
and produces vertical height level or layer profiles through the use of an external C
program. The large, multiple-application file definition adopted from Reen1 is not
shown, although a series of vertical dots indicates its location within the script. The
output profiles may have the height and layer (zone) structure of a computer
meteorological message (METCM), height level and layer structures as defined by
the user, or all 3. The output based on the METCM has data values for the surface
(zone 0) and layers (zones) up through zone 31 (29–30 km). The user-defined
profiles are in 2 output files, one for height levels and the second for height layers
plus the surface.

#!/bin/env python3

import re
import sys
from collections import defaultdict
import string
import statistics
import logging
import subprocess
import os
import shlex
import ntpath
.
.
.
. Location of multi-function definition
.
.

#Read in extreme wind and density values from a parameter file.

with open('input_pars', "r") as fp:
 input_ext = fp.readline() #Read the first line.
 cprog_dir = fp.readline() #Directory where 'C' program is located.
 i_dir = fp.readline() #Input directory for 'C' program.
 o_dir = fp.readline() #Output directory for 'C' program.

c_dir = cprog_dir.replace('\n', '')
ext_list = input_ext.split()
ext_length = len(ext_list)

Read in climate data file.

with open(sys.argv[1], "r") as f:

1Reen B. Army Research Laboratory (US), Adelphi, MD. Personal communication, 2017.

Approved for public release; distribution is unlimited.
15

 input_line = f.readline()
 input_data = f.readlines() # All remaining lines are read in.

print('Reading from file', sys.argv[1])

infile_name = ntpath.basename(sys.argv[1]) # Define output file and put it in 'C' program's input
directory.
i_directory = re.sub('\n','', i_dir)
output_file = i_directory + infile_name + '_out'

Obtain header information from first line of input file.

header_list = input_line.split()
in_length = len(header_list)

extreme_list = [] #Set up empty list for extreme values (e.g., w95 or d95_95) on 1st line of data
file.
index_list = [] #Set up empty list for index of where extreme value appears in 1st line of input
file.

print('\nNumber of extremes listed in input_pars = ', ext_length)
for n in range(ext_length): # Check for valid extreme value types.
 for m in range(in_length): # Invalid types are ignored.
 if ext_list[n] == header_list[m]:
 extreme_list.append(header_list[m])
 index_list.append(m)
index_list_length = len(index_list)
if ext_length != index_list_length: # If invalid types in input then note the number of valid
ones.
 ext_length = index_list_length # and print "error" message.
 print('Number of valid extremes = ', index_list_length)
 print('Number of valid and entered extremes are not equal. Check input_pars\n ')

data_val = defaultdict(dict) # Define dictionary variable and a set.
data_values = set()

Process data

for currentline in input_data:
 data_list = currentline.split()
 data_len = len(data_list)
 site_name = data_list[0]
 month = data_list[1]
 altitude = data_list[2]

 for m in range(in_length):
 if data_list[m] == '-99999':
 data_list[m] = '-999'
 if m == 3:
 data_val['meanw'][altitude] = data_list[m]
 elif m == 4:
 data_val['meant'][altitude] = data_list[m]

Approved for public release; distribution is unlimited.
16

 elif m == 5:
 data_val['meand'][altitude] = data_list[m]
 elif m == 6:
 data_val['meanp'][altitude] = data_list[m]
 elif m == 7:
 data_val['stdw'][altitude] = data_list[m]
 elif m == 8:
 data_val['stdt'][altitude] = data_list[m]
 elif m == 9:
 data_val['stdd'][altitude] = data_list[m]
 elif m == 10:
 data_val['stdp'][altitude] = data_list[m]
 elif m == 11:
 data_val['obsw'][altitude] = data_list[m]
 for i in range(0, ext_length):
 data_val[extreme_list[i]][altitude] = data_list[index_list[i]]

Produce a data_values list for altitude.
 data_values.add(float(altitude))

Then sort data_values (list of altitudes).
sorted_datavalues = sorted(data_values)

