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1. Introduction

As materials science and other communities are becoming increasingly more data-
driven, it is important to be able to quantify the similarity or difference between
different datasets. Datasets can take any number of different forms: scalar values, 1-
dimensional (1-D) vectors, 2-dimensional (2-D) matrices, n-dimensional matrices,
etc. Mathematically, there are a number of different measures for assessing the sim-
ilarity or dissimilarity (distance) between the different forms of these datasets.' For
instance, given datasets X and Y, one common form of representing their distance
is the L;-norm (i.e., the sum of the absolute difference between each corresponding
data point ) _. | X; — Y,

distance, or Ly-norm, is the square root of the sum of the squared difference between

, which is related to the mean absolute error). The Euclidean

each corresponding data point (>, (X; — Y;—)Q) 1/2, related to the root mean squared
error. Yet another measure is the L., norm, or the Chebyshev norm, which is the the
maximum distance between the 2 datasets (>, (X; — Yi)oo)l/ * = max|X;, Y|
These are just a few distance examples related to the L, Minkowski norms and
are not indicative of the different ways to characterize the similarity or difference
between 2 datasets. There are a large number of different possible similarity and

distance measures that can be applied to different datasets.

One important property that the metrics discussed herein share is their high compu-
tational efficiency. These metrics perform a bin-to-bin comparison between datasets.
Therefore, these metrics scale linearly, proportional to O(/N). However, the bin-to-
bin comparison does have some limitations, most notably these metrics do not take
the local bin environment into account in quantifying the distance. Hence, more
complex metrics have been developed to overcome bin-to-bin metric limitations,
but these metrics often come with increased computational cost. Nonetheless, the
bin-to-bin metrics described within this technical note are widely used and may
have an important role when computing the distance and similarity of large datasets

and when considering high-throughput processes.

In this technical note, a number of different measures implemented in both MAT-
LAB and Python as functions are used to quantify similarity/distance between 2
vector-based datasets, which can be representative of vectors of values being com-
pared (e.g., histograms, probability distribution functions, signals). The scripts are

attached as appendixes as is a description of their execution.
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2. Function Description

The functions used to compute distance or similarity measures require vectors X
and Y and return the corresponding similarities or distances per the various mea-
sures given hereafter. There are a number of different families of distance and sim-

iliarity functions, which are given in Tables 1-9 and are briefly discussed hereafter.

* The L, Minkowski family (Table 1) contains measures related to the gener-

alized formula, /), |X; — Y;|", where p encompasses everything from the
city block L; distance to the Chebyshev L, distance.

* The L; family (Table 2) contains measures related to the absolute difference
L, distance (i.e., ), | X; — Yi|).

* The intersection family (Table 3) contains measures related to the intersec-
tion of X and Y. The min(X,Y) or max(X,Y’) term appears in either the

denominator or numerator for this family.

* The inner product family (Table 4) contains measures related to the summed
inner product, or dot product, of X and Y (i.e., > s X Y5).

* The fidelity (or squared-chord) family (Table 5) contains measures related to
the sum of the square root of the inner (dot) product (i.e., > . v/X;Y;), which
is referred to as the Fidelity similarity.

 The squared L, (or x?) family (Table 6) contains measures related to the
square of the L, (Euclidean) norm (i.e., >, (X; — Yi)2). The denominator
in some of these measures leads to an asymmetric response if X and Y are

swapped.

* The Shannon’s entropy family (Table 7) contains measures related to Shan-
non’s concept of probabilistic uncertainty or entropy (e.g., Y, InX;, > . InY;,

or some similar form).

* The combination family (Table 8) contains measures that have concepts from

multiple families (e.g., the combined average of the L; and L., norms).

* The vicissitude family (Table 9) contains a number of measures introduced in
Cha.?
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There are some caveats to their implementation,”> most notably errors associated

with division by zero or taking the log of zero.
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Table 4 Inner product family
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Table 7 Shannon’s entropy family
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Figure 1 shows an example of the general form of the similarity/distance measures
as applied to Gaussian peaks. In this case, the original (Gaussian) peaks X are com-
pared with the modified peaks Y using 4 different forms within the similarity met-
rics: Ly-norm, intersection, inner product, and Shannon entropy. First, the similarity
scalar value s; is computed as a function of bin value for the 2 top peaks (X and
Y, respectively). Next (not shown), the individual s; are summed over all % to pro-
duce a single scalar value of similarity, s = . s; (X;, Y;). Interestingly, different
similarity metrics may accentuate different characteristics within the data signal
(i.e., peaks in this case). For example, notice how the Shannon entropy accentuates
peak shift and broadening but is comparatively not very sensitive to the other peak

modifications shown in Fig. 1.

I Original 1

| Peaks

[ Modified ]

I Peaks 1

L 1y

1 D lzi—uil

[ L, m
I Intersectior/\

/\ > min(;, y;)
/\ | Yo

[y ]

; /\ IDICEME

L Shannon ]
Entropy D Inai/y)

Y

Shift Width Split Noise

Intensity, a.u.

[ Inner Prod

Fig. 1 Example of how different families of metrics are influenced by minor deviations in
peak position, peak broadening, peak splitting, and noise (modified peaks, from left to right)
for 4 Gaussian curves. The original peaks (top, in green) are compared to the modified peaks
(second from top, in green) for the L, norm metric, the intersection metric, the inner product
metric, and the Shannon entropy metrics (in red).
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3. Implementation and Usage

The implementation of the 1-D dataset distance/similarity measurements were im-
plemented in MATLAB and Python. The respective function/class can be found in
Appendix A and Appendix B, respectively. The MATLAB function compares two
1-D vectors of equal size and returns structured variables with the various similar-
ity and distance metrics. The Python class provides a framework that compares two

1-D vectors of equal size and returns the measured distances per family.

