
ARL-TN-0805•DEC 2016

US Army Research Laboratory

How IChart Utilizes Advanced Java Features
to Support Code Maintenance

by Frederick S Brundick

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorse-
ment or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TN-0805•DEC 2016

US Army Research Laboratory

How IChart Utilizes Advanced Java Features
to Support Code Maintenance

by Frederick S Brundick
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704 0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704 0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD MM YYYY) 2. REPORT TYPE 3. DATES COVERED (From To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
17. LIMITATION

OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

December 2016 Technical Note

How IChart Utilizes Advanced Java Features to Support Code Maintenance

Frederick S Brundick

ARL-TN-0805

Approved for public release; distribution is unlimited.

October 2014–November 2014

R.0010376.8

US Army Research Laboratory
ATTN: RDRL-CII-T
Aberdeen Proving Ground, MD 21005-5066

primary author’s email: <frederick.s.brundick.civ@mail.mil>.

When an application is written it is important to employ the best practices of the language being used. If the developer is using
an object-oriented language, then that is the paradigm they should follow rather than the procedural methodology that they
learned in college. It will make it easier for future writers to maintain and modify the code. This technical note contains a
discussion of some Java features that were incorporated into the IChart application developed for the Joint Staff/J-8 Directorate.

Java, programming, object-oriented, best practices, code maintenance

24

Frederick S Brundick

410-278-8943Unclassified Unclassified Unclassified UU

ii

Approved for public release; distribution is unlimited.

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

2. Packages and Utility Classes 1

3. Properties 2

4. Configuration Class 4

5. Enumerations 4
5.1 Simple Enumerations 4

5.2 Complex Enumerations 5

5.3 Extended “for-each” Loops 6

6. Methods 7
6.1 Overriding 7

6.2 Reflection 7

7. Appletations 8

8. Conclusion 9

9. References 11

Appendix. LineStrokeEnum Class Listing 13

List of Symbols, Abbreviations, and Acronyms 17

Distribution List 18

iii

Approved for public release; distribution is unlimited.

List of Figures

Fig. 1 IChart packages ...2

Fig. 2 IChart properties ..3

List of Tables

Table 1 TableEnum enumeration class ..5

Table 2 TableEnum helper methods..5

iv

Approved for public release; distribution is unlimited.

1. Introduction

It is important to fully utilize unique features of a programming language (where
appropriate) when designing a new application. Far too often when developers be-
gin to use a new (to them) language they continue to write in the style of a language
they are comfortable with. In the early days of artificial intelligence (AI) research
the common procedural languages were FORTRAN, BASIC, and COBOL. The
language of choice for AI was LISP—a functional language—which is from “LISt
Processor”. The syntax of LISP is based on lambda calculus and is fundamentally
different from procedural languages such as FORTRAN. However, anecdotes per-
sist about people “writing FORTRAN in LISP”.1 They wanted to do AI research
but they wrote in the style of their familiar FORTRAN instead of embracing the
LISP paradigm. The same thing happens today when someone puts a C++ wrapper
around a C program and claims that it is a C++ program. The underlying logic is
procedural and not object oriented.

In 2004 the US Army Research Laboratory (ARL) was tasked with creating an ap-
plication for the Global Force Management Data Initiative (GFM DI) by the Joint
Staff/J-8 Directorate. The application, IChart, is a viewer and editor for organi-
zational and force structure data.2 IChart was initially written in Java 1.4 for its
portability, graphics abilities, and connectivity to the open source MySQL database
server.3 In the succeeding years the code was modified and simplified as new fea-
tures were added to the Java language.

This technical note contains a discussion of various Java features such as packages,
properties, enumeration, and reflection and how they are used in IChart. The re-
sult has been code that is easy to read, maintain, and modify as new features are
required.

2. Packages and Utility Classes

The ARL portion of the IChart source is compartmentalized into 8 different pack-
ages as shown in Fig. 1. Packages logically divide an application into related groups
of classes and allow them to share information while hiding it from other packages.
For example, the “database” class contains all Structured Query Language (SQL)
code to make SQL transactions transparent to the rest of the application. There are
6 utility classes4 in the various packages to provide often re-used methods.