Output of revised data file for input to profile convert program.

with open(output_file, "w") as fo:
 print("Writing to file: ", output_file, "\n")
 header2_string = ''
 header1_string = '\n{0:30s}\n {1:7s} {2:7s} {3:7s} {4:7s} {5:7s} {6:7s} {7:7s} {8:7s} {9:7s}
{10:7s} '.format(sys.argv[1], header_list[2], header_list[6], header_list[3], header_list[4],
header_list[5], header_list[10], header_list[8], header_list[9], header_list[7], header_list[11])
 for n in range(0, ext_length):
 header2_string = header2_string + ' {0:7s} '.format(extreme_list[n])
 header_string = header1_string + header2_string + '\n'
 fo.write(header_string)

 numlines = 0
 for alt in sorted_datavalues:
 data2_string = ''
 data1_string = '{0:7.0f} {1:7.2f} {2:7.2f} {3:7.2f} {4:8.4f} {5:7.2f} {6:7.2f} {7:7.2f} {8:8.4f}
{9:6d} '.format(float(alt), float(data_val['meanp'][str(int(alt))]),
float(data_val['meanw'][str(int(alt))]), float(data_val['meant'][str(int(alt))]),
float(data_val['meand'][str(int(alt))]), float(data_val['stdp'][str(int(alt))]),
float(data_val['stdt'][str(int(alt))]), float(data_val['stdd'][str(int(alt))]),
float(data_val['stdw'][str(int(alt))]), int(data_val['obsw'][str(int(alt))]))
 for n in range(0, ext_length):
 data2_string = data2_string + ' {0:7.2f}
'.format(float(data_val[extreme_list[n]][str(int(alt))]))
 data_string = data1_string + data2_string + '\n'
 fo.write(data_string)
 numlines = numlines + 1

Approved for public release; distribution is unlimited.
17

Name of logging file
climate_log_name = "/data/jcogan/pyfiles/clim.log"
Open and configure logging file
logging.basicConfig(format='%(asctime)s
%(levelname)s:%(message)s',filename=climate_log_name,
 filemode='w',level=logging.DEBUG)

#Get output file name.
out_list = re.split('/', output_file)
out_list_element = len(out_list)-1
output_file = out_list[out_list_element]

#Define arguments for running external program.
command_to_execute = ['./convertclim', output_file]
name_of_command = 'Diagnostic_out'
string_indicating_success = '***** COMPLETED ALL SELECTED OUTPUT TYPES. *****'
in_param = c_dir + 'input_parameters' #Location and name of parameter file for 'C' program.

try:
 # Load the input_parameters file for the 'C' program.
 with open(in_param, "w+") as po:
 in_string = i_dir + '\n'
 po.write(in_string)
 out_string = o_dir + '\n'
 po.write(out_string)
 extr_lines_string = str(ext_length) + ' ' + str(numlines) + '\n'
 po.write(extr_lines_string)

 # Run the external 'C' program.
 run_external_program(command_to_execute, name_of_command, c_dir,
 string_indicating_success)
 print("Selected output types generated from climate data.\n\n")
except:
 print("\nCannot run external program.\n")
 print("Check external program path, c-dir, or other argument.\n\n")

Approved for public release; distribution is unlimited.
18

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.
19

Appendix B. Code for Modified Parts of the C Program

Approved for public release; distribution is unlimited.
20

This Appendix presents parts of the code from the C program that were modified
for the purpose of processing the climatological data files after modification by the
parent Python script. The routines (C functions) for output of user defined profiles
are not listed here since they are closely similar to the one for output of profiles that
have the computer meteorological message (METCM) height structure
(Appendix B-2). The other routines are the same as those described in Cogan.1,2
The code without the modifications for processing the climate files from the 14WS
is available at the US Army Research Laboratory GitHub site, https://github.com/
USArmyResearchLab. Although not shown, the sections of code in the main
routine (convertdata_clim.c) that related to the generation of messages other than
the METCM and the user-defined profiles were commented out. They were not
needed for the work for this report, but could be reinstated by removing the symbols
denoting comments (/* and */). Also, an additional print statement was added at the
end of that routine for use by the logging procedure of the Python script to indicate
successful completion of the C program.