The attached MATLAB function has been tested on MATLAB R2014 and R2015
on a Windows operating system. The Python class has been tested with Python
2.7.*% and numpy 1.11.* versions on RHEL (6.8) and MacOSX (El Capitan). The
MATLAB code can be executed by completing the following:

* Download the various scripts into the same directory:
— compute_metrics.m
* Open the script in MATLAB

* Type ‘compute_metrics(X,Y,3)’ at the command prompt to run. The third

argument is used for the Minkowski metric in the L, family (i.e., p = 3)

The Python class can be imported as a module (e.g., import PyDIST as dists) and
used as instructed within the class “DESCRIPTION”. The following example was
generated by using the MATLAB scripts. A detailed analysis on the sensitivity of
these metrics and their applicability for quantifying differences in X-ray diffraction

(XRD) features is presented by Herndndez—Rivera et al.?

4. Examples

As an example, 3 different XRD patterns (Fig. 2) are compared using the different
distance and similarity metrics. Three different 26 ranges (full XRD pattern, 18°—
25° range, and 36°-40° range) are used to assess the quantitative difference between
the 3 XRD patterns and to show how much the metrics change as a function of the

range used for the 3 patterns.

Approved for public release; distribution is unlimited.
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Fig. 2 Example of 3 different XRD patterns, which are slightly offset to show the different
peaks. The bottom plots show a magnified view of the master XRD patterns (above). In each
of the cases, the intensity has been normalized such that the area is 1.

Figure 3 shows the different L,-norm metrics for the full range of the 3 XRD pat-
terns. The first row/column is the bottom pattern in Fig. 2, the second row/column
is the middle pattern, and the third row/column is the top pattern. The intersection
of the different patterns in the contour plot is the distance between the 2 XRD pat-
terns. Notice that the intersection of each pattern with itself has a distance of zero
and the maximum distance is normalized to a value of one, helping to show the
comparison between different metrics. For instance, in Fig. 3, all metrics suggest
that XRD patterns 1 and 2 are furthest apart (i.e., dissimilar), while patterns 1 and

3 are consistently the most similar.

Approved for public release; distribution is unlimited.

12



City Block, L;-Norm Euclidean, L,-Norm

Minkowski, L3-Norm Chebysheyv, L,.-Norm —1

Fig. 3 Distance metrics of the L, family computed for the 3 XRD patterns shown in Fig. 2.
The diagonal is showing each XRD pattern compared against itself (i.e., the distance is zero).
The remaining distance values have been normalized such that the maximum distance for each
metric is equal to 1.
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Figure 4 shows several different metrics from the L; family for the 3 XRD patterns.
Again, comparing with the distance values from the L,, family in Fig. 3, these met-
rics also agree in terms of indicating patterns 1 and 2 are the most dissimilar as well
as showing that patterns 1 and 3 are the most similar. Interestingly, it can be seen
that certain metrics, such as the Kulczynski distance, are more sensitive to changes
between the 3 patterns (i.e., the lowest normalized distance of 0.64 is much lower
than the other metrics).

Approved for public release; distribution is unlimited.
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Soergel Kulczynski

Canberra Lorentzian — 1

Fig. 4 Distance metrics of the L; family computed for the 3 XRD patterns in Fig. 2
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Figure 5 shows 4 distance metrics from 4 other families of metrics: intersection,
inner product, fidelity, and squared euclidean. The different contour plots are for
the 3 different ranges depicted in Fig. 2, with the leftmost plots being for the full-
range XRD patterns. First, the order of similarity/distance between the full-range
patterns is identical for the metrics shown. However, for the 18°-25° range, patterns
2 and 3 are computed to be most dissimilar by the different metrics. Furthermore,
the 36°-40° range has mixed results in terms of quantifying the patterns that are
most dissimilar. In terms of the most similar XRD patterns, though, the restricted
260 ranges agree with the computed distances for the full range (i.e., patterns 2 and

3 are consistently calculated as the most similar).

Approved for public release; distribution is unlimited.

16



Intersection

Cosine

Fidelity

Squared Euclidean

Fig. 5 Distance metrics of the intersection, inner product (cosine), fidelity, and squared eu-
clidean families computed for the 3 regions in the 3 XRD patterns in Fig. 2. The left contour
map is of the full XRD pattern and the other 2 are for the 2 magnified views of the peaks
(bottom left and bottom right in Fig. 2).
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5. Summary

It is often important to characterize the similarity or dissimilarity (distance) between
different measured or computed datasets. There are a large number of different
possible similarity and distance measures that can be applied to different datasets. In
this technical note, a number of different measures implemented in both MATLAB
and Python as functions are used to quantify similarity/distance between 2 vector-
based datasets. The scripts are attached as appendixes as is a description of their

execution.
The PyDIST.py code can be downloaded by clicking here.

The compute_metrics.m code can be downloaded by clicking here.

Approved for public release; distribution is unlimited.
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"""
  ============================================================================
  :class:`dist` -- Distance metrics
  ============================================================================

  This module provides a framework to calculate several types of distance
  metrics to compare two (N,) arrays.

  .. Copyright 2016 Efrain Hernandez-Rivera
       Last updated: 2016-09-12 by E. Hernandez-Rivera

  Funding Acknowledgement:
  .. This research was supported in part by an appointment to the Postgraduate
  .. Research Participation Program at the U.S. Army Research Laboratory
  .. administered by the Oak Ridge Institute for Science and Education (ORISE)
  .. through an interagency agreement between the U.S. Department of Energy
  .. and USARL.
"""

import numpy as np
from math import sqrt,log

class Distances(object):
    """ Python distance/similarity module. Currently, includes distances
        from Cha [1].

        Paramaters
        ----------
        family: name of the distance family
          minkowski
          L1
          inter
          inner
          fidelity
          squaredL2
          shannon
          combination
          vicissitude

        X: array_like
             Reference histogram/distribution
        Y: array_like
             Histogram/distribution to measure distance from X

        Returns
        ----------
        distances: dict
             Dictionary containing distances for all the family members as
             outlined by Cha

        Usage
        ----------

        >>> import PyDIST as distance
        >>> dist=distance.Distances([1,2,3],[4,6,8])

        >>> mink=dist.minkowski()

        References
        ----------
        [1] Cha, S.H, IJMMMAS, v. 1, iss. 4, pp. 300-307 (2007)
        [2] Hernandez-Rivera, et al. ACS Comb Sci, accepted (2016)
    """

    def __init__(self,P,Q):
        if sum(P)<1e-20 or sum(Q)<1e-20:
            raise "One or both vector are zero (empty)..."
        if len(P)!=len(Q):
            raise "Arrays need to be of equal sizes..."

