American Samoa’s Forest Resources: Forest Inventory and Analysis, 2012

Michelle K. Lazaro, Olaf Kuegler, Sharon M. Stanton, Ashley D. Lehman, Mary L. Taufete’e, and Mikhail A. Yatskov
In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident.

Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English.

To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at http://www.ascr.usda.gov/complaint_filing_cust.html and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. Submit your completed form or letter to USDA by: (1) mail: U.S. Department of Agriculture, Office of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410; (2) fax: (202) 690-7442; or (3) email: program.intake@usda.gov.

USDA is an equal opportunity provider, employer, and lender.

Authors

Michelle K. Lazaro was a natural resources specialist, Olaf Kuegler is a statistician, and Sharon M. Stanton is a biological scientist, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 620 SW Main Street, Suite 400, Portland, OR 97205. Lazaro currently is a natural resources specialist, Hawai‘i Conservation Alliance and Foundation, 1601 East-West Road, Honolulu, HI 96848-1601. Ashley D. Lehman is a biologist, Mary L. Taufete’e was the forestry program manager, Agriculture, Community and Natural Resources Division, American Samoa Community College, P.O. Box 2609, Pago Pago, AS 96799. Mikhail A. Yatskov is a forester, Pacific Northwest Research Station, 161 E 1st Avenue, Door 8, Anchorage, AK 99501-1639.

Contributing Author

Thomas Thompson is a geographic information system specialist, Pacific Northwest Research Station, 161 E 1st Avenue, Door 8, Anchorage, AK 99501-1639.

Abstract

This report highlights key findings from 2012 data collected by the Forest Inventory and Analysis program across all forested land on four islands in American Samoa, updating previously published findings from data collected in 2001 (Donnegan et al. 2004). We summarize and interpret basic resource information such as estimates of forest area, stem volume, biomass, numbers of trees, damages to trees, and tree size distribution as well as overstory and understory vegetation cover and information on invasive plant species presence and cover. Detailed tables and graphical highlights are included to help inform resource managers and policymakers, as well as educate the public regarding the status and trends of their local natural resources. The appendices provide details on inventory methods and design and include summary tables of data, with statistical error, for the wide variety of forest characteristics inventoried.

Keywords: American Samoa, biomass, carbon, damage, forest land, inventory, vegetation, invasive plants.

Highlights

- Estimated total forest area: 39,156 acres (Table 1, p. 8)
- Estimated total number of live trees: 28,278,000 (Table A2-1, p. 35)
- Total number of tree species recorded: 60 (Scientific and common names of plants found during inventory, p. 24)
- Estimated total net live tree volume: 61,829,000 cubic feet (Table A2-4, p. 39)
- Estimated total live tree aboveground biomass: 2,349,000 dry tons (Table A2-6, p. 42)
- Estimated total live tree aboveground carbon: 1,175,000 dry tons (Table A2-6, p. 42)
Contents

1. Guide to Forest Inventory and Analysis
 1. Overview of the Purpose of This Report
 2. Description of the Forest Inventory and Analysis Program
 3. Common FIA Terminology
2. Forest Resources in American Samoa
 6. Forest Area
 7. Forest Composition
 11. Volume, Biomass, and Carbon
 12. Understory Vegetation
 14. Extent of Standing Dead Wood
 15. Forest Ownership
 15. Nontimber Forest Products
 17. Forest Health
 17. Forest Disturbances and Their Extent
 19. Weather Events
 20. Vegetation, Insects, Animals, and Disease
 20. Invasive Vegetation
 23. Conclusions
 26. Acknowledgments
 27. Metric Equivalents
 27. Literature Cited
30. Appendix 1: Inventory Design and Methods
34. Appendix 2: Summary Data Tables
48. Glossary
Guide to Forest Inventory and Analysis

Overview of the Purpose of This Report

This report presents a summary of American Samoa’s forest resources from the most recent data collected by the Forest Inventory and Analysis (FIA) program in 2012 across all ownerships and forest types, updating previously published findings from data collected in 2001 (Donnegan et al. 2004). We summarize and interpret basic resource information, including forest area, ownership, land use change, biomass, biodiversity, standing dead wood, and forest health indicators. Pacific Northwest Research Station Forest Inventory and Analysis (PNW-FIA) implemented a sampling strategy in American Samoa that measures forest and nonforest vegetated plots, within a single year, on an intended 10-year cycle. PNW-FIA cooperates with Pacific Island foresters to use the inventory data to help answer local and national questions about the status and trends in tropical forests. These updated data are independent of those published in the earlier report; however, the values presented here cannot be compared to previous reports or datasets to assess changes in our forest resources over the past decade owing to a change in protocol between sampling years. Consistent sampling and field protocols standardized across different ownerships and forest management regimes will now allow for comparisons of change in future reports. This report covers all forested and vegetated nonforest lands in American Samoa, with estimates representing averaged values computed from all inventory plots visited by field crews in 2012.

Description of the Forest Inventory and Analysis Program

The FIA program was created within the U.S. Department of Agriculture Forest Service in 1928 to conduct unbiased assessments of all the nation’s forested lands for use in economic and forest management planning. The FIA program was charged with collecting forest data on a series of permanent field plots, compiling and making data publicly available, and providing research and interpretations from those data. Four FIA units are responsible for inventories of all forested lands in the United States, including the territories and commonwealths of Puerto Rico, Guam, American Samoa, Northern Mariana Islands, and U.S. Virgin Islands, and three “freely associated states” (Pacific Island nations that forged a compact of free association with the United States); these include the Federated States of Micronesia, Republic of the Marshall Islands, and Republic of Palau. Historically, each of the four regional FIA units responsible for forest inventory in the United States implemented inventory methods to best fit their respective regional forest conditions and client needs, resulting in inconsistent national reporting (USDA FS 2006). After passage of the 1998 Farm Bill, the FIA program implemented an annualized inventory, which was designed to be
nation ally consistent as well as spatially and temporally unbiased with respect to forest
types and landownership groups (Bechtold and Patterson 2005). All FIA units use a
common plot design, common set of measurement protocols, and standard database
design for compilation and distribution of data. Under this unified approach, FIA
is able to provide unbiased estimates of a wide variety of forest conditions over all
forested lands in the United States in a consistent and timely manner.

Adaptations were made to the national design for the American Samoa inven-
tory in order to include additional branching and rooting forms and additional tree
crown measurements, as well as special-interest species ranging from invasive
plants to pathogens to culturally or economically important plants of various life
forms. With active assistance from American Samoa Community College, Com-
munity and Natural Resources, Forestry Division, plots were spaced uniformly at
1.9-mi intervals using a hexagonal grid, at a threefold intensification of the spacing
used in the mainland U.S. inventory plot grid. Forest inventory plots included four
24-ft fixed-radius subplots, where a variety of information is collected at the plot,
subplot, and tree levels (USDA FS 2012). Primary variables collected included
plot location, slope, aspect, elevation, subplot slope position and slope shape, tree
species, diameters, heights, damages, branching and rooting forms, decay, and
epiphytic loadings (fig. 1). Additional information about annual inventories and
methods is available in appendix 1 of this report and at http://fia.fs.fed.us/.

Figure 1—Forest Inventory and Analysis field crew using equipment to accurately measure diameter
of a tree on plot.
Common FIA Terminology

What is a tree?—
The U.S. Forest Service defines a tree as a woody perennial plant, usually with a single well-defined stem carrying a crown, with a minimum height of 15 ft at maturity (USDA FS 2006).

What is a forest?—
Forests come in many shapes and sizes, varying from complex and species diverse to monoculture plantations. The FIA program defines forest land as an area currently or formerly (within 30 years) having at least 10-percent crown cover by trees of any size and not currently developed for nonforest use (USDA FS 2006). Forest land must be at least 1 ac in size with a minimum continuous width of 120 ft.

What is a forest type and forest type group?—
Most forests contain multiple tree species but are grouped into a single forest type; the functional characteristics of these tree species are then used to more broadly classify each forest type into a forest group. Forest type describes the species or species groups forming a plurality of all live trees (USDA FS 2006) (Example: mangrove forest type or lower montane wet rain forest type).

Forest Resources in American Samoa

American Samoa is an unincorporated and unorganized territory of the United States located in the South Pacific Ocean, about 2,500 mi south of Hawaii (fig. 2) and about 780 mi northeast of Fiji. It is the only U.S. territory south of the equator and therefore the only forest area inventoried by the FIA program in the Southern Hemisphere. The territory consists of seven islands: five inhabited high volcanic islands (Tutuila, Aunu’u, Ofu, Olosega, and Ta’u), one inhabited atoll (Swains), and one uninhabited atoll (Rose). Tutuila is the largest and main island of American Samoa, and the islands of Ta’u, Ofu, and Olosega make up the county of Manu’a, about 60 mi to the east. Tutuila has the most forest at 30,813 ac, compared to the smaller islands of Manu’a at 8,343 ac. The two coral atolls, Rose Atoll and Swains Atoll, are not included in the inventory owing to distance and logistical challenges. The climate of American Samoa is hot and humid, with little variation in temperature annually and diurnally, but with a pronounced dry season lasting June through September (fig. 3). This climate supports the diverse, largely intact forests of American Samoa, which contain examples of mixed paleotropical rainforest not found in other forested areas of the United States (USDI NPS 1997).
Figure 2—American Samoa is in the south-central Pacific Ocean, approximately 4,600 mi southwest of Los Angeles, California, and 2,500 mi south of Hawaii.
American Samoa’s Forest Resources: Forest Inventory and Analysis, 2012

The tropical forests of American Samoa offer many ecological benefits, including filtering runoff to streams, providing shade to help control water temperature, increasing water absorption, and contributing to the food web. Forested ecosystems also help with creation and retention of soils, complete nutrient cycling, and sequester large quantities of carbon. Tropical forests are among the most diverse ecosystems in the world and provide multiple benefits on the local and global scale through the provisions of goods and ecosystem services (Gardner et al. 2009). This high biodiversity provides a rich genetic diversity for species to be able to respond to external influences and maintain essential ecological processes that aid in recovery after disturbance. The forests of American Samoa also provide vital habitat for plants and animals, such as native fruit bats. *Pteropus tonganus*, called “pe’a fanua” in Samoan, and *Pteropus samoensis*, known as “pe’a vao,” play an important role as pollinators.

Figure 3—Average maximum and minimum temperature and total monthly precipitation for Pago Pago, American Samoa. Note the pronounced seasonality in precipitation (Western Regional Climate Center, http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?pipago).
and seed dispersers within the forest, are an important part of Samoa’s culture, and are the source of many traditional stories, myths, and legends (USDI NPS 1997).