B-1 Data Input

The routine or function to read the data was modified to read the several data types
including a varying number of extreme wind and/or density conditions. The listing
shown here does not include several commented-out print statements that were
available for debugging and checking intermediate values.

/* FILE NAME: readclim.c.
Reads climate data from the AF 14th WS in tabular format. This program produces input for the
programs that produce level and layer profiles in various tabular formats. This function reads in
one file in the climate data format generated by the climstat_all.py Python3 script. It can read in
any number of met data lines. However, for processing into an output sounding at least two lines
are needed, one of which normally is the surface. The upper limit is the size of the arrays as
defined in the appropriate structure definition.
*/

#include "convert_clim2.h"

int readclim(struct sound *clim, char *inputfilename)
 {

 FILE *fin;
 int n, len;

1Cogan J. A generalized method for vertical profiles of mean layer values of meteorological
variables. Adelphi (MD): Army Research Laboratory (US); 2015 Mar. Report No.: ARL-TR-7434.
2Cogan J. Evaluation of model-generated vertical profiles of meteorological variables: method and
initial results. Meteorol Appl. 2017;24:219–229.

Approved for public release; distribution is unlimited.
21

 char label[81], ext_type[2];
 char site_id[6], site[35], sitename[141];
 float hgt_dif, extreme_value;
 int i, k;

/* Open input data file. ******/
 /*printf("Input file name: %s \n", inputfilename);*/
 if(!(fin = fopen(inputfilename,"r")))
 {
 fprintf(stderr,"\nUnable to open clim input data file.\n\n");
 exit(1);
 }

 /* Set indices for read statements.*/

 n = clim->ind + 10;

 /* Set header values for ceiling and visibility equal to ERROR (-999) to avoid confusion with
 possible real values (vs. 0.0 for each), since the climate data do not include these variables.
****/

 clim->site.ceil = ERROR;
 clim->site.vis = ERROR;

 /* Read in header information. ******************************/

 fscanf(fin, "%s\n", sitename);

 i=0;
 do
 {
 i++;
 fscanf(fin, "%s", label);
 }
 while(strcmp(label,"obsw") != 0);

 for(i=0;i<clim->ind;i++)
 fscanf(fin,"%s", clim->site.extrvar[i]);

 strcpy(clim->site.time_id,"GMT"); /* set the time_id for format reasons */

 /*** End of optional header reading. Common format of data follows. *********/
 /*** Read data lines. ********/

 i = 0;
 while(i<clim->numlines)
 {
 fscanf(fin,"%f%f%f%f%f%f%f%f%f%d", &clim->level[i].hgt, &clim->level[i].prs, &clim-
>level[i].spd, &clim->level[i].tmp, &clim->level[i].den, &clim->level[i].sdp, &clim->level[i].sdt,
&clim->level[i].sdd, &clim->level[i].sdw, &clim->level[i].lvlnum);

Approved for public release; distribution is unlimited.
22

 for(k=0; k<clim->ind; k++)
 {
 fscanf(fin,"%f", &extreme_value);
 sscanf(clim->site.extrvar[k], "%1s", ext_type);
 if(strcmp(ext_type, "w") == 0)
 clim->extrval[i][k].ext_wind = extreme_value;
 else
 clim->extrval[i][k].ext_dens = extreme_value;
 }
 i++;
 }

 clim->nht = i;

 /* No need to convert MSL heights to AGL. Already in AGL.****************************/

 /* Convert temperature from C to K. *****************************/

 for (i=0;i<clim->nht;i++)
 clim->level[i].tmp += 273.16;

 /* Latitude, longitude, and elevation are not provided in input climate files. */

 clim->site.lat = -999;
 clim->site.lon = -999;
 clim->site.elev = -999;

 printf("\n");

/*************** END OF DATA INPUT *******************************/

 fclose(fin);

 return;
}

B-2 METCM Type Output

The routine or function to produce output with the height structure of a METCM
was modified to output the several data types including a varying number of
extreme wind and/or density conditions. The listing shown here does not include
several commented-out print statements that were available for debugging and
checking intermediate values. Since no wind direction values are in the climate files
from the Air Force 14th Weather Squadron (14 WS) no General Trajectory
(GTRAJ) model compatible output was generated. Very similar write functions not
shown here produce output for a user-defined height structure.