        #use numpy arrays for efficient coding
        P=np.array(P,dtype=float);Q=np.array(Q,dtype=float)

        #Correct for zero values
        P[np.where(P<1e-20)]=1e-20
        Q[np.where(Q<1e-20)]=1e-20

        self.P=P
        self.Q=Q

    def minkowski(self,n=1):
        P=self.P; Q=self.Q
        return {'Euclidean' :sqrt(sum((P-Q)*(P-Q))),\
                'City Block':sum(abs(P-Q)),\
                'Minkowski' :(sum(abs(P-Q)**n))**(1./n),\
                'Chebyshev' :max(abs(P-Q))}

    def L1(self):
        P=self.P; Q=self.Q; A=sum(abs(P-Q)); d=len(P)
        return {'Sorensen'  :A/sum(P+Q),\
                'Gower'     :A/d,\
                'Sorgel'    :A/sum(np.maximum(P,Q)),\
                'Kulczynski':A/sum(np.minimum(P,Q)),\
                'Canberra'  :sum(abs(P-Q)/(P+Q)),\
                'Lorentzian':sum(np.log(1+abs(P-Q)))}

    def inter(self):
        P=self.P; Q=self.Q; A=sum(abs(P-Q)); maxPQ=sum(np.maximum(P,Q))
        return {'Intersection':0.5*A,\
                'Wave Hedges' :sum(abs(P-Q)/np.maximum(P,Q)),\
                'Czekanowski' :A/sum(P+Q),\
                'Motyka'      :maxPQ/sum(P+Q),\
                'Ruzicka'     :1-sum(np.minimum(P,Q))/maxPQ,\
                'Tanimoto'    :sum(np.maximum(P,Q)-np.minimum(P,Q))/maxPQ}

    def inner(self):
        P=self.P; Q=self.Q; ip=sum(P*Q); p2=sum(P*P); q2=sum(Q*Q); d=len(P)
        return {'Inner Product':1-ip,\
                'Harmonic Mean':1-2.*sum(P*Q/(P+Q)),\
                'Cosine'       :1-ip/(sqrt(p2)*sqrt(q2)),\
                'Jaccard'      :sum((P-Q)*(P-Q))/(p2+q2-ip),\
                'Dice'         :sum((P-Q)*(P-Q))/(p2+q2)}

    def fidelity(self):
        P=self.P; Q=self.Q; fid=sum(np.sqrt(P*Q))
        return {'Fidelity'     :1-fid,\
                'Bhattacharyya':-log(fid),\
                'Hellinger'    :2*sqrt(1-fid),\
                'Matusita'     :sqrt(2-2*fid),\
                'Squared-Chord':sum((np.sqrt(P)-np.sqrt(Q))**2)}

    def squaredL2(self):
        P=self.P; Q=self.Q; d=len(P)
        return {'Squared Euclidean':sum((P-Q)**2),\
                'Pearson Chi':sum((P-Q)**2/Q),\
                'Neyman Chi' :sum((P-Q)**2/P),\
                'Squared Chi':sum((P-Q)**2/(P+Q)),\
                'Prob Symm'  :2*sum((P-Q)**2/(P+Q)),\
                'Divergence' :2*sum((P-Q)**2/(P+Q)**2),\
                'Clark'      :sqrt(sum((abs(P-Q)/(P+Q))**2)),\
                'Additive Symm':sum((P-Q)**2*(P+Q)/(P*Q))}

    def shannon(self):
        P=self.P; Q=self.Q
        return {'Kull-Leiber':sum(P*np.log(P/Q)),\
                'Jeffreys'   :sum((P-Q)*np.log(P/Q)),\
                'Kdivergence':sum(P*np.log(2*P/(P+Q))),\
                'Topsoe'     :sum(P*np.log(2*P/(P+Q))+Q*np.log(2*Q/(P+Q))),\
                'Jensen-Shan':0.5*sum(P*np.log(2*P/(P+Q))\
                                     +Q*np.log(2*Q/(P+Q))),\
                'Jensen-Diff':0.5*sum(P*np.log(P)+Q*np.log(Q)\
                                      -(P+Q)*np.log((P+Q)/2.))}

    def combination(self):
        P=self.P; Q=self.Q
        return {'Taneja'    :0.5*sum((P+Q)*np.log((P+Q)/(2.*np.sqrt(P*Q)))),\
                'Kumar-John':sum((P*P-Q*Q)**2/(2*(P*Q)**(1.5))),\
                'AverageL'  :0.5*(sum(abs(P-Q))+max(abs(P-Q)))}

    def vicissitude(self):
        P=self.P; Q=self.Q; p=sum((P-Q)*(P-Q)/P); q=sum((P-Q)*(P-Q)/Q)
        pqmin=np.minimum(P,Q)
        return {'Vicis-Wave Hedge':sum(abs(P-Q)/pqmin),\
                'Vicis-Symm Chi1' :sum((P-Q)*(P-Q)/pqmin**2),\
                'Vicis-Symm Chi2' :sum((P-Q)*(P-Q)/pqmin),\
                'Vicis-Symm Chi3' :sum((P-Q)*(P-Q)/np.maximum(P,Q)),\
                'Max-Symm Chi'    :max(p,q),\
                'Min-Symm Chi'    :min(p,q)}
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function [D,S,Error] = compute_metrics(P,Q,n)



% MA Tschopp

% Purpose: Implementation of Cha (2007) similarity/distance metrics

% Date: Sept 2016



%{

% For test purposes:

P = rand(1,10); P = P/sum(P);

Q = rand(1,10); Q = Q/sum(Q);

P(1) = 0;

Q(2) = 0;

Q(3)=P(3);

P = P/sum(P);

Q = Q/sum(Q);

Q(3)=P(3);

n = 3;

[D1,S1,~] = compute_metrics(P,Q,n)

P(P==0)=1e-20;