1

Approved for public release; distribution is unlimited.

cache data are stored and manipulated here
database database (SQL) specific code
eidobj objects that directly map to database tables
graphics code pertaining to graphics that draw the tree
ichart the main IChart application
logging extensive logging is available for debugging
util general utility classes
xml code to support the reading and writing of XML

Fig. 1 IChart packages

One of the classes in the database package is SQLUtility. As is the case with many
utility classes, an SQLUtility object is never instantiated. Instead the class contains
static methods that are invoked to perform database actions without embedding
SQL-specific code thoughout the application. The invoker passes arguments such
as the database connection, table names, and field names, but the inner workings
and SQL syntax are hidden. This decouples classes in other packages from the SQL
details, allowing major changes to be made to SQLUtility without affecting code
that invokes its methods.

3. Properties

Property files5 are a way of allowing the user to supply program parameters in
a simple and easy-to-read manner. A property may have a default value defined
within the application, values may be updated with one or more properties file, and
options on the command line may supply last-minute value changes. (Properties
may also be modified by the running program.)

IChart not only uses several property files but includes a utility class named MyProp-
erties to define property constants and methods to manipulate property values. There
are currently 183 properties and their names are all found in this class instead of be-
ing scattered throughout the code. Every class that loads and processes properties
has an addPropertiesToPane method that adds property names and values to a panel
using methods defined in MyProperties. (At this time 9 classes define this method.)
The user may display this panel to find property names and see their current values
as shown in Fig. 2.

2

Approved for public release; distribution is unlimited.

Fig. 2 IChart properties

3

Approved for public release; distribution is unlimited.

4. Configuration Class

The Config class referenced in Fig. 2 is the way that IChart shares common vari-
ables and property values among classes in different packages. It is similar to the
named common blocks that were popular in FORTRAN.6 When a class needs ac-
cess to the values (usually in its constructor) it requests an instance of the object
with the static method Config.getInstance. If the singleton object exists, then the
object is returned; otherwise, one is instantiated via Config’s private constructor
and then returned.

5. Enumerations

5.1 Simple Enumerations

A popular technique in C is to define literal values as macros and use the prepro-
cessor to insert them throughout the code. Java’s approach is to declare variables
as “final” and then assign values to them. Likewise, sometimes a set of constants
will be declared that have related values (e.g., the days of the week). In Java 5
enumerations were implemented as classes.7 A simple example used by IChart,
LineStrokeEnum, is shown in its entirety in the Appendix.

LineStrokeEnum enumerates a set of line strokes with the symbolic names “solid”,
“dashed”, and “dotted”. The only accessor method is getStroke which returns a
BasicStroke object to draw a line with the desired stroke. (An element may have
multiple values, each accessible with its own method.)

When combined with properties a powerful abstraction is possible. The IChart prop-
erty with the symbolic name EXT_LINK_STYLE defines the stroke to be used
when a link is drawn to an external node. The allowable values are the same as the
elements in LineStrokeEnum. The first line of code gets the value of the property
with a default of “solid”. (Property values are always strings and must be converted
to other types as required.)

String styleName = props.getProperty(

MyProperties.EXT_LINK_STYLE, "solid");

The second line stores a LineStrokeEnum element with the name stored in style-
Name:

4

Approved for public release; distribution is unlimited.

LineStrokeEnum extLinkStyle =

Enum.valueOf(LineStrokeEnum.class, styleName);

A chained conditional construct is not required because Enum.valueOf compares
the string with the element names. If the user-supplied value is not one of the enu-
meration labels then an exception is thrown by valueOf.

5.2 Complex Enumerations

The previous example is a static definition of an associative data structure that maps
a Java String to a BasicStroke. The same effect could have been obtained with a
Map. However, an enumeration is a class that may also contain multiple values and
other methods. An example of this is the TableEnum enumeration that contains 5
values and related accessor methods as shown in Table 1. Additional methods are
shown in Table 2.