There are also social benefits derived from forest resources that are less tangible and more difficult to quantify. Forests are often the location for recreational, cultural, and spiritual activities. Agroforestry practices of Polynesian cultures in the South Pacific exemplify a long and unique history of close interaction between the people and the land. Traditional lifestyles for many local communities rely heavily on forest resources. Samoans retain close ties to the rain forest, as evidenced by communal ownership of forested lands and the status that ownership gives to the family and the village. The desire of Samoans to protect the integrity of their rain-forest and their traditional way of life is called fa’asamoa. Throughout the islands, forests provide subsistence foods, medicinal compounds, wood for local crafts and construction, and other materials important for cultural purposes and daily use.

Forest Area

American Samoa is primarily forested (81 percent) (fig. 4). The total land area is about 48,434 ac, with 39,156 forested ac (table 1). Forest land is defined as land that has at least 10-percent crown cover by live trees of any size, or has had at least 10-percent canopy cover in the past, based on the presence of stumps, snags, land use history or other available evidence. Nonforest land includes areas for homes, livestock enclosures, community areas, and small farms that have been cleared.

<table>
<thead>
<tr>
<th>Land status</th>
<th>Manu’a</th>
<th>Tutuila East</th>
<th>Tutuila West</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest land area:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unreserved forest land</td>
<td>4,212</td>
<td>14,493</td>
<td>13,688</td>
<td>32,393</td>
</tr>
<tr>
<td>Protected forest land (National Park</td>
<td>4,131</td>
<td>2,106</td>
<td>—</td>
<td>6,237</td>
</tr>
<tr>
<td>Service lease and reserves)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mangroves</td>
<td>—</td>
<td>526</td>
<td>—</td>
<td>526</td>
</tr>
<tr>
<td>All accessible forest land</td>
<td>8,343</td>
<td>17,125</td>
<td>13,688</td>
<td>39,156</td>
</tr>
<tr>
<td>Nonforest and other areas:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonforest urban</td>
<td>—</td>
<td>2,290</td>
<td>6,317</td>
<td>8,607</td>
</tr>
<tr>
<td>Nonforest vegetation</td>
<td>80</td>
<td>590</td>
<td>—</td>
<td>670</td>
</tr>
<tr>
<td>Barren lands</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Water</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>All nonforest and other</td>
<td>80</td>
<td>2,880</td>
<td>6,317</td>
<td>9,277</td>
</tr>
<tr>
<td>Total area</td>
<td>8,423</td>
<td>20,005</td>
<td>20,005</td>
<td>48,433</td>
</tr>
</tbody>
</table>

QuickBird satellite imagery from Digital Globe, Inc. (Longmont, Colorado) was used to develop the vegetation mapping layers (Liu et al. 2011).
within villages (found mainly along the coastal plain, valley floors, and on other flat areas on the islands), as well as urbanized areas consisting of low buildings and paved roads, located primarily near airports and harbors (Izuka et al. 2005).

Forest Composition

The natural vegetation of American Samoa is tropical rainforest (fig. 5), owing to its warm climate and year-round rainfall. The combination of climate, elevation, and soil types create a unique mix of ecoregions and forest types. American Samoa vegetation (as mapped by Liu et al. 2011) is primarily intact, continuous canopy forest, but is dominated by post-disturbance vegetation types. The majority of the land area (36.9 percent) was classified as a mixed *Rhus* secondary forest, dominated by tavai (*Rhus taitensis*), toi (*Alphitonia zizyphoides*), maota (*Dysoxylum maota*), lopā (*Adenanthera pavonina*), and moso’oi (*Cananga odorata*). This type of forest is

![Forest map of American Samoa](image-url)
characterized by abandoned fields that, when left undisturbed, eventually revert to a high forest dominated by tall secondary species. The second largest class covering 14.2 percent of the total land area was classified as secondary scrub, an intermediate stage of vegetation that occurs when cultivated land is abandoned and allowed to revert to natural forest. Over time, this class of vegetation will be replaced by larger trees, developing into a mixed *Rhus* secondary-scrub forest type.

FIA crews identified 60 tree species in American Samoa (see “Scientific and Common Plant Names of Plants Found During Inventory”). The most common tree species present were *Hibiscus tiliaceus* (fau), *Myristica inutilis* (*atone*), *Cocos nucifera* (niu), *Dysoxylum maota* (maota), *Pandanus tectorius* (fasa), and *Musa* spp. (fa’i) (table 2).

The average FIA plot in American Samoa contained 11 different tree species (fig. 6). Forest stands tend to be dominated by smaller size trees that are less than 5 inches in diameter (fig. 7). Diameter distribution for trees follows a reverse-J pattern in American Samoa, indicating that regeneration is abundant (fig. 8). Through time, the numbers of trees growing into larger diameter size classes steadily decreases with increasing size class as competition and mortality take their toll.
Table 2—Estimated number of trees in American Samoa, by species

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Total</th>
<th>Sampling error</th>
<th>Scientific name</th>
<th>Total</th>
<th>Sampling error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of trees (thousands)</td>
<td></td>
<td></td>
<td>Number of trees (thousands)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hibiscus tiliaceus</td>
<td>1,140.8</td>
<td>360.4</td>
<td>Ficus scabra</td>
<td>50.1</td>
<td>39.1</td>
</tr>
<tr>
<td>Myristica inutilis</td>
<td>840.0</td>
<td>271.0</td>
<td>Kleinhovia hospita</td>
<td>50.1</td>
<td>39.1</td>
</tr>
<tr>
<td>Dysoxylum maota</td>
<td>438.8</td>
<td>128.0</td>
<td>Myristica hypargyraea</td>
<td>50.1</td>
<td>50.1</td>
</tr>
<tr>
<td>Pandanus tectorius</td>
<td>426.2</td>
<td>388.0</td>
<td>Canarium mafa</td>
<td>37.6</td>
<td>37.6</td>
</tr>
<tr>
<td>Cocos nucifera</td>
<td>376.1</td>
<td>173.0</td>
<td>Diospyros samoensis</td>
<td>37.6</td>
<td>27.5</td>
</tr>
<tr>
<td>Musa spp.</td>
<td>313.4</td>
<td>220.7</td>
<td>Morinda citrifolia</td>
<td>37.6</td>
<td>20.7</td>
</tr>
<tr>
<td>Cananga odorata</td>
<td>188.1</td>
<td>74.3</td>
<td>Sterculia fanaiho</td>
<td>37.6</td>
<td>27.5</td>
</tr>
<tr>
<td>Neonauclea forsteri</td>
<td>175.5</td>
<td>88.6</td>
<td>Aglaia samoensis</td>
<td>25.1</td>
<td>25.1</td>
</tr>
<tr>
<td>Inocarpus fagifer</td>
<td>163.0</td>
<td>137.9</td>
<td>Cyathea lunulata</td>
<td>25.1</td>
<td>25.1</td>
</tr>
<tr>
<td>Rhus taitensis</td>
<td>163.0</td>
<td>67.7</td>
<td>Ficus tinctoria</td>
<td>25.1</td>
<td>25.1</td>
</tr>
<tr>
<td>Macaranga harveyana</td>
<td>150.4</td>
<td>86.9</td>
<td>Ficus uniauriculata</td>
<td>25.1</td>
<td>25.1</td>
</tr>
<tr>
<td>Palaquium stehlinii</td>
<td>112.8</td>
<td>112.8</td>
<td>Terminalia richii</td>
<td>25.1</td>
<td>17.3</td>
</tr>
<tr>
<td>Alphitonia zizyphoides</td>
<td>100.3</td>
<td>39.1</td>
<td>Astronium pickeringii</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Barringtonia samoensis</td>
<td>100.3</td>
<td>64.5</td>
<td>Calophyllum neo-ebudicum</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Bischofia javanica</td>
<td>100.3</td>
<td>53.3</td>
<td>Carica papaya</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Buchanania merrillii</td>
<td>100.3</td>
<td>100.3</td>
<td>Elaeocarpus floridanus</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Rhizophora mangle</td>
<td>100.3</td>
<td>100.3</td>
<td>Fagraea berteroana</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Elaeocarpus ulianus</td>
<td>87.8</td>
<td>66.5</td>
<td>Flacourtia rukam</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Planchonella samoensis</td>
<td>87.8</td>
<td>55.8</td>
<td>Garuga floribunda</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Planchonella garberi</td>
<td>75.2</td>
<td>55.1</td>
<td>Hernandia moerenhoutiana</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Syzygium inophylloides</td>
<td>75.2</td>
<td>45.3</td>
<td>Intisia bijuga</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Canarium vitense</td>
<td>62.7</td>
<td>44.3</td>
<td>Mangifera indica</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Cyathea spp.</td>
<td>62.7</td>
<td>62.7</td>
<td>Spondias dulcis</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Hernandia nymphaeifolia</td>
<td>62.7</td>
<td>62.7</td>
<td>Syzygium dealatum</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Adenanthera pavonina</td>
<td>50.1</td>
<td>50.1</td>
<td>Syzygium samarangense</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Artocarpus altilis</td>
<td>50.1</td>
<td>23.4</td>
<td>Tarenna sambucina</td>
<td>12.5</td>
<td>12.5</td>
</tr>
</tbody>
</table>
Figure 6—Number of tree species found on plots sampled by Forest Inventory and Analysis (FIA). The average number of tree species per field visited FIA plot was 11, and ranged from 1 to 20 species per plot based on the 20 plots inventoried.