Q(Q==0)=1e-20;

P(P==Q)=P(P==Q)+1e-20;

%P = P/sum(P);

%Q = Q/sum(Q);

[D,S,~] = compute_metrics(P,Q,n)

%}



% Correct for divide by zero

P1 = P; Q1 = Q;

P1(P==0)=1e-20;

Q1(Q==0)=1e-20;

P1(P==Q)=P1(P==Q)+1e-20;



D=[]; S=[]; Error = [];



% Lp Minkowski family

D.euclidean = sqrt(sum((P-Q).^2)); %sqrt(dot(P-Q,P-Q));

D.cityblock = sum(abs(P-Q));

D.minkowski = sum(abs(P-Q).^n)^(1/n);

D.chebyshev = max(abs(P-Q));



% L1 family

D.sorensen = sum(abs(P-Q))/sum(P+Q);

D.gower = sum(abs(P-Q))/length(P);

D.soergel = sum(abs(P-Q))/sum(max(P,Q));

if sum(min(P,Q))~=0

    D.kulczynski_d = sum(abs(P-Q))/sum(min(P,Q));

else

    D.kulczynski_d = sum(abs(P1-Q1))/sum(min(P1,Q1));

    Error.kulczynski_d = 'Divide by Zero Error';

end

if min(P+Q)~=0

    D.canberra = sum(abs(P-Q)./(P+Q));

else

    D.canberra = sum(abs(P1-Q1)./(P1+Q1));

    Error.canberra = 'Divide by Zero Error';

end

D.lorentzian = sum(log(1+abs(P-Q)));



% Intersection family

S.intersection = sum(min(P,Q));

D.intersection = 1-sum(min(P,Q));

if min(max(P,Q))~=0

    D.wavehedges = sum(1-min(P,Q)./max(P,Q));

else

    D.wavehedges = sum(1-min(P1,Q1)./max(P1,Q1));

    Error.wavehedges = 'Divide by Zero Error';

end

S.czekanowski = 2*sum(min(P,Q))/sum(P+Q);

D.czekanowski = 1-2.*sum(min(P,Q))/sum(P+Q);

S.motyka = sum(min(P,Q))/sum(P+Q);

D.motyka = 1-sum(min(P,Q))/sum(P+Q);

if sum(abs(P-Q))~=0

    S.kulczynski_s = sum(min(P,Q))/sum(abs(P-Q));

else

    S.kulczynski_s = sum(min(P1,Q1))/sum(abs(P1-Q1));

    Error.kulczynski_s = 'Divide by Zero Error';

end

if sum(min(P,Q))~=0

    D.kulczynski_s = 1/S.kulczynski_s;

else

    D.kulczynski_s = 1/(sum(min(P1,Q1))/sum(abs(P1-Q1)));

    Error.kulczynski_s = 'Divide by Zero Error';

end

S.ruzicka = sum(min(P,Q))/sum(max(P,Q));

D.ruzicka = 1-S.ruzicka;

D.tanimoto = (sum(P)+sum(Q)-2*sum(min(P,Q)))/(sum(P)+sum(Q)-sum(min(P,Q)));



% Inner product family

S.inner = dot(P,Q);

D.inner = 1-S.inner;

if min(P+Q)~=0

    S.harmonic = 2*sum((P.*Q)./(P+Q));

    D.harmonic = 1-S.harmonic;

else

    S.harmonic = 2*sum((P1.*Q1)./(P1+Q1));

    D.harmonic = 1-S.harmonic;

    Error.harmonic = 'Divide by Zero Error';

end

S.cosine = dot(P,Q)/sqrt(dot(P,P)*dot(Q,Q));

D.cosine = 1-S.cosine;

S.kumarh = dot(P,Q)/(dot(P,P)+dot(Q,Q)-dot(P,Q));

D.kumarh = 1-S.kumarh;

S.jaccard = dot(P,Q)/(dot(P,P)+dot(Q,Q)-dot(P,Q));

D.jaccard = dot(P-Q,P-Q)/(dot(P,P)+dot(Q,Q)-dot(P,Q));

S.dice = 2*dot(P,Q)/(dot(P,P)+dot(Q,Q));

D.dice = 1-2*dot(P,Q)/(dot(P,P)+dot(Q,Q));



% Fidelity (square chord) family

S.fidelity = sum(sqrt(P.*Q));

D.fidelity = 1-S.fidelity;

if sum(sqrt(P.*Q))~=0

    D.bhattacharrya = -log(sum(sqrt(P.*Q)));

else

    D.bhattacharrya = -log(sum(sqrt(P1.*Q1)));

    Error.bhattacharrya = 'log(0) Error';

end

D.hellinger = sqrt(2*sum((sqrt(P)-sqrt(Q)).^2));

D.squaredchord = dot(sqrt(P)-sqrt(Q),sqrt(P)-sqrt(Q));

S.squaredchord = 2*sum(sqrt(P.*Q))-1;

D.matusita = sqrt(dot(sqrt(P)-sqrt(Q),sqrt(P)-sqrt(Q)));



% Squared L2 (chi-squared) family

D.squaredeuclidean = dot(P-Q,P-Q);

if min(Q) ~= 0

    D.pearsonchi = sum((P-Q).^2./Q);

else

    D.pearsonchi = sum((P1-Q1).^2./Q1);

    Error.pearsonchi = 'Divide by Zero Error';

end

if min(P) ~= 0

    D.neymanchi = sum((P-Q).^2./P); %=pearsonchi(Q,P)

else

    D.neymanchi = sum((P1-Q1).^2./P1); %=pearsonchi(Q,P)

    Error.neymanchi = 'Divide by Zero Error';

end

if min(P+Q)~=0

    D.squaredchi = sum((P-Q).^2./(P+Q));

else

    D.squaredchi = sum((P1-Q1).^2./(P1+Q1));

    Error.squaredchi = 'Divide by Zero Error';

end

D.probsymm = 2*D.squaredchi;

if min(P+Q)~=0

    D.divergence = 2*sum((P-Q).^2./(P+Q).^2);