Approved for public release; distribution is unlimited.
23

/** This function (writemetcm) prints output with the height structure of the METCM to
appropriate files.
 Input climate data was taken from AF 14th WS files. This version processes any number of
extreme values for wind and/or density as determined via the parameter file
"input_parameters". This version (in file writemetcm_clim.c) does not produce GTRAJ
 compatible files since the climate files do not have wind direction.
**/

#include "convert_clim2.h"
#define MAXCMLVL 32

int writemetcm(struct sound *metcm, char *outpath)
{
 FILE *fcmout;
 int i, k, size;
 float zone, height;
 char outfile[161], infilename[71];
 char ext_type[2];

 /* Get output file name. ********************/

 strcpy(outfile, outpath)
 sscanf(metcm->site.filename, "%29s", infilename);
 strcat(outfile, infilename);
 strcat(outfile, "_METCM");

 /* Open output and GTRAJ input files. ************************************/

 if(!(fcmout = fopen(outfile,"w")))
 {
 fprintf(stderr,"Unable to open metcm data file.\n");
 exit(1);
 }

 /* Print output to files. ************************************/

 size = metcm->nht+1; /*** loop indices ***/

 /* METCM output ***********************/

 fprintf(fcmout,"METCM output for %s \n\n", metcm->site.filename);

 /* No date or time or location or elevation information in climate data files, but code was
saved in case such becomes available. At this time no need to print missing data indicators for
those parameters. */

 fprintf(fcmout,"Elevation: %7.1f\n\n",
 metcm->site.elev);*/

 /* No wind direction in climate files used for this evaluation. Removed wind direction
output.*/

Approved for public release; distribution is unlimited.
24

 fprintf(fcmout," (m) (tens_of_mils) (kn) (K*10) (mb) (g/m3) (kn) (kn)
(g/m3) (g/m3)\n\n");*/
 fprintf(fcmout," Line Height Wind_Speed Temperature Pressure Density ");
 for(k=0;k<metcm->ind;k++)
 fprintf(fcmout, " %s ", metcm->site.extrvar[k]);
 fprintf(fcmout, "\n");

 fprintf(fcmout," (m) (kn) (K*10) (mb) (g/m3) ");
 for(k=0;k<metcm->ind;k++)
 {
 sscanf(metcm->site.extrvar[k], "%1s", ext_type);
 if(strcmp(ext_type, "w") == 0)
 fprintf(fcmout, " (kn) ");
 else
 fprintf(fcmout, " (g/m3) ");
 }
 fprintf(fcmout, "\n\n");

 for(i=0;i<size;i++)
 {
 if(metcm->level[i].spd != ERROR)
 metcm->level[i].spd *= NM; /* Input wind speeds in m/s; convert to kn. */

 for(k=0;k<metcm->ind;k++)
 {
 sscanf(metcm->site.extrvar[k], "%1s", ext_type);
 if(strcmp(ext_type, "w") == 0)
 {
 if(metcm->extrval[i][k].ext_wind != ERROR)
 metcm->extrval[i][k].ext_wind *= NM;
 }
 }

 if(metcm->level[i].tmp != ERROR)
 metcm->level[i].tmp *= 10;

 if(i == 0)
 height = metcm->level[i].hgt;
 else
 height = (metcm->level[i].hgt + metcm->level[i-1].hgt)*0.5;