Figure 7—Forest area by stand size class. Large diameter stand-size-class forests are defined as having the majority trees ≥11.0 inches in diameter at breast height (d.b.h.). Medium diameter stand-size-class forests are defined as having the majority of trees between 5.0 inches and 11.0 inches d.b.h. Small diameter stand-size-class forests have the majority of trees with d.b.h. <5.0 inches. Forests in the small diameter stand size class were more abundant than forests in medium and large diameter stand size classes.
Volume, Biomass, and Carbon

Volume is a metric by which forest productivity, vigor, and structure can be assessed and modeled to examine current forest conditions and project future forest status. Field-derived total tree lengths of the bole and diameter measurements are used to produce single-tree volume estimates, which are then expanded to assess the volume of entire forested stands. Volume estimates can then be used in additional models to study forest biomass and carbon dynamics. Biomass and carbon distribution by diameter class closely follows the pattern seen in volume by diameter class distribution, in which the majority of volume is concentrated in the small to medium stand size classes (fig. 9).
Understory vegetation is an important structural component in all forest ecosystems. The life-form type and density of cover could affect forest structure and function, as well as influence wildlife habitat, spread of disease, soil stability, and competition between native and nonnative plants. FIA field crews sample understory vegetation in plots on forest and vegetated nonforest land (fig. 10). To reflect forest structure, the percentage of canopy cover by four layers and percentage of total canopy cover to 1 percent are estimated for tree seedlings (trees <1.0 inches diameter at breast height [d.b.h.]) and saplings (trees 1.0 to 4.9 inches d.b.h.); shrubs (woody, multiple-stemmed plants of any size including woody vines); forbs (herbaceous, broad-leaved plants, including nonwoody vines and ferns); and graminoids (grasses and grasslike plants, including rushes and sedges). To reflect species composition, percentage of total canopy cover and main canopy layer are estimated for the four most abundant (>3-percent canopy cover) seedling and sapling, shrub, forb, and graminoid species. Estimates of cover were made for several less common species that are considered to be of special importance by local foresters.
Figure 10—Field crews identify the most common understory vegetation that occupies the highest percentage of cover within the subplot.
The most common understory species found on FIA plots were *Cordyline fruticosa* (ti plant), *Diospyros samoensis* (auauli), *Dysoxylum maota* (maota), *Ficus scabra* (mati vao), *Morinda citrifolia* (nonu), *Myristica inutilis* (*atone*), and *Psychotria insularum* (matalafi). Understory vegetation canopy cover in American Samoa was greatest on Tutuila East (fig. 11).

![Figure 11](image_url)

Figure 11—Average understory vegetation canopy cover percentage by county and life form in forests of American Samoa.

Extent of Standing Dead Wood

Standing dead trees (snags) represent an important component of forest structure and wildlife habitat. FIA plot measurements are well suited to estimate dead wood throughout all forest types and ownerships across the island. Dead trees fill many ecologically important roles in forests. Dead wood in a forest provides habitat for wildlife and fungi, improves soil fertility through nutrient cycling and moisture retention, adds to fuel loads, and is a key structural element in mature forests. Large-scale disturbances from weather-related events and insects can have a profound effect on the total dead wood stores present, which is an important parameter for forest managers. Dead wood resources are complex, and FIA provides estimates of the amount of standing dead trees. There are approximately 73,603 tons of dry dead wood in American Samoa: 39,798 tons in Tutuila East, 22,294 tons in Tutuila West, and 11,511 tons in Manu’a (fig. 12).
Forest Ownership

Ownership has a strong influence on how forests are managed and used. About 90 percent of the territory’s resident population are Samoan, and most land is held and managed within traditional family communal systems (Busche et al. 2011). In American Samoa, local families lease 9,000 ac on three islands (8,000 ac terrestrial, 1,000 ac aquatic) to the U.S. Department of the Interior, National Park Service. (Webb et al. 2014). The National Park of American Samoa was established in 1988 with a lease extending for 50 years.

Nontimber Forest Products

Nontimber forest products (NTFP) are forest products not traditionally sawn as timber, contributing to a diversified economy, including subsistence use. Nontimber forest products contribute in important ways to the livelihoods and welfare of the population living in and adjacent to forests by providing construction materials, fencing, furniture, foods, medicines, fibers, floral products, plant oils, dyes, food wrapping, fuels and livestock feed, and representing other important cultural values.
(Dawson et al. 2014). Selected examples of important NTFP and agricultural crops on Pacific Islands include food crops such as banana (Musa spp.), breadfruit (Artocarpus altilis), fasa (Pandanus tectorius) (fig. 13), coconut (Cocos nucifera), and nonu (Morinda citrifolia), as well as handicrafts made from coconut and fasa, and floral products such as moso’oi (Cananga odorata) (Wilkinson and Elevitch 2000). In American Samoa’s forests, Pandanus tectorius, Cocos nucifera, and Musa spp. were the selected NTFPs with the largest number of trees (fig. 14).

Figure 13—The pandanus tree (fasa, Pandanus tectorius) is harvested and utilized in a variety of ways; the trunk can be used as building material and the leaves are used for weaving material.
Forest Health

Forests are complex ecosystems, composed of plants, animals, and fungi that interact with each other and nonbiotic elements. Trees dominate forested landscapes, but less obvious components such as fungi and soil microbes are also important (Molina 1994), with each piece of the system playing a role in creating a balanced and healthy environment. Forests sequester carbon from the atmosphere and serve as long-term carbon storage (Harmon et al. 1990), and they protect soil from erosion as well as remove pollutants to improve air quality (Nowak et al. 2014). In American Samoa, forests comprise nearly 81 percent of the land area, and the health of these forests affects surrounding environments and their ability to maintain the unique species composition and function.

Forest Disturbances and Their Extent

Detecting damage to trees at the stand level is critical for assessing overall forest health in terms of resiliency, diversity, function, and resource sustainability. Healthy forests are important for protecting watersheds in island ecosystems. Forest disturbance and mortality resulting from damages inflicted by invasive vegetation,
insects, disease, or abiotic stressors such as weather events are all agents that can reinitiate a succession phase, thereby promoting new growth, regeneration, and shifts in species diversity and composition in American Samoa’s forests. During surveys, to track the types of disturbances that are occurring in these forests, FIA crews assign a type and agent for each live tree with visible signs of damage, which can be used to indicate a presence of disturbance.

About 17 percent of the trees measured had some form of visible damage (fig. 15). Vines in the crown were the most prevalent damage recorded to saplings and trees, followed by conks/signs of decay and a loss of apical dominance (broken tops). FIA field crews assign a causal damage agent to the damages to help local forest managers assess forest pest problems. Field crews study the surrounding area looking for patterns such as branch breakage or blowdown, or signs of human or insect activity, and can often assign a causal agent. Sometimes, however, the cause of the damage cannot be reliably identified and is assigned a code signifying that the cause of damage is unknown. Weather, vegetation, and disease were the most commonly identified causes of damage (fig. 16).

![Tree damage types occurring on live trees in Forest Inventory and Analysis plots. The majority of damages to saplings and trees occurred as vines in the crown and conks and other signs of decay such as strangulations from other plants.](image-url)
Weather Events

Tropical cyclones are a recurring natural disturbance that are relatively common in American Samoa between December and March (Busche et al. 2011), and weather was the most commonly identified damage agent on FIA plots in American Samoa. Six major storms hit American Samoa during the past 30 years, often inflicting significant damage to the landscape, especially to the forest and natural vegetation (Liu et al. 2011). Storms can affect the structure of the forest through severe damage such as stem breakage and uprooting, as well as through minor damage like defoliation and branch loss (Webb et al. 2014). Island regions are especially vulnerable to impacts related to climate change, such as increased storm frequency and intensity, which can decrease habitat suitability for forest regeneration (Donato et al. 2011) and can lead to sea level rise. Almost half of the weather-related damages were associated with 1 to 9 percent of the crown/stem or upper tree bole affected, whereas the other half was almost equally divided among four categories 10 to 19, 40 to 49, 50 to 59, and 60 to 69 percent of the crown/stem affected (fig. 17).
Vegetation, Insects, Animals, and Disease

Introduced insects, animals, diseases, and vegetation affect the structure, function, and composition of American Samoa’s forests both directly and indirectly. Direct effects of invasive organisms include damage and mortality to native flora from insects (such as the coconut rhinoceros beetle, *Oryctes rhinoceros*) and animals (feral pigs and other ungulates); mortality of native pollinators resulting from predation; and tree mortality resulting from disease (such as brown root rot, *Phellinus noxius*). A direct effect of introduced vegetation is associated with invasive vines that cover the crowns of native tree species. Trees that are heavily covered in vines will typically grow more slowly and face competition for light, water, and nutrients. In American Samoa, damage as a result of vegetation ranged from 0 to 99 percent severity of the amount of affected area, damages resulting from disease concentrated at 0 to 9 percent of the tree affected, and insects accounted for damages that occurred with a range of 0 to 9 or 60 to 69 percent severity (fig. 18).

Invasive Vegetation

Invasive nonnative plant species pose a threat to native forests throughout American Samoa. The aggressive spread of introduced species to forested areas formerly occupied by native plants changes the composition, structure, and function of both natural and managed ecosystems. Alteration of native forests driven by the introduction of
nonnative vegetation can be particularly severe on oceanic islands, where increases in nonnative species have resulted in the decline and extinction of many endemic species (Cuddihy and Stone 1990, Steadman 1989).

Although local effects from nonnative species are easier to quantify, without an island-wide sampling effort such as the systematic and recurring FIA inventory, it would be very difficult to understand the extent of the spread of these species across all forested landscapes. To measure the overall impact of invasive species on American Samoa, FIA documents the presence, distribution, and abundance of identified invasive species. Six invasive plant species out of 26 species of concern identified by local foresters were present in inventory plots: *Adenanthera pavonina*, *Cinnamomum verum*, *Clerodendrum chinense*, *Clidemia hirta*, *Merremia peltata*, and *Mikania micrantha* (table 3).

Space and Flynn (2000) conducted an invasive plant survey in 1998 and described characteristics of these species. *Adenanthera pavonina* (red bead tree, lopā) is invasive in secondary forests. Many local residents roast and eat the seeds of this plant, and commonly refer to them as “Samoan peanuts” and do not see the trees’ presence as a problem. *Cinnamomum verum* (cinnamon, tinamoni) has the potential to become a major invasive species. *Clerodendrum chinense* (Honolulu Rose, losa Honolulu) is shade-tolerant and reproduces from root suckers. *Clidemia hirta* (Koster’s curse) is a
Table 3—Presence or absence in Forest Inventory and Analysis (FIA) plots of listed American Samoa invasive species identified by local foresters

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Presence/absence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenanthera pavonina</td>
<td>✓</td>
</tr>
<tr>
<td>Antigonon leptopus</td>
<td>—</td>
</tr>
<tr>
<td>Castilla elastica</td>
<td>—</td>
</tr>
<tr>
<td>Casuarina equisetifolia</td>
<td>—</td>
</tr>
<tr>
<td>Cinnamomum verum</td>
<td>✓</td>
</tr>
<tr>
<td>Clerodendrum chinense</td>
<td>✓</td>
</tr>
<tr>
<td>Clidemia hirta</td>
<td>✓</td>
</tr>
<tr>
<td>Coccinia grandis</td>
<td>—</td>
</tr>
<tr>
<td>Costus speciosus</td>
<td>—</td>
</tr>
<tr>
<td>Dieffenbachia maculata</td>
<td>—</td>
</tr>
<tr>
<td>Falcataaria moluccana</td>
<td>—</td>
</tr>
<tr>
<td>Funtumia elastica</td>
<td>—</td>
</tr>
<tr>
<td>Imperata cylindrica</td>
<td>—</td>
</tr>
<tr>
<td>Kalanchoe pinnata</td>
<td>—</td>
</tr>
<tr>
<td>Lantana camara</td>
<td>—</td>
</tr>
<tr>
<td>Leucaena leucocephala</td>
<td>—</td>
</tr>
<tr>
<td>Ligustrum spp.</td>
<td>—</td>
</tr>
<tr>
<td>Lonicera japonica</td>
<td>—</td>
</tr>
<tr>
<td>Merremia peltata</td>
<td>✓</td>
</tr>
<tr>
<td>Miconia calvescens</td>
<td>—</td>
</tr>
<tr>
<td>Mikania micrantha</td>
<td>✓</td>
</tr>
<tr>
<td>Mimosa invisa</td>
<td>—</td>
</tr>
<tr>
<td>Piper auritum</td>
<td>—</td>
</tr>
<tr>
<td>Psidium cattleianum</td>
<td>—</td>
</tr>
<tr>
<td>Spathodea campanulata</td>
<td>—</td>
</tr>
<tr>
<td>Syngonium podophyllum</td>
<td>—</td>
</tr>
</tbody>
</table>

✓ = species was found during FIA inventory; — = species was not found during FIA inventory.
Note: 26 species were searched for; 6 species were found on plot.