    D.clark = sqrt(sum((abs(P-Q)./(P+Q)).^2));

else

    D.divergence = 2*sum((P1-Q1).^2./(P1+Q1).^2);

    D.clark = sqrt(sum((abs(P1-Q1)./(P1+Q1)).^2));

    Error.divergence = 'Divide by Zero Error';

    Error.clark = 'Divide by Zero Error';

end

if min(P.*Q)~=0

    D.additivesymm = sum((P-Q).^2.*(P+Q)./(P.*Q));

else

    D.additivesymm = sum((P1-Q1).^2.*(P1+Q1)./(P1.*Q1));

    Error.additivesymm = 'Divide by Zero Error';

end



% Shannon's entropy family



if min(Q)~=0 && min(P./Q)~=0

    D.kullback_PQ = sum(P.*log(P./Q));

else

    D.kullback_PQ = sum(P1.*log(P1./Q1));

    Error.kullback_PQ = 'Divide by Zero or log(0) Error';

end    

if min(P)~=0 && min(Q./P)~=0

    D.kullback_QP = sum(Q.*log(Q./P));

else

    D.kullback_QP = sum(Q1.*log(Q1./P1));

    Error.kullback_QP = 'Divide by Zero or log(0) Error';

end

if min(Q)~=0 && min(P./Q)~=0

    D.jeffreys = sum((P-Q).*log(P./Q));

else

    D.jeffreys = sum((P1-Q1).*log(P1./Q1));

    Error.jeffreys = 'Divide by Zero or log(0) Error';

end

if min(P+Q)~=0 && min(P./(P+Q))~=0

    D.kdivergence = sum(P.*log(2*P./(P+Q)));

else

    D.kdivergence = sum(P1.*log(2*P1./(P1+Q1)));

    Error.kdivergence = 'Divide by Zero or log(0) Error';

end

if min(P+Q)~=0 && min(P./(P+Q))~=0 && min(Q./(P+Q))~=0

    D.topsoe = sum(P.*log(2*P./(P+Q))+Q.*log(2*Q./(P+Q)));

else

    D.topsoe = sum(P1.*log(2*P1./(P1+Q1))+Q1.*log(2*Q1./(P1+Q1)));

    Error.topsoe = 'Divide by Zero or log(0) Error';

end

if min(Q)~=0 && min(P./Q)~=0 && min(P)~=0 && min(Q./P)~=0

    D.jensen_s = 0.5*(D.kullback_PQ+D.kullback_QP);

else

    D.jensen_s = 0.5*(D.kullback_PQ+D.kullback_QP);

    Error.jensen_s = 'Divide by Zero or log(0) Error';

end

if min(P+Q)~=0 && min(P)~=0 && min(Q)~=0

    D.jensen_d = sum(0.5*(P.*log(P)+Q.*log(Q)-(P+Q).*log(0.5*(P+Q))));

else

    D.jensen_d = sum(0.5*(P1.*log(P1)+Q1.*log(Q1)-(P1+Q1).*log(0.5*(P1+Q1))));

    Error.jensen_d = 'log(0) Error';

end



% Combinations

if min(dot(P,Q))~=0 && min((P+Q)./sqrt(dot(P,Q)))~=0

    D.taneja = sum(0.5*(P+Q).*log(0.5*(P+Q)./sqrt(dot(P,Q))));

else

    D.taneja = sum(0.5*(P1+Q1).*log(0.5*(P1+Q1)./sqrt(dot(P1,Q1))));

    Error.taneja = 'Divide by Zero or log(0) Error';

end

if min(P.*Q)~=0

    D.kumarj = 0.5*sum((P.^2-Q.^2).^2./(P.*Q).^(3/2));

else

    D.kumarj = 0.5*sum((P1.^2-Q1.^2).^2./(P1.*Q1).^(3/2));

    Error.kumarj = 'Divide by Zero Error';

end

D.avgL = 0.5*(sum(abs(P-Q))+max(abs(P-Q)));



% Vicissitude

if min(min(P,Q))~=0

    D.viciswave = sum(abs(P-Q)./min(P,Q));

    D.vicissymm1 = sum((P-Q).^2./min(P,Q).^2);

    D.vicissymm2 = sum((P-Q).^2./min(P,Q));

else

    D.viciswave = sum(abs(P1-Q1)./min(P1,Q1));

    D.vicissymm1 = sum((P1-Q1).^2./min(P1,Q1).^2);

    D.vicissymm2 = sum((P1-Q1).^2./min(P1,Q1));

    Error.viciswave = 'Divide by Zero Error';

    Error.vicissymm1 = 'Divide by Zero Error';

    Error.vicissymm2 = 'Divide by Zero Error';

end

if min(max(P,Q))~=0

    D.vicissymm3 = sum((P-Q).^2./max(P,Q));

else

    D.vicissymm3 = sum((P1-Q1).^2./max(P1,Q1));

    Error.vicissymm3 = 'Divide by Zero Error';

end

if min(Q) ~= 0 && min(P) ~= 0

    D.maxsymm = max(D.pearsonchi,D.neymanchi);

    D.minsymm = min(D.pearsonchi,D.neymanchi);

else

    D.maxsymm = max(D.pearsonchi,D.neymanchi);

    D.minsymm = min(D.pearsonchi,D.neymanchi);

    Error.maxsymm = 'Divide by Zero Error';

    Error.minsymm = 'Divide by Zero Error';

end



end



Mark Tschopp
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:class: dist® —-- Distance metrics

This module provides a framework to calculate several types of distance

metrics to compare two (N,) arrays.

Copyright 2016 Efrain Hernandez-Rivera
Last updated: 2016-09-12 by E. Hernandez-Rivera

Funding Acknowledgement:
This research was supported in part by an appointment to the Postgraduate
Research Participation Program at the U.S. Army Research Laboratory
administered by the Oak Ridge Institute for Science and Education (ORISE)
through an interagency agreement between the U.S. Department of Energy
and USARL.

import numpy as np

from math import sqgrt, log

class Distances (object):
""" Python distance/similarity module. Currently, includes distances
from Cha [1].

