Climate Impacts on U.S. Electric Sector Evolution and Water Use Under Varying Market Futures: Are some energy technologies and regions more affected by climate than others?

Yinong Sun¹, Stuart Cohen¹, Jordan Macknick¹, Ariel Miara¹, Robin Newmark¹, Charles Vorösmarty², Fabio Corsi³, Balazs Fekete³, Vince Tidwell³
¹National Renewable Energy Laboratory, ²Advanced Science Research Center, City University of New York, ³Sandia National Laboratories

Objective: Provide the most comprehensive assessment to date of how climate impacts will affect electricity sector development.

Background & Motivation
- Climate change can affect electricity supply and demand through changes in air temperature, water availability, and water temperature
- Long-term climate impacts depend on electricity market and policy developments
- Endogenous modeling of climate and electricity evolution provides consistent climate impacts assessment

Methods
Regional Energy Deployment System (ReEDS) electricity sector model forced with climate results from 5 CMIPs models and 4 RCPs under 4 market scenarios

84 Scenarios
- 5 CMIPs General Circulation Models (GCMs)
- 4 Representative Concentration Pathways (RCPs)
- 4 Electricity market scenarios
- 4 Reference market scenarios without climate impacts = 84 scenarios

Climate Impacts on National Capacity, Generation, CO₂, and Water

Results
- Difference from No Climate Scenarios
- Climate Impacts on National Capacity, Generation, CO₂, and Water

Regional Generation Impacts

Key Takeaways

National Climate Impacts
- This is the most comprehensive study of the national impacts of climate on U.S. electricity generation infrastructure
- Climate impacts lead to more capacity and generation due to higher temperatures
- There is substantial overlap in climate impacts across RCPs through 2050, suggesting non-climate drivers will dominate electricity sector evolution through midcentury
- 2050 impacts are greatest for RCP8.5, with similar magnitude impacts for other RCPs
- Technology-specific impacts depend greatly on electricity market conditions
- PV and gas deployment is sensitive to climate; wind deployment is insensitive
- Consistent additions of NG-CT indicate climate change increases the demand for flexible technologies
- The electric sector water implications of climate change are driven by competing effects of increased demand from new capacity and reduced water availability in some regions

Regional Climate Impacts
- This is the most comprehensive study of the regional impacts of climate on U.S. electricity generation infrastructure
- Regional impacts vary widely in magnitude and uncertainty under different scenarios
- The Southeast and Northern Plains are very sensitive to climate impacts under all market scenarios, showing increases and decreases
- The Northeast, Northwest, Southwest, and California are relatively insensitive to climate
- Generation falls in some regions despite higher loads; other regions are better equipped to adapt to a changing climate

Linking Energy, Climate, and Hydrologic Models at High Resolution

ReEDS Model
- NREL’s flagship model for simulating U.S. electricity generation and transmission investment through 2050
- 134 regions for demand, water, PV; 356 regions for wind, CSP
- 17 intra-annual time-slices for seasonal and diurnal dispatch

Climate and Water Impacts
- Temperature impacts on load, generator performance, and transmission capacity
- CUNY Water Balance Model (WBM) uses climate projections to calculate thermal cooling water availability using high resolution river networks

Results
- Results are preliminary: Do not Cite or Distribute

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by National Science Foundation Water Sustainability and Climate grant #1360445. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.