...shrub that has been a serious problem in Hawaii, where biocontrol was implemented about 35 years ago. Mikania micrantha (mile-a-minute weed, fue saina) is a vine that has become well established as a major pest of disturbed areas in American Samoa. The presence of these species raises concern that invasive species could establish and outcompete native vegetation, creating a homogenous ecosystem less resistant and resilient to both natural and anthropogenic changes. Currently, Mikania micrantha is the most prevalent invasive species in American Samoa, and comprises 4.7 percent of total vegetation cover in forested areas (fig. 19).
Conclusions

This report presents an updated overview of American Samoa’s forest resources, highlighting information that is new as well as confirming previously known information. We expect that some readers are eager to see more indepth research and analysis on selected topics to fully understand the current state and changes taking place in American Samoa forests. Additional tables summarizing the data can be found in appendix 2, and all the data are available for download in nonsummarized form at http://www.fia.fs.fed.us. Note that the results published in this report cannot be directly compared to those of the previous report (Donnegan et al. 2004) to assess changes in forest resources over the past decade owing to a change in sampling protocols between measurement periods. Use of the same sampling protocols and plot design will allow for assessments of change that occurred during the 10 years between visits in the future. Long-term forest monitoring in FIA plots is expected to provide information on the impacts of disturbances such as invasive species to tree growth and survival. Armed with these data, we can begin quantifying trends in American Samoa’s forest, from assessing change in growth and survival of understory seedlings, to large, landscape-level changes facing forests from challenges like a growing population and a changing climate.
Scientific and common names of plants found during inventory

<table>
<thead>
<tr>
<th>Life form</th>
<th>Scientific name</th>
<th>Samoan name</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees:</td>
<td>Adenanthera pavonina L.</td>
<td>lopa</td>
<td>red beadtree, coral bean tree, false wiliwili, red sandle-wood</td>
</tr>
<tr>
<td></td>
<td>Aglaia samoensis A. Gray</td>
<td>laga’ali</td>
<td>garland tree</td>
</tr>
<tr>
<td></td>
<td>Alphitonia zizyphoides A. Gray</td>
<td>toi</td>
<td>toi</td>
</tr>
<tr>
<td></td>
<td>Artocarpus altilis (Parkinson) Fosberg</td>
<td>ulu</td>
<td>breadfruit</td>
</tr>
<tr>
<td></td>
<td>Astronidium pickeringii (A. Gray) Christoph.</td>
<td>matoi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barringtonia samoensis A. Gray</td>
<td>falaga</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bischofia javanica Blume</td>
<td>o’a</td>
<td>Javanese bishopweed, bishopwood</td>
</tr>
<tr>
<td></td>
<td>Buchanania merrillii Christoph.</td>
<td>gasu</td>
<td>gasu</td>
</tr>
<tr>
<td></td>
<td>Calophyllum neo-ebudicum Guillaumin</td>
<td>tamanu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cananga odorata (Lam.) Hook. f. & Thomson</td>
<td>moso’oi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canarium mafoa Christoph.</td>
<td>mafa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canarium vitiense A. Gray</td>
<td>ma’ali</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carica papaya L.</td>
<td>esi</td>
<td>papaya</td>
</tr>
<tr>
<td></td>
<td>Cinnamomum verum J. Presl</td>
<td>tinamoni</td>
<td>cinnamon</td>
</tr>
<tr>
<td></td>
<td>Cocos nucifera L.</td>
<td>niu</td>
<td>coconut palm</td>
</tr>
<tr>
<td></td>
<td>Cordyline fruticosa (L.) A. Chev</td>
<td>ti</td>
<td>ti plant</td>
</tr>
<tr>
<td></td>
<td>Cyathea lunulata (G. Forst.) Copel.</td>
<td>saitamu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyathea spp.</td>
<td>olioli</td>
<td>tree fern</td>
</tr>
<tr>
<td></td>
<td>Diospyros samoensis A. Gray</td>
<td>‘au’auli</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dysoxylum maota Reinecke</td>
<td>maota</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elaeocarpus floridanus Hemsl.</td>
<td>‘a’mati’e</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elaeocarpus ulianus Christoph.</td>
<td></td>
<td>Elaeocarpus</td>
</tr>
<tr>
<td></td>
<td>Fagraea berteroana A. Gray ex Benth.</td>
<td>pualulu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ficus insipida subsp. scabra C.C. Berg</td>
<td>mati vao</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ficus tinctoria G. Forst</td>
<td>mati</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ficus uniauriculata Warb.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flacourtia rukam Zoll. & Moritzi</td>
<td>filimoto</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Garuga floribunda Decne.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Garuga floribunda Decne.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Garuga floribunda Decne.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glochidion ramiflorum J.R. Forst. & G. Forst.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hernandia moerenhoutiana Guill.</td>
<td>pipi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hernandia nymphaefolia (Presl) Kubitzki</td>
<td>pu’a</td>
<td>lantern tree</td>
</tr>
<tr>
<td></td>
<td>Hibiscus tiliaceus L.</td>
<td>fau</td>
<td>sea hibiscus, beach hibiscus</td>
</tr>
<tr>
<td></td>
<td>Inocarpus fagifer (Parkinson) F.R. Fosberg</td>
<td>ifi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intsia bijuga (Colebr.) Kuntze</td>
<td>ifilele</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kleinhovia hospita L.</td>
<td>fu’a’fu’a</td>
<td>guest tree</td>
</tr>
<tr>
<td></td>
<td>Macaranga harveyana (Müll.Arg.) Müll.Arg.</td>
<td>lau pata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mangifera indica L.</td>
<td>mago</td>
<td>mango</td>
</tr>
<tr>
<td></td>
<td>Morinda citrifolia L.</td>
<td>nonu</td>
<td>Indian mulberry</td>
</tr>
</tbody>
</table>
Scientific and common names of plants found during inventory (continued)

<table>
<thead>
<tr>
<th>Life form</th>
<th>Scientific name</th>
<th>Samoan name</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrubs:</td>
<td>Musa ×paradisiaca L. (pro sp.) [acuminata × balbisiana]</td>
<td>fa’i</td>
<td>French plantain</td>
</tr>
<tr>
<td></td>
<td>Musa spp.</td>
<td></td>
<td>atoneulu</td>
</tr>
<tr>
<td></td>
<td>Myristica hypargyraea A. Gray</td>
<td></td>
<td>‘atone</td>
</tr>
<tr>
<td></td>
<td>Myristica inutilis W. Rich ex A. Gray</td>
<td></td>
<td>afa</td>
</tr>
<tr>
<td></td>
<td>Neonauclea forsteri Merrill</td>
<td></td>
<td>gasu</td>
</tr>
<tr>
<td></td>
<td>Palaquium stehlinii Christoph.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pandanus tectorius Parkinson ex Zucc.</td>
<td>fasa</td>
<td>Tahitian screwpine</td>
</tr>
<tr>
<td></td>
<td>Planchonella garberi Christoph.</td>
<td>ala’a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planchonella samoensis H.J. Lam</td>
<td>mamalava</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polyscias samoensis (A. Gray) Harms</td>
<td>tagitagi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pometia pinnata J.R. Forst. & G. Forst.</td>
<td>tava</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psychotria insularum (A. Gray)</td>
<td>matalafi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhizophora mangle L.</td>
<td>togo</td>
<td>American mangrove</td>
</tr>
<tr>
<td></td>
<td>Rhus taitensis Guill.</td>
<td></td>
<td>tavai</td>
</tr>
<tr>
<td></td>
<td>Spondias dulcis Parkinson</td>
<td>vi</td>
<td>Jewish plum, ambarella</td>
</tr>
<tr>
<td></td>
<td>Sterculia fanaiho Setchell</td>
<td>fana’io</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syzygium dealatum (Burkill) A. C. Sm.</td>
<td>asi vai</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syzygium inophyloides (A.Gray) Müll.Stuttg.</td>
<td>asi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syzygium samarangense (Blume) Merr. & L.M.Perry</td>
<td>nonu vao</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tarenna sambucina (G. Forst.) Durand</td>
<td>manunu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terminalia richii A. Gray</td>
<td>malili</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theobroma cacao L.</td>
<td>koko</td>
<td>cacao</td>
</tr>
</tbody>
</table>

Shrubs:

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Samoan name</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alyxia bracteolosa W. Rich ex A. Gray</td>
<td></td>
<td>bracteolate alyxia</td>
</tr>
<tr>
<td>Colubrina asiatica (L.) Brongn.</td>
<td></td>
<td>Asian nakedwood</td>
</tr>
<tr>
<td>Faradaya amicorum (Seem.) Seem.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freycinetia freycinetias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gynochthodes epiphytica (Rech.) A.C. Sm. & S.P. Darwin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoya spp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoya australis R.Br. ex Traill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merremia peltata (L.) Merr.</td>
<td></td>
<td>merremia</td>
</tr>
<tr>
<td>Oleandra neriiformis Cav.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piper graeffei Warb.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scaevola sericea var. taccada (Gaertn.) Thieret & B. Lipscomb</td>
<td></td>
<td>beach naupaka</td>
</tr>
</tbody>
</table>

Forbs:

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Samoan name</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiopteris evecta (J.R. Forst.) Hoffm.</td>
<td></td>
<td>Oriental vessel fern</td>
</tr>
<tr>
<td>Asplenium nidus L.</td>
<td></td>
<td>Hawai‘i birdnest fern</td>
</tr>
<tr>
<td>Bidens pilosa L.</td>
<td></td>
<td>hairy beggarticks</td>
</tr>
<tr>
<td>Christella harveyi Holttum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clidemia hirta (L.) D. Don</td>
<td></td>
<td>soapbush</td>
</tr>
</tbody>
</table>
Scientific and common names of plants found during inventory (continued)

<table>
<thead>
<tr>
<th>Life form</th>
<th>Scientific name</th>
<th>Samoan name</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Davallia solida (J.R. Forst.) Sw.</td>
<td>luukbedoach (Palau)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dioscorea bulbifera L.</td>
<td>air yam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dissotis rotundifolia (Sm.) Triana</td>
<td>pinklady</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Epipremnum pinnatum (L.) Engl.</td>
<td>centipede tongavine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heliconia paka A.C. Sm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lomagramma cordipinna Holttum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mikania micrantha Kunth</td>
<td>mile-a-minute</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nephrolepis hirsutula (J.R. Forst.) C. Presl</td>
<td>scaly swordfern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phymatosorus grossus (Langsd. & Fisch.) Brownlie</td>
<td>musk fern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phymatosorus scolopendria (Burm. f.) Pic. Serm.</td>
<td>monarch fern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polygonum punctatum Elliott</td>
<td>dotted smartweed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ruellia prostrata Poir.</td>
<td>prostrate wild petunia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tectaria dissecta (G. Forst.) Lellinger</td>
<td>cutleaf halberd fern</td>
<td></td>
</tr>
<tr>
<td>Graminoids</td>
<td>Oplismenus compositus (L.) P. Beauv.</td>
<td>running mountaingrass</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paspalum conjugatum P.J. Bergius</td>
<td>hilograss</td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgments

This project would not have been possible without the close partnership between the American Samoa Community College (ASCC) Community Natural Resources Land Grant Program and the U.S. Forest Service (USFS). The USFS’s FIA program worked with our partners in American Samoa to provide technical assistance for the sampling design, implementation, and analysis. The American Samoa Community College partners graciously hosted the training, provided staff and vehicles, and worked with landowners to gain permission to access each plot. We would like to recognize Tapa’au Daniel Mageo, Aufa’i Apulu Ropeti Areta, and Mary Taufete’e with ASCC for their commitment and support for this inventory program. They worked closely with the governor and mayor’s office to conduct outreach and alert private landowners and communities of our program, and they sought out permission to access each site prior to the crews working in the forest. Thanks are due to the forestry staff at ASCC: Toepo Leiataua-Stowers, Tony Maugalei, Logona Misa, Simon Stowers, Ritofu Lotovale, Neil Gurr, and Setu Pasia, for their hard work and dedication to collecting quality data. Toepo helped coordinate daily logistics for the field crews. We would like to thank Kelisiano Tagaloa, who works with the extension office at ASCC and helped with the data collection logistics when working on the Manu’a Islands. And we thank Dr. Mark Schmaedick for help with identifying forest health issues, especially with pest species that may be of a concern.
We would like to recognize our partners at the National Park of American Samoa. We thank Sean Eagan for helping with the permitting and logistics; Carlo Caruso and Visa Vaivai, who helped coordinate logistics while working in the Manua Islands; and Tavita Togia, who helped with vegetation identification for unknown plant species in the national park and provided assistance for the data collection. We also had help from Vanu and Ike Sagaga for data collection in the national park. And we appreciate Dr. Orlo Steele’s help at the University of Hawaii in reviewing all the scientific names in our vegetation databases.

The authors also thank all USFS and University of Hawaii FIA crew members, including Seth Ayotte, Lori Bufil, Kai Hiraoka, and Ambrose Canton, for their hard work, significant input to improved protocols, and persistent attention to data quality throughout the field season. We would especially like to thank Lori Bufil for her help in coordinating many of the logistics for the fieldwork.

Thanks also go to USFS Pacific Southwest Region State and Private Forestry for supporting the activities of this project. Thank you, Kathleen Friday, for your assistance in enhancing collaboration between many of the partners working on this project, and the members of the USFS FIA program Information Management team for compiling the American Samoa raw plot measurements into the FIA database for analysis. Additionally, thanks to the many reviewers of this manuscript for their invaluable comments.

Metric Equivalents

<table>
<thead>
<tr>
<th>When you know:</th>
<th>Multiply by:</th>
<th>To find:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles (mi)</td>
<td>1.609</td>
<td>Kilometers</td>
</tr>
<tr>
<td>Acres (ac)</td>
<td>0.405</td>
<td>Hectares</td>
</tr>
<tr>
<td>Tons</td>
<td>0.907</td>
<td>Metric tons (tonnes)</td>
</tr>
</tbody>
</table>

Literature Cited

Appendix 1: Inventory Design and Methods

Field Design and Sampling Method

The Forest Inventory and Analysis (FIA) program conducts a systematic, sample-based, field inventory across all ownerships on a periodic basis, remeasuring the same plots approximately every 10 years. All FIA units use a common plot design, common set of measurement protocols, and a standard database design for compilation and distribution of data. Adaptations were made to the national design for the American Samoa inventory in order to include additional branching and rooting forms and additional tree crown measurements, as well as special interest species ranging from invasive plants to pathogens to culturally or economically important plants of various life forms.

With active assistance from American Samoa Community College, Community and Natural Resources, Forestry Division, plots were spaced uniformly at 1.9-mi intervals using a hexagonal grid, at a threefold intensification of the spacing used in the mainland United States inventory plot grid. Forest inventory plots included four 24-ft fixed-radius subplots, where a variety of information is collected at the plot, subplot, and tree levels (USDA FS 2012). Primary variables collected include plot location, slope, aspect, elevation, subplot slope position and slope shape, tree species, diameters, heights, damages, branching and rooting forms, decay, and epiphytic loadings.

All plots classified by aerial photography as possibly being forested are established in the field without regard to land use or land cover. Field crews delineate areas within the plot that are comparatively less heterogeneous than the plot as a whole with regard to reserved status, owner group, forest type, stand size class, and tree density; these areas are described as condition classes. The process of delineating these condition classes on a fixed-radius plot is called mapping. All measured trees are assigned to the mapped condition class in which they are located.

On plots, crews assess physical characteristics such as slope, aspect, and elevation; stand characteristics such as age, size class, forest type, disturbance, site productivity, and regeneration status; and tree characteristics such as tree species, diameter, height, damages, decay, and vertical crown dimensions. They also collect general descriptive information such as proximity to water and roads, and the geographic position of the plot in the larger landscape.

The Pacific Northwest Research Station FIA (PNW-FIA) program sampled 21 forested plots in American Samoa on the standard national plot grid. Estimates of tree volume and other forest attributes were derived from tree measurements and
classifications made at each plot. A number of other variables are unique to PNW-FIA. These are “regional” variables and include such items as insect and disease damage, a record of previous disturbance on the plot. The Pacific Islands standardized plot installed at each forested location is a cluster of four subplots spaced 120 feet apart (fig. A1-1). Subplot 1 is in the center, with subplots 2 through 4 distributed radially around it. Each point serves as the center of a 1/24-ac circular subplot used to sample all trees at least 5.0 inches in diameter at breast height (d.b.h.). A 1/300-ac microplot, with its center located just east of each subplot center, is used to sample trees 1.0 to 4.9 inches d.b.h., as well as seedlings (trees less than 1.0 inch d.b.h.).

![Figure A1-1—The Forest Inventory and Analysis plot design used in American Samoa.](image-url)
Data Processing

The data used for this report are stored in the FIA National Information Management System (NIMS). The NIMS provides a means to input, edit, process, manage, and distribute FIA data. It includes a process for data loading, a national set of edit checks to ensure data consistency, an error-correction process, approved equations and algorithms, code to compile and calculate attributes, a table report generator, and routines to populate the presentation database. It applies numerous algorithms and equations to calculate, for example, stand size, volume, and biomass. The NIMS also generates estimates and associated statistics based on county areas and stratum weights developed outside of the NIMS. Additional FIA statistical design and estimation techniques are further reviewed in Bechtold and Patterson (2005).

Statistical Estimates

Throughout this report, we have published standard errors (SE) for most of our estimates. These SEs account for the fact that we measured only a small sample of the forest (thereby producing a sample-based estimate) and not the entire forest (which is the population parameter of interest). Because of small sample sizes or high variability within the population, some estimates can be very imprecise. The reader is encouraged to take the SE into account when drawing any inferences. One way to consider this type of uncertainty is to construct confidence intervals. Customarily, 68- or 95-percent confidence intervals are used. A 95-percent confidence interval means that one can be 95-percent confident that the interval contains the true population parameter of interest. For more details about confidence intervals, please consult Moore and McCabe (1989) or other statistical literature.

Access Denied, Hazardous, or Inaccessible Plots

Although every effort was made to visit all field plots that were entirely or partially forested, some were not sampled for a variety of reasons. Field crews may have been unable to obtain permission from the landowner to access the plot, and there were some plots that were impossible for crews to safely reach or access. Some private landowners deny access to their land, but privately owned plots usually are not as hazardous or inaccessible as plots on public lands. Although permission to visit public lands is almost always granted, some public land lies in higher elevation areas that can be very dangerous or impossible to reach.
This kind of missing data can introduce bias into the estimates if the nonsampled plots tend to be different from the entire population. Plots that are obviously non-forested (based on aerial photos) are rarely visited, and therefore the proportion of denied-access, hazardous, or inaccessible plots is significantly smaller than it is for forested plots. The post-stratification approach outlined in Bechtold and Patterson (2005) removes nonsampled plots from the sample. Estimates are adjusted for plots that are partially nonsampled by increasing the estimates by the nonsampled proportion within each stratum.
Appendix 2: Summary Data Tables

The following tables contain basic information about the forest resources of American Samoa as they relate to the discussion of current forest issues and basic forest resource information presented in this report. Data are also available for download in nonsummarized form at http://www.fia.fs.fed.us.