Paramaters
family: name of the distance family
minkowski
Ll
inter
inner
fidelity
squaredL2
shannon
combination

vicissitude

X: array_like
Reference histogram/distribution
Y: array_like

Histogram/distribution to measure distance from X

Returns

distances: dict
Dictionary containing distances for all the family members as
outlined by Cha

>>> import PyDIST as distance

Approved for public release; distribution is unlimited.
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def

def

def

def

def

>>> dist=distance.Distances([1,2,3]1,1[4,6,8]

>>> mink=dist.minkowski ()

References
[1] Cha, S.H, IJMMMAS, v. 1, iss. 4, pp. 300-307 (2007)
[2] Hernandez-Rivera, et al. ACS Comb Sci, accepted (2016

__init_ (self,P,Q):
if sum(P)<le-20 or sum(Q)<le-20:

raise "One or both vector are zero (empty)..."
if len(P)!=len(Q):

raise "Arrays need to be of equal sizes..."
#use numpy arrays for efficient coding

P=np.array (P,dtype=float);Q=np.array (Q,dtype=float)

#Correct for zero values
P[np.where (P<le-20) ]=1e-20
QO[np.where (0<le-20) ]=1e-20

self.pP=P
self.Q=Q

minkowski (self,n=1):

P=self.P; Q=self.Q

return {'Buclidean' :sqrt (sum((P-Q)*(P-Q))),\
"City Block':sum(abs (P-Q)),\
'Minkowski' : (sum(abs (P-Q)x*n))**(1l./n),\
'Chebyshev' :max(abs(P-Q))}

L1l (self):
P=self.P; Q=self.Q; A=sum(abs(P-Q)); d=len(P)
return {'Sorensen' :A/sum (P+Q), \
'Gower' :A/d,\
'Sorgel’ :A/sum(np.maximum (P, Q) ), \
'Kulczynski':A/sum(np.minimum (P, Q) ), \
"Canberra' :sum(abs (P-Q)/ (P+Q)),\
'Lorentzian':sum(np.log(l+abs (P-Q)))}
inter (self):

P=self.P; Q=self.Q; A=sum(abs (P-Q)); maxPQ=sum(np.maximum(P,Q))

return {'Intersection':0.5*A,\

'Wave Hedges' :sum(abs(P-Q)/np.maximum (P,Q)),\
'Czekanowski' :A/sum(P+Q),\

'Motyka' :maxPQ/sum (P+Q) , \

'Ruzicka’ :1l-sum(np.minimum (P, Q) ) /maxPQ, \

'Tanimoto’ :sum (np.maximum (P, Q) —np.minimum (P, Q) ) /maxPQ}

inner (self) :
P=self.P; Q=self.Q; ip=sum(P*Q); p2=sum(P*P); g2=sum(QxQ); d=len (P)

return {'Inner Product':1-ip,\

Approved for public release; distribution is unlimited

23



'"Harmonic Mean':1-2.+sum(P*Q/ (P+Q)), \

'Cosine'’ :1-ip/ (sgrt (p2) *sgrt (g2) ), \
'Jaccard'’ :sum((P-Q) % (P-Q)) / (p2+g2-ip) , \
'Dice’ :sum ( (P-Q) * (P-Q)) / (p2+92) }

def fidelity(self):
P=self.P; Q=self.Q; fid=sum(np.sqrt (P*Q))

return {'Fidelity’ :1-fid, \
'Bhattacharyya':-log(fid), \
'Hellinger' :2xsqrt (1-£fid), \
'Matusita' isqrt (2-2x£id), \

'Squared-Chord' :sum( (np.sqgrt (P) —np.sqgrt (Q) ) »*2) }

def squaredL?2 (self):
P=self.P; Q=self.Q; d=len(P)
return {'Squared Euclidean':sum((P-Q)*x2),\
'Pearson Chi':sum((P-Q)**2/Q),\
"Neyman Chi' :sum((P-Q)**2/P),\
'Squared Chi':sum((P-Q)**2/ (P+Q)),\

"Prob Symm' :2xsum((P-Q)*%2/(P+Q)),\
'Divergence' :2+sum((P-Q)**2/ (P+Q) *%2),\
'Clark' :sqgrt (sum( (abs (P—Q) / (P+Q) ) *x2) ), \

'Additive Symm':sum( (P-Q)**2% (P+Q)/ (P*Q)) }

def shannon (self):
P=self.P; Q=self.Q
return {'Kull-Leiber':sum(Pxnp.log(P/Q)),\

'Jeffreys' :sum( (P-Q) *np.log (P/Q)),\
'Kdivergence':sum(P*np.log (2+«P/ (P+Q))),\
'Topsoe' :sum (Pxnp.log (2%«P/ (P+Q) ) +Q*np.log (2%Q/ (P+Q)) ), \

"Jensen-Shan':0.5xsum (P*np.log (2+P/ (P+Q) )\
+Q+np.log (2xQ/ (P+Q)) ), \

'"Jensen-Diff':0.5+sum(P*np.log (P)+Qxnp.log(Q)\
—(P+Q) *xnp.log ((P+Q) /2.)) }

def combination(self):
P=self.P; Q=self.Q

return {'Taneja'’ :0.5+sum( (P+Q) *np.log ((P+Q) / (2.*np.sqrt (PxQ)))),\
'Kumar—John':sum ( (P*P—Qx*Q) xx2/ (2% (P*Q) xx (1.5)) ), \
'AveragelL' :0.5% (sum(abs (P-Q))+max (abs (P-Q)))}

def vicissitude (self):
P=self.P; Q=self.Q; p=sum((P-Q)* (P-Q)/P); g=sum((P-Q)* (P-Q)/Q)
pamin=np.minimum (P, Q)

return {'Vicis-Wave Hedge':sum(abs (P-Q)/pgmin), \

(a
'Vicis-Symm Chil' :sum((P-Q)* (P-Q)/pgmin*x*2),\
'Vicis-Symm Chi2' :sum((P-Q)* (P-Q)/pgmin), \
'Vicis-Symm Chi3' :sum((P-Q)« (P-Q)/np.maximum(P,Q)),\
'Max-Symm Chi' :max (p,q),\
'Min-Symm Chi' min(p,q)}
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function [D,S,Error] = compute_metrics(P,Q,n)