Table 1 TableEnum enumeration class

Field Method Meaning Example
tableName getTableName name of MySQL table PersType
fieldName getFieldName name of primary field pers_type_id
fileName getFileName name of data file PersType
cls getCls class of this element PersType.class
parent getParent enumeration of parent null

Table 2 TableEnum helper methods

Method Argument Meaning
isTopLevel — does this element not have a parent?
getTableFromClass cls get table name given the class
getFieldFromClass cls get field name given the class
valueFromTable tblName get enumeration given the table name
valueFromClass cls get enumeration given the class

IChart defines a class for each SQL table in a GFM DI dataset and data may be saved
into a collection of text files for manual editing. The same name was originally used
for all 3 and a simple array of table names was sufficient. Over time the array was
replaced with the enumeration and multiple values. As with LineStrokeEnum the
approach is more abstract and not hardwired to physical values.

5

Approved for public release; distribution is unlimited.

A key feature is the way that the class of each element is used as a value. This is not
an instance of the class but the class itself. Given an instance, the getClass method
may be used to determine the class of the instance or the class may be obtained
directly from the “class” field.

In the following statement the Person Type class is passed to the loadTable method:
ResultSet rs = loadTable(PersType.class);

The first line of loadTable gets the enumeration with
TableEnum tbl = TableEnum.valueFromClass(cls);

and later fetches the SQL table name with
... tbl.getTableName() ...

to query the proper database table.

The programmer must know the class (in this example, PersType) and the names
of the methods in Table 2 and that is all. The table names could be changed in
TableEnum and as long as all code in IChart uses TableEnum instead of literal
values, the application will work without any code changes.

5.3 Extended “for-each” Loops

In Java 5 the “for” loop was extended to include Iterables, creating a simple way
to step through the elements of an enumeration.8 While this is used with other enu-
merations in IChart, TableEnum will be shown in a simple example. The code to
compute the size of every SQL table in a GFM dataset and store the values in a Map
is

HashMap<Class,Integer> tableSizes =

new HashMap<Class,Integer>;

for (TableEnum tbl : TableEnum.values()) {

int size = SQLUtility.getCount(conn,

tbl.getTableName(), null);

tableSizes.put(tbl.getCls(), size);

}

This code fragment iterates through each element of the TableEnum enumeration.
A utility method executes the SQL statement required to compute the size of each
database table using the name assigned to the element. The element’s class is then
used as the key in a HashMap to store the size.

6

Approved for public release; distribution is unlimited.

6. Methods

6.1 Overriding

A feature of object-oriented programming (OOP) is the ability of a method in a
child class to override a method with the same signature in a parent class. This is
often used when a child method needs to add more functionality.

Another example is to declare an abstract method in the parent class. The writer of
a new child class must define the method in the child for the code to compile. The
abstract toDescString method appears in the BasicEID class. This class is the parent
of all IChart classes that correspond to database tables. Every child class defines
its own toDescString to produce a descriptive string of an object of that class. At
runtime the Java Virtual Machine (JVM) determines the class of a particular object
and invokes the appropriate toDescString method.

6.2 Reflection

Reflection allows a program to determine at runtime how to invoke a method when
overriding a method is not an option. For a method to override another, the argument
list and return type of the methods must be identical. This is not the case with the
loadRecords method. While the argument is always a ResultSet the return type is an
array of objects of that particular class. (A ResultSet is the dataset obtained when
an SQL query is performed.) Here is a case where IChart needs to invoke a method
given only the class of an object.

A GFM DI database may be validated for “Category B” errors; the details are not
pertinent to this discussion. A table in the database is created with information
about the errors that were discovered. This error table includes fields for the GFM
identifier (GFMID) and class name of each object with an error along with the type
of error. The following code accesses this table and creates objects for each GFM
data element that contains an error.

7

Approved for public release; distribution is unlimited.

The catB object is an instantiation of the CategoryB class that defines methods and
variables to perform an analysis and process the results. At this point in the code
the database table contains a set of errors. The code begins by getting the names of
all of the types of errors, then iterating over each type. An extended for-each loop
is used.

ArrayList<String> types = catB.getErrorTypes(dbName);

for (String type : types) {
The class name and list of GFMIDs for the current error type are fetched from the
table.

String name = catB.getClassName(dbName, type);

List<Long> gfmIDs = catB.getErrorEIDs(dbName, type);
Next the TableEnum element and class associated with the named class are ob-
tained.