Number of Live Trees
Table A2-1—Number of live trees on forest land, by diameter class
Table A2-2—Percentage of live trees on forest land, by species
Table A2-3—Number of live trees on forest land, by species, and diameter class

Tree Volume
Table A2-4—Estimated net volume of live trees on forest land, by species and diameter class
Table A2-5—Estimated volume of all live trees on forest land by diameter class

Biomass and Carbon
Table A2-6—Aboveground biomass and carbon of live and dead trees on forest land
Table A2-7—Aboveground biomass of live trees on forest land, by species and diameter class

Understory Vegetation
Table A2-8—Average understory vegetation cover and number of FIA plots where the species occurred
Table A2-1—Number of live trees\(^a\) on forest land, by diameter class

<table>
<thead>
<tr>
<th>Diameter class (inches)</th>
<th>Number of trees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Thousand trees</td>
<td></td>
</tr>
<tr>
<td>1.0–2.9</td>
<td>15,773</td>
</tr>
<tr>
<td>3.0–4.9</td>
<td>6,247</td>
</tr>
<tr>
<td>5.0–6.9</td>
<td>2,633</td>
</tr>
<tr>
<td>7.0–8.9</td>
<td>1,204</td>
</tr>
<tr>
<td>9.0–10.9</td>
<td>865</td>
</tr>
<tr>
<td>11.0–12.9</td>
<td>602</td>
</tr>
<tr>
<td>13.0–14.9</td>
<td>313</td>
</tr>
<tr>
<td>15.0–16.9</td>
<td>201</td>
</tr>
<tr>
<td>17.0–18.9</td>
<td>88</td>
</tr>
<tr>
<td>19.0–20.9</td>
<td>88</td>
</tr>
<tr>
<td>21.0–22.9</td>
<td>138</td>
</tr>
<tr>
<td>23.0–24.9</td>
<td>38</td>
</tr>
<tr>
<td>25.0–26.9</td>
<td>13</td>
</tr>
<tr>
<td>27.0–28.9</td>
<td>25</td>
</tr>
<tr>
<td>29.0+</td>
<td>50</td>
</tr>
</tbody>
</table>

Note: Totals may be off because of rounding; estimates are subject to sampling error; SE = sampling error.
\(^a\) Includes all live trees ≥1 inches in diameter at breast height.
Table A2-2—Percentage of live trees* on forest land by species

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Samoan common name</th>
<th>Percentage of all trees</th>
<th>Scientific name</th>
<th>Samoan common name</th>
<th>Percentage of all trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hibiscus tiliaceus</td>
<td>fau</td>
<td>16.79</td>
<td>Artocarpus altislis</td>
<td>ulu</td>
<td>0.74</td>
</tr>
<tr>
<td>Myristica inutilis</td>
<td>‘atone</td>
<td>14.71</td>
<td>Cyathea lunulata</td>
<td>saitamu</td>
<td>0.74</td>
</tr>
<tr>
<td>Dysoxylum maota</td>
<td>maota</td>
<td>6.09</td>
<td>Polyscias samoensis</td>
<td>tagitagi</td>
<td>0.74</td>
</tr>
<tr>
<td>Pandanus tectorius</td>
<td>fasa</td>
<td>5.05</td>
<td>Sterculia fanaiho</td>
<td>fana’io</td>
<td>0.74</td>
</tr>
<tr>
<td>Cocos nucifera</td>
<td>niu</td>
<td>4.46</td>
<td>Adenanthera pavonina</td>
<td>lopa</td>
<td>0.59</td>
</tr>
<tr>
<td>Musa spp.</td>
<td>meia</td>
<td>4.16</td>
<td>Aglaia samoensis</td>
<td>laga’ali</td>
<td>0.59</td>
</tr>
<tr>
<td>Cananga odorata</td>
<td>moso’oi</td>
<td>2.53</td>
<td>Myristica hypargyraea</td>
<td>atoneulu</td>
<td>0.59</td>
</tr>
<tr>
<td>Macaranga harveyana</td>
<td>lau pata</td>
<td>2.53</td>
<td>Diospyros samoensis</td>
<td>‘au’a’ali</td>
<td>0.45</td>
</tr>
<tr>
<td>Barringtonia samoensis</td>
<td>falaga</td>
<td>2.38</td>
<td>Terminalia richii</td>
<td>malili</td>
<td>0.45</td>
</tr>
<tr>
<td>Rhus taitensis</td>
<td>tava</td>
<td>2.38</td>
<td>Carica papaya</td>
<td>esi</td>
<td>0.3</td>
</tr>
<tr>
<td>Neonauclea forsteri</td>
<td>afa</td>
<td>2.08</td>
<td>Fagraea berteroana</td>
<td>pualulu</td>
<td>0.3</td>
</tr>
<tr>
<td>Buchanania merrillii</td>
<td>gasu</td>
<td>1.93</td>
<td>Ficus tinctoria</td>
<td>mati</td>
<td>0.3</td>
</tr>
<tr>
<td>Inocarpus fagifer</td>
<td>ifi</td>
<td>1.93</td>
<td>Ficus uniauriculata</td>
<td>mati</td>
<td>0.3</td>
</tr>
<tr>
<td>Morinda citrifolia</td>
<td>nonu</td>
<td>1.93</td>
<td>Glochidion ramiflorum</td>
<td>masame vao</td>
<td>0.3</td>
</tr>
<tr>
<td>Rhizophora mangle</td>
<td>togo</td>
<td>1.93</td>
<td>Intsia bijuga</td>
<td>ifilele</td>
<td>0.3</td>
</tr>
<tr>
<td>Cordyline fruticosa</td>
<td>ti</td>
<td>1.78</td>
<td>Mangifera indica</td>
<td>mago</td>
<td>0.3</td>
</tr>
<tr>
<td>Ficus scabra</td>
<td>mati vao</td>
<td>1.78</td>
<td>Musa paradisiaca</td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>Bischofia javanica</td>
<td>o’a</td>
<td>1.34</td>
<td>Psychotria insularum</td>
<td>matalafi</td>
<td>0.3</td>
</tr>
<tr>
<td>Palaquium stehlinii</td>
<td>gasu</td>
<td>1.34</td>
<td>Tarenna sambucina</td>
<td>manunu</td>
<td>0.3</td>
</tr>
<tr>
<td>Alphitonia zizyphoides</td>
<td>toi</td>
<td>1.19</td>
<td>Astronidium pickeringii</td>
<td>matoi</td>
<td>0.15</td>
</tr>
<tr>
<td>Cyathea spp.</td>
<td>olioli</td>
<td>1.19</td>
<td>Calophyllum neo-ebudicum</td>
<td>tamanu</td>
<td>0.15</td>
</tr>
<tr>
<td>Elaeocarpus ulianus</td>
<td></td>
<td>1.19</td>
<td>Cinnamomum verum</td>
<td>tinamoni</td>
<td>0.15</td>
</tr>
<tr>
<td>Theobroma cacao</td>
<td>koko</td>
<td>1.19</td>
<td>Elaeocarpus floridanus</td>
<td>‘a’mati’e</td>
<td>0.15</td>
</tr>
<tr>
<td>Canarium vitiense</td>
<td>ma’ali</td>
<td>1.04</td>
<td>Flacourtia rukam</td>
<td>filimoto</td>
<td>0.15</td>
</tr>
<tr>
<td>Kleinhovia hospita</td>
<td>fu’afu’a</td>
<td>1.04</td>
<td>Garcinia myrtifolia</td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>Planchonella samoensis</td>
<td>mamalava</td>
<td>1.04</td>
<td>Garuga floribunda</td>
<td>manuai vivao, magaui or vi vao</td>
<td>0.15</td>
</tr>
<tr>
<td>Tree unknown</td>
<td></td>
<td>1.04</td>
<td>Hernandia moerenhoutiana</td>
<td>pipi</td>
<td>0.15</td>
</tr>
<tr>
<td>Canarium mafoa</td>
<td>mafoa</td>
<td>0.89</td>
<td>Pometia pinnata</td>
<td>tava</td>
<td>0.15</td>
</tr>
<tr>
<td>Hernandia nymphaeifolia</td>
<td>pu’a,</td>
<td>0.89</td>
<td>Spondias dulcis</td>
<td>vi</td>
<td>0.15</td>
</tr>
<tr>
<td>Planchonella garberi</td>
<td>ala’a</td>
<td>0.89</td>
<td>Syzygium dealatum</td>
<td>asi vai</td>
<td>0.15</td>
</tr>
<tr>
<td>Syzygium inophylloides</td>
<td>asi</td>
<td>0.89</td>
<td>Syzygium samarangense</td>
<td>nonu vao</td>
<td>0.15</td>
</tr>
</tbody>
</table>

* Includes all live trees ≥1 inch in diameter at breast height.
Table A2-3—Number of live trees\(^a\) on forest land, by species and diameter class

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Diameter class (inches)</th>
<th>All classes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.0–9.9</td>
<td>10.0–14.9</td>
</tr>
<tr>
<td>Adenanthera pavonina</td>
<td>25.1</td>
<td>25.1</td>
</tr>
<tr>
<td>Aglaia samoensis</td>
<td>25.1</td>
<td>25.1</td>
</tr>
<tr>
<td>Alphitonia zizyphoides</td>
<td>50.1</td>
<td>29.6</td>
</tr>
<tr>
<td>Artocarpus altilis</td>
<td>50.1</td>
<td>23.4</td>
</tr>
<tr>
<td>Astronidium pickeringii</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Barringtonia samoensis</td>
<td>50.1</td>
<td>23.4</td>
</tr>
<tr>
<td>Bischofia javanica</td>
<td>62.7</td>
<td>36.1</td>
</tr>
<tr>
<td>Buchanania merrillii</td>
<td>75.2</td>
<td>75.2</td>
</tr>
<tr>
<td>Calophyllum neo-ebudicum</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Cananga odorata</td>
<td>100.3</td>
<td>46.8</td>
</tr>
<tr>
<td>Canarium mafoa</td>
<td>25.1</td>
<td>25.1</td>
</tr>
<tr>
<td>Canarium vitense</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Carica papaya</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Cocos nucifera</td>
<td>62.7</td>
<td>36.1</td>
</tr>
<tr>
<td>Cyathea lunulata</td>
<td>25.1</td>
<td>25.1</td>
</tr>
<tr>
<td>Cyathea spp.</td>
<td>62.7</td>
<td>62.7</td>
</tr>
<tr>
<td>Diospyros samoensis</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Dysoxylum maota</td>
<td>213.1</td>
<td>93.2</td>
</tr>
<tr>
<td>Elaeocarpus floridanus</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Elaeocarpus ulianus</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Fagraea berteroana</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Ficus scabra</td>
<td>37.6</td>
<td>27.5</td>
</tr>
<tr>
<td>Ficus tinctoria</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Ficus uniauriculata</td>
<td>25.1</td>
<td>25.1</td>
</tr>
<tr>
<td>Flacourtia rukam</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Garuga floribunda</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Hernandia moerenhoutiana</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Hernandia nymphaefolia</td>
<td>25.1</td>
<td>25.1</td>
</tr>
<tr>
<td>Hibiscus tiliaceus</td>
<td>965.3</td>
<td>299.2</td>
</tr>
<tr>
<td>Inocarpus fagifer</td>
<td>87.8</td>
<td>75.7</td>
</tr>
<tr>
<td>Intsia bijuga</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Kleinhovia hospita</td>
<td>37.6</td>
<td>27.5</td>
</tr>
<tr>
<td>Macaranga harveyana</td>
<td>125.4</td>
<td>78.8</td>
</tr>
<tr>
<td>Mangifera indica</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Morinda citrifolia</td>
<td>37.6</td>
<td>20.7</td>
</tr>
<tr>
<td>Musa spp.</td>
<td>313.4</td>
<td>220.7</td>
</tr>
</tbody>
</table>
Table A2-3—Number of live trees\(^a\) on forest land, by species and diameter class (continued)