 /* No wind direction in climate files used for this evaluation. Therefore no wind direction
output.*/

 fprintf(fcmout,"%3d %8.0f %7.1f %8.0f %7.1f %8.2f ",
 i, height, metcm->level[i].spd, metcm->level[i].tmp, metcm->level[i].prs,
 metcm->level[i].den);

 for(k=0;k<metcm->ind;k++)
 {

 sscanf(metcm->site.extrvar[k], "%1s", ext_type);

Approved for public release; distribution is unlimited.
25

 if(strcmp(ext_type, "w") == 0)
 fprintf(fcmout, " %7.1f", metcm->extrval[i][k].ext_wind);
 else
 fprintf(fcmout, " %8.2f ", metcm->extrval[i][k].ext_dens);
 }
 fprintf(fcmout, "\n");
 }

 fprintf(fcmout, "\n");

 printf("\n MET message printed to METCM output.\n");

/********** End of output statements. -**********************/

 fclose(fcmout);

 return;
}

B-3 Generation of Level and Layer Values

The program for generation of level and layer values was modified to process the
climatological profiles including the ones for extreme wind and density. The values
for mean pressure were processed in the same way as in Cogan2 for height-based
profiles. Much of this routine (msgvaluesclim.c) was not changed, but since the
changes affect several sections of the code, the entire file is presented.

/** FILE NAME: msgvaluesclim.c
 This program computes level and layer values using input climate data files from the 14 WS as
modified by the climstat_all.py Python3 script. The pressure values are computed, as
previously, with hypsometric method from observation level immediately below, if within the
layer, or from bottom level of that layer. No wind direction values are in the climate files. Wind
direction is given the missing data indicator (-999) vs. removal from this routine so as to have a
place holder in case later climate files include wind direction. **/

#include "convert_clim.h"

int msgvalues(struct sound *snd, struct sound *msg, struct sound *mlevel)
{
 /* msg = layer values, mlevel = level values */
 int i, j, k;
 int size, msize, tsize, wsize; /*tsize is for temperature, wsize for wind (here the same) */
 float zmax, dir;
 float t, t0, z, z0, z_ratio; /* No virtual temperature. Use sensible temperature. */
 char ext_type[2];

 struct temporary *sound; /* use in level and layer functions */

Approved for public release; distribution is unlimited.
26

 struct temporary *leveltemp;
 struct temporary *layertemp;

 sound = (struct temporary *)malloc(sizeof(struct temporary));
 leveltemp = (struct temporary *)malloc(sizeof(struct temporary));
 layertemp = (struct temporary *)malloc(sizeof(struct temporary));

/* Initialize structure and temporary variables **********************************/

 for(i=0;i<MAXSIZE;i++)
 {
 sound->h[i] = ERROR;
 sound->t[i] = ERROR;
 sound->tv[i] = ERROR;
 sound->p[i] = ERROR;
 sound->den[i] = ERROR;
 sound->spd[i] = ERROR;
 sound->dir[i] = ERROR;
 sound->exwind[i] = ERROR;
 sound->exdens[i] = ERROR;
 leveltemp->h[i] = ERROR;
 leveltemp->t[i] = ERROR;
 leveltemp->tv[i] = ERROR;
 leveltemp->p[i] = ERROR;
 leveltemp->den[i] = ERROR;
 leveltemp->spd[i] = ERROR;
 leveltemp->dir[i] = ERROR;
 leveltemp->exwind[i] = ERROR;
 leveltemp->exdens[i] = ERROR;
 layertemp->h[i] = ERROR;
 layertemp->t[i] = ERROR;
 layertemp->tv[i] = ERROR;
 layertemp->p[i] = ERROR;
 layertemp->den[i] = ERROR;
 layertemp->spd[i] = ERROR;
 layertemp->dir[i] = ERROR;
 layertemp->exwind[i] = ERROR;
 layertemp->exdens[i] = ERROR;
 for(k=0;k<snd->ind;k++)
 {
 sound->extrtemp[i][k].ext_wind = ERROR;
 sound->extrtemp[i][k].ext_dens = ERROR;
 leveltemp->extrtemp[i][k].ext_wind = ERROR;
 leveltemp->extrtemp[i][k].ext_dens = ERROR;
 layertemp->extrtemp[i][k].ext_wind = ERROR;
 layertemp->extrtemp[i][k].ext_dens = ERROR;
 }
 }