TableEnum tbl = TableEnum.valueFromTable(name);

Class cls = tbl.getCls();
The cArgs variable contains the class types of the arguments to the desired method.
The method loadRecords has a single argument of the type ResultSet. A Method
object is created by searching the specified class for the method with the name and
argument(s) indicated.

Class[] cArgs = { ResultSet.class };

Method meth = cls.getDeclaredMethod(

"loadRecords", cArgs);
An instance of the specified class is instantiated and the method is invoked.

Object obj = cls.newInstance();

for (long gfmID : gfmIDs) {

ResultSet rs = tempDB.loadTable(tbl, gfmID);

ArrayList<BasicEID> bEIDs =

(ArrayList<BasicEID>)meth.invoke(obj, rs);

...
The array bEIDs now contains a single entry that is an object loaded from the
database. The object may be displayed to the user to pinpoint the error.

7. Appletations

Java programs are executed in 2 ways: as a stand-alone application or as an applet
inside of a web browser. By taking advantage of the way that the JVM initializes
these 2 approaches it is possible to write a program—an “appletation”— that may
be run in either fashion.

8

Approved for public release; distribution is unlimited.

Applications are run by executing the “main” method of a specified class, passing
items on the command line as method arguments. (This is the same approach that
C uses.) It is the programmer’s responsibility to instantiate an instance of the class
and process the arguments.

Applets instantiate an instance of the class and invoke its “init” method. Since
there is not a command line, the web page uses the HyperText Markup Language
(HTML) tag “param” to define the arguments and the applet fetches them with the
getParameter method.

IChart’s main method performs application-only initialization such as setting up
the logging system. It then invokes the “init2” method giving it the command line
arguments. When IChart is run as an applet the init method sets the static variable
inAnApplet to true (the default is false) and invokes init2 with no argument.

Most of the remaining code may be executed regardless of how IChart was started.
However, there are times when an operation is not possible (e.g., reading local prop-
ery files) and that is when inAnApplet is checked. Likewise, the arguments or pa-
rameters are examined depending on the mode.

Visually, the applet is identical to the application. Rather than embed the graphics
inside of the browser window, the main IChart window is displayed the same way
that it is done by the application.

8. Conclusion

Developers should exploit unique features of a language or programming paradigm
and remain current with language updates. It is easier for other programmers to
understand and modify the code if standard practices and libraries are used instead
of obscure home-built code.

OOP supports packages and the overriding of class methods. Packages provide flex-
ibility that promotes code reuse, groups related code into distinct modules, and min-
imizes coupling between code modules. As an experiment, someone who had never
read the IChart code before replaced the tree graphics with an open source graphics
package with no assistance from IChart’s developer.

9

Approved for public release; distribution is unlimited.

Maintenance typically accounts for 75% or more of the total software workload.9

While it is tempting to hardwire code during the development phase, it is more im-
portant in the long term to focus on maintainability and expandability. For example,
in IChart’s ShowFieldEnum class the elements contain the field name and a boolean
field for each of the 2 tree types. The names are displayed in a menu depending on
the boolean values. It may have been easier to hardwire the 2 tree menus but over
the year items have been added to the menus. Because the values are enumerations
it is easy to examine the elements in an extended for-each loop. In only one method
in IChart are the enumerated values explicitly referenced.

New libraries have been added to IChart as they were published. However, some
sophisticated new techniques have not been incorporated because they would re-
quire a fundamental rewrite of existing code. The TreePanel class in the graphics
package in IChart is the major exception to the concepts in this note. Part of it is
a direct translation of legacy C code into Java and it is long overdue for a major
rewrite.

10

Approved for public release; distribution is unlimited.

9. References

1. Wikipedia. Java version history. San Francisco (CA): Wikipedia; nd [re-
vised 2016 Jun 16; accessed 2016 Jul 8]. https://en.wikipedia.org/wiki/
Java_version_history.

2. Brundick FS, Hartwig GW Jr, Chamberlain SC. IChart: a graphical tool to
view and manipulate force management structure databases. Aberdeen Proving
Ground (MD): Army Research Laboratory (US); 2008 Sep. Report No.: ARL-
TR-4610.