% MA Tschopp

% Purpose: Implementation of Cha (2007) similarity/distance metrics

% Date: Sept 2016

o

{

For test purposes:
P = rand(1,10); P = P/sum(P);
Q = rand(1,10); O = Q/sum(Q);
P(1) = 0;

Q(2) = 0;

Q(3)=P(3);
P
Q
Q
n

o

P/sum(P) ;
Q/sum(Q) ;
(3)=P (3);
= 3;
[D1,S1,~] = compute_metrics (P,Q,n)
P (P==0)=1e-20;
0(0==0)=1e-20;
P (P==Q) =P (P==Q) +1e-20;
%P = P/sum(P);
%Q = Q/sum(Q);
[D,S,~] = compute_metrics (P,Q,n)

% Correct for divide by zero
Pl = P; Q1 = Q;

Pl (P==0)=1e-20;

Q1 (0==0)=1e-20;

P1 (P==Q)=P1 (P==Q) +1e-20;

D=[]; S=I[]; Error = [];

o\

Lp Minkowski family
.euclidean = sqgrt (sum((P-Q)."2)); %$sqgrt (dot (P-Q,P-0Q));
.cityblock = sum(abs(P-Q));

.minkowski = sum(abs (P-Q)."n)"(1/n);

O u U o

.chebyshev = max (abs (P-Q));

o

Ll family
D.sorensen = sum(abs(P-Q))/sum(P+Q);
D.gower = sum(abs (P-Q))/length(P);
D.soergel = sum(abs (P-Q))/sum(max (P,Q));
if sum(min(P,Q))~=0
D.kulczynski_d = sum(abs (P-Q))/sum(min(P,Q));
else
D.kulczynski_d = sum(abs(P1-Q1))/sum(min(P1,Q1));
Error.kulczynski_d = 'Divide by Zero Error';
end
if min(P+Q)~=0
D.canberra = sum(abs(P-Q)./(P+Q));
else
D.canberra = sum(abs(P1-Q1)./(P1+Q1));

Approved for public release; distribution is unlimited

26



Error.canberra = 'Divide by Zero Error';
end

D.lorentzian = sum(log(l+abs(P-Q)));

% Intersection family

S.intersection = sum(min(P,Q));
D.intersection = l-sum(min(P,Q));
if min(max(P,Q))~=0

D.wavehedges = sum(l-min (P,Q) ./max(P,Q));
else

D.wavehedges = sum(l-min (P1,Q1)./max(P1,Q1));

Error.wavehedges = 'Divide by Zero Error';
end
S.czekanowski = 2+sum(min(P,Q)) /sum(P+Q) ;
D.czekanowski = 1-2.+sum(min(P,Q))/sum(P+Q);

S.motyka = sum(min (P, Q))/sum(P+Q) ;
D.motyka = l-sum(min (P,Q))/sum(P+Q);
if sum(abs (P-Q))~=0
S.kulczynski_s = sum(min (P, Q))/sum(abs (P-Q));
else
S.kulczynski_s = sum(min(P1,Q1l))/sum(abs(P1-Q1));
Error.kulczynski_s = 'Divide by Zero Error';
end
if sum(min (P, Q) ) ~=0
D.kulczynski_s = 1/S.kulczynski_s;
else
D.kulczynski_s = 1/ (sum(min(P1,Q1l))/sum(abs(P1-01)));

Error.kulczynski_s = 'Divide by Zero Error';
end
S.ruzicka = sum(min(P,Q))/sum(max(P,Q));
D.ruzicka = 1-S.ruzicka;
D.tanimoto = (sum(P)+sum(Q)-2*sum(min (P,Q)))/ (sum(P)+sum(Q)-sum(min (P,Q)));

o\

Inner product family

S.inner = dot (P,Q);

D.inner = 1-S.inner;

if min (P+Q) ~=0

S.harmonic = 2xsum((P.x*Q) ./ (P+Q));

D.harmonic = 1-S.harmonic;
else
S.harmonic = 2xsum((P1.%Q1l)./(P1+Q1));
D.harmonic = 1-S.harmonic;
Error.harmonic = 'Divide by Zero Error';
end
S.cosine = dot (P,Q)/sgrt (dot (P,P) »dot (Q,Q));
D.cosine = 1-S.cosine;
S.kumarh = dot (P,Q)/ (dot (P,P)+dot (Q,Q)-dot (P,Q)) ;
D.kumarh = 1-S.kumarh;
S.Jjaccard = dot (P,Q)/ (dot (P,P)+dot (Q,Q)-dot (P,Q));
D.jaccard = dot (P-Q,P-Q)/ (dot (P,P)+dot (Q,Q)-dot (P,Q));
S.dice = 2xdot (P,Q)/ (dot (P,P)+dot(Q,Q));
D.dice = 1-2%dot (P,Q)/ (dot (P,P)+dot (Q,Q));

o

Fidelity (square chord) family
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S.fidelity = sum(sqgrt (P.=*Q));
D.fidelity = 1-S.fidelity;
if sum(sqrt (P.xQ))~=0
D.bhattacharrya = -log(sum(sqrt (P.*Q)));
else
D.bhattacharrya = -log(sum(sqgrt (P1.%Q1l)));
Error.bhattacharrya = 'log(0) Error';
end
.hellinger = sqgrt (2+«sum((sqgrt (P)-sqgrt(Q)) ."2));
.squaredchord = dot (sqrt (P)-sqgrt (Q), sgrt (P)-sqrt (Q)) ;
.squaredchord = 2*sum(sqgrt (P.*Q))-1;