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Diameter class (inches)</th>
<th>5.0–9.9</th>
<th>10.0–14.9</th>
<th>15.0–19.9</th>
<th>20.0+</th>
<th>All classes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>SE</td>
<td>Total</td>
<td>SE</td>
<td>Total</td>
<td>SE</td>
</tr>
<tr>
<td>Myristica hypargyraea</td>
<td>50.1</td>
<td>50.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myristica inutilis</td>
<td>777.3</td>
<td>62.7</td>
<td>62.7</td>
<td>44.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neonauclea forsteri</td>
<td>62.7</td>
<td>31.3</td>
<td>37.6</td>
<td>20.7</td>
<td>25.1</td>
<td>25.1</td>
</tr>
<tr>
<td>Palaquium stehlinii</td>
<td>62.7</td>
<td>62.7</td>
<td>50.1</td>
<td>50.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pandanus tectorius</td>
<td>426.2</td>
<td>388.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planchonella garberi</td>
<td>25.1</td>
<td>17.3</td>
<td>50.1</td>
<td>39.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planchonella samoensis</td>
<td>37.6</td>
<td>27.5</td>
<td>37.6</td>
<td>27.5</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Rhizophora mangle</td>
<td>62.7</td>
<td>62.7</td>
<td></td>
<td></td>
<td>37.6</td>
<td>37.6</td>
</tr>
<tr>
<td>Rhus taitensis</td>
<td>25.1</td>
<td>17.3</td>
<td>37.6</td>
<td>20.7</td>
<td>62.7</td>
<td>31.3</td>
</tr>
<tr>
<td>Spondias dulcis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sterculia fanaiho</td>
<td>37.6</td>
<td>27.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syzygium dealatum</td>
<td>12.5</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syzygium inophyloides</td>
<td>25.1</td>
<td>17.3</td>
<td>25.1</td>
<td>25.1</td>
<td>25.1</td>
<td>17.3</td>
</tr>
<tr>
<td>Syzygium samarangense</td>
<td>12.5</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tarenna sambucina</td>
<td>12.5</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminalia richii</td>
<td>12.5</td>
<td>12.5</td>
<td></td>
<td></td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Tree unknown</td>
<td>50.1</td>
<td>50.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Totals may be off because of rounding; estimates are subject to sampling error; SE = sampling error.

\(^a\) Includes all live trees \(\geq 5\) inches in diameter at breast height.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Diameter class (inches)</th>
<th>5.0–9.9</th>
<th>SE</th>
<th>10.0–14.9</th>
<th>Total</th>
<th>SE</th>
<th>15.0–19.9</th>
<th>Total</th>
<th>SE</th>
<th>20.0+</th>
<th>Total</th>
<th>SE</th>
<th>All classes</th>
<th>Total</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenanthera pavonina</td>
<td></td>
<td>86,626</td>
<td>86,626</td>
<td>221,687</td>
<td>221,687</td>
<td></td>
<td>386,314</td>
<td>386,314</td>
<td></td>
<td>24,068</td>
<td>24,068</td>
<td></td>
<td>308,314</td>
<td>308,314</td>
<td></td>
</tr>
<tr>
<td>Aglaia samoensis</td>
<td></td>
<td>24,068</td>
<td>24,068</td>
<td></td>
<td></td>
<td></td>
<td>48,736</td>
<td></td>
<td></td>
<td></td>
<td>48,736</td>
<td></td>
<td>24,068</td>
<td>24,068</td>
<td></td>
</tr>
<tr>
<td>Alphitonia zizyphoides</td>
<td></td>
<td>380,671</td>
<td>224,763</td>
<td>492,470</td>
<td>384,290</td>
<td>672,020</td>
<td>484,804</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,545,161</td>
<td>638,069</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artocarpus altilis</td>
<td></td>
<td>168,994</td>
<td>98,882</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>168,994</td>
<td>98,882</td>
<td></td>
</tr>
<tr>
<td>Astronidium pickeringii</td>
<td></td>
<td>27,953</td>
<td>27,953</td>
<td></td>
<td></td>
<td></td>
<td>300,078</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27,953</td>
<td>27,953</td>
<td></td>
</tr>
<tr>
<td>Barringtonia samoensis</td>
<td></td>
<td>109,983</td>
<td>64,958</td>
<td>630,078</td>
<td>630,078</td>
<td>723,593</td>
<td>723,593</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,463,563</td>
<td>1,351,754</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bischofia javanica</td>
<td></td>
<td>119,521</td>
<td>76,646</td>
<td>326,656</td>
<td>237,718</td>
<td>328,092</td>
<td>328,092</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>774,269</td>
<td>456,854</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buchanania merrillii</td>
<td></td>
<td>300,321</td>
<td>300,321</td>
<td>192,920</td>
<td>192,920</td>
<td>581,732</td>
<td>581,732</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,074,974</td>
<td>1,074,974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calophyllum neo-ebudicum</td>
<td></td>
<td>17,132</td>
<td>17,132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17,132</td>
<td>17,132</td>
<td></td>
</tr>
<tr>
<td>Cananga odorata</td>
<td></td>
<td>317,429</td>
<td>132,751</td>
<td>1,165,112</td>
<td>808,169</td>
<td>915,704</td>
<td>915,704</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,398,245</td>
<td>1,233,271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canarium mafoa</td>
<td></td>
<td>43,533</td>
<td>43,533</td>
<td>190,179</td>
<td>190,179</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>233,712</td>
<td>233,712</td>
<td></td>
</tr>
<tr>
<td>Canarium vitiense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>358,759</td>
<td>358,759</td>
<td></td>
<td>6,312,540</td>
<td>4,700,771</td>
<td>6,671,299</td>
<td>4,846,505</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carica papaya</td>
<td></td>
<td>20,284</td>
<td>20,284</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20,284</td>
<td>20,284</td>
<td></td>
</tr>
<tr>
<td>Cocos nucifera</td>
<td></td>
<td>478,302</td>
<td>287,308</td>
<td>4,733,884</td>
<td>2,775,981</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,791,459</td>
<td>2,791,459</td>
<td></td>
</tr>
<tr>
<td>Cyathea lamulata</td>
<td></td>
<td>40,070</td>
<td>40,070</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40,070</td>
<td>40,070</td>
<td></td>
</tr>
<tr>
<td>Cyathea spp.</td>
<td></td>
<td>102,066</td>
<td>102,066</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102,066</td>
<td>102,066</td>
<td></td>
</tr>
<tr>
<td>Diospyros samoensis</td>
<td></td>
<td>10,864</td>
<td>10,864</td>
<td>419,990</td>
<td>419,990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>430,854</td>
<td>419,658</td>
<td></td>
</tr>
<tr>
<td>Dysoxylum maota</td>
<td></td>
<td>779,699</td>
<td>468,428</td>
<td>1,310,377</td>
<td>535,145</td>
<td>975,983</td>
<td>772,597</td>
<td>6,802,763</td>
<td>4,764,186</td>
<td>9,688,821</td>
<td>4,843,429</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elaeocarpus floridanus</td>
<td></td>
<td></td>
<td></td>
<td>170,744</td>
<td>170,744</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>170,744</td>
<td>170,744</td>
<td></td>
</tr>
<tr>
<td>Elaeocarpus ulianus</td>
<td></td>
<td>208,557</td>
<td>208,557</td>
<td>1,802,138</td>
<td>1,443,961</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,010,695</td>
<td>1,645,519</td>
<td></td>
</tr>
<tr>
<td>Fagraea berteroana</td>
<td></td>
<td>89,374</td>
<td>89,374</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>89,374</td>
<td>89,374</td>
<td></td>
</tr>
<tr>
<td>Ficus scabra</td>
<td></td>
<td>109,468</td>
<td>94,423</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>103,524</td>
<td>97,262</td>
<td></td>
</tr>
<tr>
<td>Ficus tinctoria</td>
<td></td>
<td>30,612</td>
<td>30,612</td>
<td>175,574</td>
<td>175,574</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>206,187</td>
<td>206,187</td>
<td></td>
</tr>
<tr>
<td>Ficus uniauriculata</td>
<td></td>
<td>38,754</td>
<td>38,754</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38,754</td>
<td>38,754</td>
<td></td>
</tr>
<tr>
<td>Flacourtia rukam</td>
<td></td>
<td>28,484</td>
<td>28,484</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28,484</td>
<td>28,484</td>
<td></td>
</tr>
<tr>
<td>Garuga floribunda</td>
<td></td>
<td>583,965</td>
<td>583,965</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>583,965</td>
<td>583,965</td>
<td></td>
</tr>
<tr>
<td>Hernandia moerenhoutiana</td>
<td></td>
<td>128,967</td>
<td>128,967</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>128,967</td>
<td>128,967</td>
<td></td>
</tr>
</tbody>
</table>
Table A2-4—Estimated net volume of live trees on forest land, by species group and diameter class (continued)