3. Oracle. MySQL 5.5 reference manual. Redwood City (CA): Oracle Corpora-
tion; nd [accessed 2016 Jan 18]. http://dev.mysql.com/doc/refman/5.5/en/
jindex.html.

4. Wikipedia. Utility class. San Francisco (CA): Wikipedia; nd [revised 2015 Dec
18; accessed 2016 Jul 14]. https://en.wikipedia.org/wiki/Utility_class.

5. Oracle. Properties. Redwood City (CA): Oracle Corporation; nd [accessed 2016
Jul 14]. https://docs.oracle.com/javase/tutorial/essential/
environment/jproperties.html.

6. Harper D, Stockman LM. Fortran 77 reference. 1995 [accessed 2016 Jul 8].
https://www.obliquity.com/computer/fortran/common.html.

7. Matuszek D. The logic of functions. Philadelphia (PA):
np; 1995 [revised 2002 Jan 10; accessed 2016 Jul 7].
https://www.cis.upenn.edu/matuszek/LispText/lisp-logic.html.

8. Oracle. The for-each loop. Redwood City (CA): Oracle Corporation; nd [ac-
cessed 2016 Jul 7]. https://docs.oracle.com/avase/8/docs/technotes/guides/
jlanguage/foreach.html.

9. Galorath DD. Software total ownership costs. El Segundo (CA): Ga-
lorath Inc.; 2008 Aug [accessed 2016 Jul 22]. http://galorath.com/wp-
content/uploads/2014/08/software_total_ownership_costs-
development_is_only_job_one.pdf.

11

Approved for public release; distribution is unlimited.

INTENTIONALLY LEFT BLANK.

12

Approved for public release; distribution is unlimited.

Appendix. LineStrokeEnum Class Listing

This appendix appears in its original form, without editorial change.

13

Approved for public release; distribution is unlimited.

/*

* The class LineStrokeEnum enumerates all named

* line styles.

*/

package mil.army.arl.gfm.graphics;

import java.awt.BasicStroke;

import java.awt.Stroke;

/**

* The LineStrokeEnum class enumerates all named

* line styles.

* It works the same as an associative array.

*

* @author $Author: fsbrn $

* @version $Revision: 453 $

* $Date: 2016-11-23 13:36:23 -0500 (Wed,

23 Nov 2016) $

*/

public enum LineStrokeEnum

{

// Construct all objects with their values

/** Solid line. */

solid

(new BasicStroke(2.0f)),

/** Dashed line. */

dashed

(new BasicStroke(2.0f,

BasicStroke.CAP_SQUARE,

BasicStroke.JOIN_MITER,

10.0f,

new float[] { 4.0f },

0.0f)),

14

Approved for public release; distribution is unlimited.

/** Dotted line. */

dotted

(new BasicStroke(1.0f,

BasicStroke.CAP_SQUARE,

BasicStroke.JOIN_MITER,

10.0f,

new float[] { 2.0f, 2.0f },

0.0f));

/** Stroke for this enumeration. */

private Stroke strk;

/** Builds a LineStrokeEnum with the desired info.

*

* @param strk Stroke to associate with this

* enumeration.

*/

LineStrokeEnum(Stroke strk)

{

this.strk = strk;

}

/**

* Gets the stroke for this enumeration.

*

* @return stroke for this enumeration.

*/

public Stroke getStroke() { return strk; }

}

15

Approved for public release; distribution is unlimited.

INTENTIONALLY LEFT BLANK.

16

Approved for public release; distribution is unlimited.

List of Symbols, Abbreviations, and Acronyms

AI Artificial Intelligence
ARL Army Research Laboratory
DI Data Initiative
GFM Global Force Management
GFMID Global Force Management Identifier
JVM Java Virtual Machine
HTML HyperText Markup Language
OOP Object-Oriented Programming
SQL Structured Query Language

17

Approved for public release; distribution is unlimited.

1
(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

2
(PDF)

DIRECTOR
US ARMY RESEARCH LAB
RDRL CIO L
IMAL HRA MAIL & RECORDS MGMT

1
(PDF)

GOVT PRINTG OFC
A MALHOTRA

4
(PDF)

DIR USARL
RDRL CII T
F BRUNDICK
R HOBBS
T HANRATTY
M MITTRICK

18