/* Parameters for level and layer values. ****************/

 msg->nht = mlevel->nht - 1; /* number of layer values one less than level values */

Approved for public release; distribution is unlimited.
27

 msg->ind = snd->ind;
 mlevel->ind = snd->ind;
 size = snd->nht;
 msize = mlevel->nht;
 zmax = snd->level[size-1].hgt + 0.001;

/* Cannot compute components from snd wind speed and direction (no direction values).
Cannot compute virtual temperature from the climate input data (no humidity values).
**********/

 /******* Compute level values. ***************************************/

 j=-1; /*set up temporary variables for use in level and layer functions as needed */
 for (i=0;i<size;i++)
 {
 if(snd->level[i].hgt != ERROR && snd->level[i].tmp != ERROR &&
 snd->level[i].prs != ERROR)
 {
 j++;
 sound->h[j] = snd->level[i].hgt;
 sound->t[j] = snd->level[i].tmp;
 sound->tv[j] = sound->t[j]; /*NO HUMIDITY value in climate data set. Set tv to t. */
 sound->p[j] = snd->level[i].prs;
 sound->den[j] = snd->level[i].den;
 sound->spd[j] = snd->level[i].spd;
 for(k=0;k<snd->ind;k++)
 {
 sscanf(snd->site.extrvar[k], "%1s", ext_type);
 if(strcmp(ext_type, "w") == 0)
 sound->extrtemp[j][k].ext_wind = snd->extrval[i][k].ext_wind;
 else
 sound->extrtemp[j][k].ext_dens = snd->extrval[i][k].ext_dens;
 }
 }
 }

 tsize = j; /*printf("tsize = %4d\n\n", tsize);*/
 wsize = tsize;

/* Load in height values. ****/

 for (i=0;i<msize;i++)
 {
 leveltemp->h[i] = mlevel->level[i].hgt;
 layertemp->h[i] = leveltemp->h[i];
 }

/* Convert 2D arrays to 1D for entry into level and layer functions. Then compute level and layer
values. Convert back to 2D arrays.*/

 for(k=0;k<snd->ind;k++)
 {

Approved for public release; distribution is unlimited.
28

 sscanf(snd->site.extrvar[k], "%1s", ext_type);
 if(strcmp(ext_type, "w") == 0)
 {
 for(i=0;i<size;i++) /* Wind speed */
 sound->exwind[i] = sound->extrtemp[i][k].ext_wind; /* Form 1D arrays from 2D arrays.
*/

 /* Compute level and layer values for the kth type of extreme wind speeds. */
 level(zmax, msize, leveltemp->h, sound->exwind, leveltemp->exwind, sound->h);
 layer(zmax, wsize, msize, layertemp->h, sound->exwind, leveltemp->exwind, layertemp-
>exwind, sound->h);

 /* Enter level and layer values "back" into 2D arrays.*/
 for(i=0;i<size;i++)
 {
 leveltemp->extrtemp[i][k].ext_wind = leveltemp->exwind[i];
 layertemp->extrtemp[i][k].ext_wind = layertemp->exwind[i];
 }
 }
 else
 {
 for(i=0;i<size;i++) /* Density */
 sound->exdens[i] = sound->extrtemp[i][k].ext_dens; /* Form 1D arrays from 2D arrays.
*/

 /* Compute level and layer values for the kth type of extreme densities. */
 level(zmax, msize, leveltemp->h, sound->exdens, leveltemp->exdens, sound->h);
 layer(zmax, tsize, msize, layertemp->h, sound->exdens, leveltemp->exdens, layertemp-
>exdens, sound->h);