U n U g

.matusita = sqgrt (dot (sgrt (P)-sqgrt (Q), sqgrt (P)-sgrt (Q)));

o

Squared L2 (chi-squared) family
D.squaredeuclidean = dot (P-Q,P-0Q);
if min(Q) ~= 0
D.pearsonchi = sum((P-Q)."2./Q);
else
D.pearsonchi = sum((P1-Q1)."2./Q1);
Error.pearsonchi = 'Divide by Zero Error';
end
if min(P) ~= 0
D.neymanchi = sum((P-Q)."2./P); %=pearsonchi (Q,P)
else
D.neymanchi = sum((P1-Q1)."2./P1l); $%=pearsonchi (Q,P)
Error.neymanchi = 'Divide by Zero Error';
end
if min (P+Q)~=0
D.squaredchi = sum((P-Q)."2./(P+Q));
else
D.squaredchi = sum((P1-Q1)."2./(P1+Q1l));
Error.squaredchi = 'Divide by Zero Error';
end
D.probsymm = 2xD.squaredchi;
if min(P+Q)~=0
D.divergence = 2*sum((P-Q)."2./(P+Q) ."2);
D.clark = sqgrt (sum((abs(P-Q)./(P+Q))."2));
else
D.divergence = 2*sum((P1-Q1)."2./(P1+Ql)."2);
D.clark = sqgrt (sum((abs(P1-Q1)./(P1+Q1))."2));
Error.divergence = 'Divide by Zero Error';
Error.clark = 'Divide by Zero Error';
end
if min(P.*Q)~=0
D.additivesymm = sum((P-Q)."2.x (P+Q) ./ (P.*Q));
else
D.additivesymm = sum((P1-Q1)."2.% (P1+Q1)./(P1.%Q1l));
Error.additivesymm = 'Divide by Zero Error';
end

o

% Shannon's entropy family

if min(Q)~=0 && min (P./Q)~=0
D.kullback_PQ = sum(P.*xlog(P./Q));
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else
D.kullback_PQ = sum(Pl.*xlog(P1./Q1));
Error.kullback_PQ = 'Divide by Zero or log(0) Error';
end
if min(P)~=0 && min(Q./P)~=0
D.kullback_QP = sum(Q.*xlog(Q./P));
else
D.kullback_QP = sum(Ql.*log(Ql./P1l));
Error.kullback_QP = 'Divide by Zero or log(0) Error';
end
if min(Q)~=0 && min(P./Q)~=0
D.jeffreys = sum((P-Q).*log(P./Q));
else
D.jeffreys = sum((P1-Ql).xlog(P1./Q1));
Error.jeffreys = 'Divide by Zero or log(0) Error';
end
if min(P+Q)~=0 && min (P./ (P+Q))~=0
D.kdivergence = sum(P.*xlog(2+P./ (P+Q)));
else
D.kdivergence = sum(Pl.*xlog(2%P1./(P1+Q1)));
Error.kdivergence = 'Divide by Zero or log(0) Error';
end
if min(P+Q)~=0 && min(P./(P+Q))~=0 && min(Q./ (P+Q))~=0
D.topsoe = sum(P.x1log(2+P./ (P+Q))+Q.*x1og(2xQ./ (P+Q)));
else
D.topsoe = sum(Pl.xlog(2+P1./(P1+Q1l))+Ql.xlog(2Ql./ (P1+Q1l)));
Error.topsoce = 'Divide by Zero or log(0) Error';
end
if min(Q)~=0 && min(P./Q)~=0 && min(P)~=0 && min(Q./P)~=0
D.Jjensen_s = 0.5%(D.kullback_PQ+D.kullback_QP);
else
D.Jjensen_s = 0.5%(D.kullback_PQ+D.kullback_QP);
Error.jensen_s = 'Divide by Zero or log(0) Error';
end
if min (P+Q)~=0 && min (P)~=0 && min (Q)~=0

D.jensen_d = sum(0.5x (P.*x1log(P)+Q.*1og(Q) - (P+Q) .x1og (0.5x (P+Q))));

else
D.jensen_d = sum(0.5x (Pl.xlog(P1)+Ql.x1log(Q1l) - (P1+Ql) .x1log (0.5x (P1+Q1))));
Error.jensen_d = 'log(0) Error';

end
% Combinations
if min(dot (P,Q))~=0 && min ((P+Q)./sqgrt (dot (P,Q)))~=0
D.taneja = sum(0.5% (P+Q) .x10g (0.5* (P+Q) ./sqgrt (dot (P,Q))));
else
D.taneja = sum (0.5 (P1+Q1) .*1log(0.5% (P1+Q1) ./sqgrt (dot (P1,Q1))));
Error.taneja = 'Divide by Zero or log(0) Error';
end
if min(P.*Q)~=0
D.kumarj = 0.5+sum((P."2-Q."2)."2./(P.*Q)."(3/2));
else
D.kumarj = 0.5xsum((P1.72-Q1.72).72./(P1.%Q1) .~ (3/2));
Error.kumarj = 'Divide by Zero Error';

end
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D.avgL = 0.5% (sum(abs (P-Q)) +tmax (abs (P-Q))) ;

o

% Vicissitude

if min (min (P, Q) )~=0

D.viciswave = sum(abs(P-Q)./min(P,Q));

D.vicissymml = sum((P-Q)."2./min(P,Q)."2);

D.vicissymm2 = sum((P-Q)."2./min(P,Q));
else

D.viciswave = sum(abs(P1-Q1)./min(P1,Q1));

D.vicissymml = sum((P1-Q1)."2./min(P1,Q1)."2);
D.vicissymm2 = sum((P1-Q1)."2./min(P1,0Q1));

Error.viciswave = 'Divide by Zero Error';
Error.vicissymml = 'Divide by Zero Error';
Error.vicissymm2 = 'Divide by Zero Error';

end
if min(max (P,Q))~=0
D.vicissymm3 = sum((P-Q)."2./max(P,Q));
else
D.vicissymm3 = sum((P1-Q1)."2./max(P1,Q1));
Error.vicissymm3 = 'Divide by Zero Error';
end
if min(Q) ~= 0 && min(P) ~= 0
D.maxsymm = max (D.pearsonchi,D.neymanchi);
D.minsymm = min(D.pearsonchi,D.neymanchi);
else
D.maxsymm = max (D.pearsonchi,D.neymanchi);
D.minsymm = min(D.pearsonchi,D.neymanchi) ;
Error.maxsymm = 'Divide by Zero Error';
Error.minsymm = 'Divide by Zero Error';

end

end
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