 /* Enter level and layer values "back" into 2D arrays.*/
 for(i=0;i<size;i++)
 {
 leveltemp->extrtemp[i][k].ext_dens = leveltemp->exdens[i];
 layertemp->extrtemp[i][k].ext_dens = layertemp->exdens[i];
 }
 }
 }

 /* Compute level values for other non-pressure values. *************/

 level(zmax, msize, leveltemp->h, sound->t, leveltemp->t, sound->h);
 level(zmax, msize, leveltemp->h, sound->den, leveltemp->den, sound->h);
 level(zmax, msize, leveltemp->h, sound->spd, leveltemp->spd, sound->h);

 /* Compute layer values for other non-pressure values. **************************/

 layer(zmax, tsize, msize, layertemp->h, sound->t, leveltemp->t, layertemp->t, sound->h);
 layer(zmax, tsize, msize, layertemp->h, sound->den, leveltemp->den, layertemp->den, sound-
>h);
 layer(zmax, wsize, msize, layertemp->h, sound->spd, leveltemp->spd, layertemp->spd, sound-
>h);

Approved for public release; distribution is unlimited.
29

 /* No input wind direction information. Set level and layer values to ERROR (-999).
*****************/

 for(i=0;i<msize;i++)
 mlevel->level[i].dir = ERROR;

 msg->level[0].spd = snd->level[0].spd;
 msg->level[0].dir = ERROR;

 for(i=1;i<msize;i++)
 msg->level[i].spd = layertemp->spd[i-1];

 /* Load height values into msg structures (level values already via mlevel). **********/

 for (i=0;i<msize;i++)
 msg->level[i].hgt = mlevel->level[i].hgt;

 /* Load values into mlevel and msg structures. *****************************/

 for (i=0;i<msize;i++) /***** level values *****/
 {
 mlevel->level[i].tmp = leveltemp->t[i];
 mlevel->level[i].vtmp = mlevel->level[i].tmp; /*NO HUMIDITY values in climate data set. Set
vtmp = tmp. */
 mlevel->level[i].den = leveltemp->den[i];
 mlevel->level[i].spd = leveltemp->spd[i];
 mlevel->level[i].dir = ERROR;
 for(k=0;k<snd->ind;k++)
 {
 mlevel->extrval[i][k].ext_wind = leveltemp->extrtemp[i][k].ext_wind;
 mlevel->extrval[i][k].ext_dens = leveltemp->extrtemp[i][k].ext_dens;
 }
 }

 msg->level[0].tmp = snd->level[0].tmp; /***** layer values (= surface + layers) *****/
 msg->level[0].vtmp = msg->level[0].tmp; /*NO HUMIDITY values in climate data set. Set
vtmp = tmp. */
 msg->level[0].den = snd->level[0].den;
 msg->level[0].spd = snd->level[0].spd;
 for(k=0;k<snd->ind;k++)
 {
 msg->extrval[0][k].ext_wind = snd->extrval[0][k].ext_wind;
 msg->extrval[0][k].ext_dens = snd->extrval[0][k].ext_dens;
 }

 for (i=1;i<msize;i++)
 {
 msg->level[i].tmp = layertemp->t[i-1];
 msg->level[i].vtmp = msg->level[i].tmp; /*NO HUMIDITY values in climate data set. Set
vtmp = tmp. */
 msg->level[i].den = layertemp->den[i-1];

Approved for public release; distribution is unlimited.
30

 msg->level[i].spd = layertemp->spd[i-1];
 for(k=0;k<snd->ind;k++)
 {
 msg->extrval[i][k].ext_wind = layertemp->extrtemp[i-1][k].ext_wind;
 msg->extrval[i][k].ext_dens = layertemp->extrtemp[i-1][k].ext_dens;
 }
 }

 /* Pressure values. ***/
 /* Compute level pressure values using better hypsometric method. This part was modified for
case of few observation levels and large vertical gap(s) between observation levels
******************/

 mlevel->level[0].prs = snd->level[0].prs;

 j=0;
 for(i=1; i<msize; i++) /*Values for temporary sound structure set before level calculations
above.*/
 {
 while(sound->h[j] < mlevel->level[i].hgt)
 j++;

 if(sound->h[j] == mlevel->level[i].hgt)
 mlevel->level[i].prs = sound->p[j];
 else
 {

 if(sound->h[j-1] < mlevel->level[i-1].hgt && j > 0)
 mlevel->level[i].prs = presscomp(mlevel->level[i].vtmp, mlevel->level[i-1].vtmp,
 mlevel->level[i-1].prs, mlevel->level[i].hgt, mlevel->level[i-1].hgt);
 else
 mlevel->level[i].prs = presscomp(mlevel->level[i].vtmp, sound->tv[j-1],
 sound->p[j-1], mlevel->level[i].hgt, sound->h[j-1]);
 }
 }

 /* Compute layer pressure values.
***/

 msg->level[0].prs = mlevel->level[0].prs; /* msg values (= surface + layers)*/

 j=1;
 for(i=1;i<msize;i++)
 {
 while(sound->h[j] < (mlevel->level[i].hgt + mlevel->level[i-1].hgt)*0.5)
 j++;

 if(sound->h[j] == (mlevel->level[i].hgt + mlevel->level[i-1].hgt)*0.5)
 msg->level[i].prs = sound->p[j];
 else
 {
 /* Only have sensible temperature available. No humidity data in climate input. */

Approved for public release; distribution is unlimited.
31

 if(sound->h[j-1] < (mlevel->level[i-1].hgt + mlevel->level[i-2].hgt)*0.5)
 {
 t = msg->level[i].tmp;
 t0 = mlevel->level[i-1].tmp;
 z = (mlevel->level[i].hgt + mlevel->level[i-1].hgt)*0.5;
 z0 = mlevel->level[i-1].hgt;
 msg->level[i].prs = presscomp(t, t0, mlevel->level[i-1].prs, z, z0);
 }
 else
 {
 t = msg->level[i].tmp;
 t0 = sound->t[j];
 z = (mlevel->level[i].hgt + mlevel->level[i-1].hgt)*0.5;
 z0 = sound->h[j-1];
 msg->level[i].prs = presscomp(t, t0, sound->p[j-1], z, z0);
 }
 }
 }

 /*printf("Ending at computation of layer pressure values.\n\n");exit(0);*/

 /* Load in site information (date, time, lat, lon, etc.). ***********/

 msg->site = snd->site;
 mlevel->site = snd->site; /* For use with level output as needed.*/

/* Free temporary arrays. *********/

 free(sound);
 free(leveltemp);
 free(layertemp);

 return;

} /* End of level and layer computation section. *****************/

Approved for public release; distribution is unlimited.
32

List of Symbols, Abbreviations, and Acronyms

14 WS Air Force 14th Weather Squadron

AGL above ground level

csv comma-separated value

d density

GTRAJ General Trajectory

hgt height

KTUS Tucson International Airport

METCM computer meteorological message

mo month

obsw wind speed observations or samples

p pressure

PAFA Fairbanks, Alaska

std standard deviation

t temperature

T&E test and evaluation

w wind speed

YBBN Brisbane, Australia

Approved for public release; distribution is unlimited.
33

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIR ARL
 (PDF) IMAL HRA
 RECORDS MGMT
 RDRL DCL
 TECH LIB

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 ARL
 (PDF) RDRL WMP E
 J COGAN

Approved for public release; distribution is unlimited.
34

INTENTIONALLY LEFT BLANK.

	List of Tables
	Acknowledgments
	1. Introduction
	2. Method
	2.1 Preparation of the Parameter Files
	2.2 The Combined Program Procedure

	3. Input and Output Samples
	4. Summary and Conclusion
	5. References
	Appendix A. Python Script
	Appendix B. Code for Modified Parts of the C Program
	List of Symbols, Abbreviations, and Acronyms