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Diameter class (inches)</th>
<th>Cubic feet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.0–9.9</td>
<td>10.0–14.9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>SE</td>
</tr>
<tr>
<td>Hernandia nymphaefolia</td>
<td>176,277</td>
<td>176,277</td>
</tr>
<tr>
<td>Hibiscus tiliaceus</td>
<td>3,242,136</td>
<td>1,060,931</td>
</tr>
<tr>
<td>Inocarpus fagifer</td>
<td>289,158</td>
<td>256,919</td>
</tr>
<tr>
<td>Intsia bijuga</td>
<td>44,178</td>
<td>44,178</td>
</tr>
<tr>
<td>Kleinhovia hospita</td>
<td>296,308</td>
<td>207,643</td>
</tr>
<tr>
<td>Macaranga harveyana</td>
<td>489,494</td>
<td>322,306</td>
</tr>
<tr>
<td>Mangifera indica</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Morinda cirrifolia</td>
<td>65,786</td>
<td>39,320</td>
</tr>
<tr>
<td>Musa spp.</td>
<td>307,877</td>
<td>202,046</td>
</tr>
<tr>
<td>Myristica hypargyraea</td>
<td>171,145</td>
<td>171,145</td>
</tr>
<tr>
<td>Myristica imitis</td>
<td>1,007,607</td>
<td>1,007,607</td>
</tr>
<tr>
<td>Neonauclea forsteri</td>
<td>307,877</td>
<td>202,046</td>
</tr>
<tr>
<td>Palacquium stehlinii</td>
<td>307,877</td>
<td>202,046</td>
</tr>
<tr>
<td>Pandanus tectorius</td>
<td>733,557</td>
<td>653,460</td>
</tr>
<tr>
<td>Planchonella garberi</td>
<td>39,189</td>
<td>27,101</td>
</tr>
<tr>
<td>Planchonella samoensis</td>
<td>39,189</td>
<td>27,101</td>
</tr>
<tr>
<td>Rhizophora mangle</td>
<td>125,859</td>
<td>125,859</td>
</tr>
<tr>
<td>Rhus taitensis</td>
<td>20,219</td>
<td>18,952</td>
</tr>
<tr>
<td>Spondias dulcis</td>
<td>45,193</td>
<td>34,120</td>
</tr>
<tr>
<td>Sterculia fanaiho</td>
<td>13,749</td>
<td>13,749</td>
</tr>
<tr>
<td>Syzygium dealatum</td>
<td>380,531</td>
<td>309,481</td>
</tr>
<tr>
<td>Scientific name</td>
<td>5.0–9.9</td>
<td>10.0–14.9</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>SE</td>
</tr>
<tr>
<td>Syzygium samarangense</td>
<td>38,922</td>
<td>38,922</td>
</tr>
<tr>
<td>Tarenna sambucina</td>
<td>57,282</td>
<td>57,282</td>
</tr>
<tr>
<td>Terminalia richii</td>
<td>27,581</td>
<td>27,581</td>
</tr>
<tr>
<td>Total hardwoods</td>
<td>604,160</td>
<td>333,692</td>
</tr>
<tr>
<td>Total other</td>
<td>14,419,865</td>
<td>2,572,804</td>
</tr>
<tr>
<td>Tree unknown</td>
<td>98,452</td>
<td>98,452</td>
</tr>
<tr>
<td>All species</td>
<td>15,122,477</td>
<td>2,697,053</td>
</tr>
</tbody>
</table>

Note: Totals may be off because of rounding; estimates are subject to sampling error; SE = standard error.

a Includes all live trees ≥5 inches in diameter at breast height.
Table A2-5—Estimated volume of all live trees\(^a\) on forest land by diameter class

<table>
<thead>
<tr>
<th>Diameter class (inches)</th>
<th><5</th>
<th>5.0–10.9</th>
<th>11.0–19.9</th>
<th>20.0+</th>
<th>All sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>SE</td>
<td>Total</td>
<td>SE</td>
<td>Total</td>
</tr>
<tr>
<td>Gross volume</td>
<td>11,088</td>
<td>1,599</td>
<td>23,198</td>
<td>3,928</td>
<td>27,073</td>
</tr>
<tr>
<td>Net volume</td>
<td>—</td>
<td>—</td>
<td>18,539</td>
<td>3,213</td>
<td>25,201</td>
</tr>
<tr>
<td>Sound volume</td>
<td>—</td>
<td>—</td>
<td>19,054</td>
<td>3,369</td>
<td>25,643</td>
</tr>
</tbody>
</table>

Note: Totals may be off because of rounding; estimates are subject to sampling error; SE = standard error.
\(^a\) Includes all live trees ≥1 inches in diameter at breast height.

Table A2-6—Aboveground biomass and carbon of live\(^a\) and dead trees\(^b\) on forest land, by diameter class

<table>
<thead>
<tr>
<th>Diameter class (inches)</th>
<th><5</th>
<th>5.0–9.9</th>
<th>10.0–14.9</th>
<th>15.0–19.9</th>
<th>20.0+</th>
<th>All classes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>SE</td>
<td>Total</td>
<td>SE</td>
<td>Total</td>
<td>SE</td>
</tr>
<tr>
<td>Live tree biomass</td>
<td>228</td>
<td>37</td>
<td>448</td>
<td>77</td>
<td>581</td>
<td>120</td>
</tr>
<tr>
<td>Dead tree biomass</td>
<td>—</td>
<td>—</td>
<td>24</td>
<td>7</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>Live tree carbon</td>
<td>114</td>
<td>19</td>
<td>224</td>
<td>38</td>
<td>290</td>
<td>60</td>
</tr>
<tr>
<td>Dead tree carbon</td>
<td>—</td>
<td>—</td>
<td>12</td>
<td>4</td>
<td>13</td>
<td>7</td>
</tr>
</tbody>
</table>

Note: Totals may be off because of rounding; estimates are subject to sampling error; SE = standard error.
\(^a\) Includes all live trees ≥1 inch in diameter at breast height.
\(^b\) Includes all dead trees ≥5 inches in diameter at breast height; smaller dead trees were not measured in this inventory.
<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Diameter class (inches)</th>
<th>1.0–5.0</th>
<th>5.0–9.9</th>
<th>10.0–14.9</th>
<th>15.0–19.9</th>
<th>20.0+</th>
<th>All classes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>SE</td>
<td></td>
<td>Total</td>
<td>SE</td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Adenanthera pavonina</td>
<td>—</td>
<td>—</td>
<td></td>
<td>4,220</td>
<td>—</td>
<td></td>
<td>9,909</td>
</tr>
<tr>
<td>Aglata samoensis</td>
<td>1,183</td>
<td>1,183</td>
<td>1,970</td>
<td>1970</td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Alphitonia zizyphoides</td>
<td>—</td>
<td>—</td>
<td></td>
<td>7,343</td>
<td>4,256</td>
<td></td>
<td>10,142</td>
</tr>
<tr>
<td>Artocarpus altlis</td>
<td>10,189</td>
<td>10,189</td>
<td>6,605</td>
<td>3,431</td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Astronium pickeringii</td>
<td>—</td>
<td>—</td>
<td></td>
<td>734</td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Barringtonia samoensis</td>
<td>2,895</td>
<td>2,752</td>
<td>3,314</td>
<td>1,647</td>
<td>18,156</td>
<td>18,156</td>
<td>11,661</td>
</tr>
<tr>
<td>Bischofia javanica</td>
<td>530</td>
<td>530</td>
<td>9,430</td>
<td>6,516</td>
<td>13,579</td>
<td>9,407</td>
<td>12,939</td>
</tr>
<tr>
<td>Buchanania merrillii</td>
<td>3,820</td>
<td>3,820</td>
<td>10,929</td>
<td>9,378</td>
<td>5,829</td>
<td>5,829</td>
<td>9,609</td>
</tr>
<tr>
<td>Calophyllum neo-ebudicum</td>
<td>—</td>
<td>—</td>
<td>1,035</td>
<td>1,035</td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Cananga odorata</td>
<td>1,681</td>
<td>1,681</td>
<td>13,665</td>
<td>5,935</td>
<td>34,725</td>
<td>24,109</td>
<td>24,023</td>
</tr>
<tr>
<td>Canarium mafoa</td>
<td>4,757</td>
<td>4,757</td>
<td>1,520</td>
<td>1,520</td>
<td>4,307</td>
<td>4,307</td>
<td>—</td>
</tr>
<tr>
<td>Canarium ovatum</td>
<td>—</td>
<td>—</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Canarium vitiense</td>
<td>763</td>
<td>763</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Carica papaya</td>
<td>1,920</td>
<td>1,920</td>
<td>461</td>
<td>461</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cassia fistula</td>
<td>—</td>
<td>—</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Cinnamomum verum</td>
<td>578</td>
<td>578</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Cocos nucifera</td>
<td>—</td>
<td>—</td>
<td>13,912</td>
<td>8,632</td>
<td>134,516</td>
<td>73,918</td>
<td>—</td>
</tr>
<tr>
<td>Cordyline fruticosa</td>
<td>2,208</td>
<td>1,922</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Cyathea lamulata</td>
<td>2,129</td>
<td>1,473</td>
<td>1,013</td>
<td>1,013</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cyathaea spp.</td>
<td>3,864</td>
<td>3,864</td>
<td>3,913</td>
<td>2,728</td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Diospyros samoensis</td>
<td>—</td>
<td>—</td>
<td>597</td>
<td>597</td>
<td>16,720</td>
<td>16,720</td>
<td>—</td>
</tr>
<tr>
<td>Dysoxylum maota</td>
<td>5,404</td>
<td>3,654</td>
<td>35,509</td>
<td>16,723</td>
<td>61,584</td>
<td>24,959</td>
<td>38,767</td>
</tr>
<tr>
<td>Dysoxylum samoense</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Elaeocarpus floridanus</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4,745</td>
<td>4,745</td>
</tr>
<tr>
<td>Elaeocarpus ulianus</td>
<td>—</td>
<td>—</td>
<td>3,217</td>
<td>3,217</td>
<td>38,829</td>
<td>24,497</td>
<td>—</td>
</tr>
</tbody>
</table>

Table A2-7—Aboveground biomass of live trees on forest land, by species and diameter class
Table A2-7—Aboveground biomass of live trees\(^a\) on forest land, by species and diameter class (continued)

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>1.0–5.0</th>
<th></th>
<th>5.0–9.9</th>
<th></th>
<th>10.0–14.9</th>
<th></th>
<th>15.0–19.9</th>
<th></th>
<th>20.0+</th>
<th></th>
<th>All classes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>SE</td>
<td>Total</td>
<td>SE</td>
<td>Total</td>
<td>SE</td>
<td>Total</td>
<td>SE</td>
<td>Total</td>
<td>SE</td>
<td>Total</td>
<td>SE</td>
</tr>
<tr>
<td>Fagraea bertoliana</td>
<td>—</td>
<td>—</td>
<td>4,468</td>
<td>3,411</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4,468</td>
<td>3,411</td>
</tr>
<tr>
<td>Ficus obliqua</td>
<td>—</td>
</tr>
<tr>
<td>Ficus scabra</td>
<td>6,291</td>
<td>4,624</td>
<td>2,894</td>
<td>2,482</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>10,241</td>
<td>10,241</td>
</tr>
<tr>
<td>Ficus tinctoria</td>
<td>—</td>
<td>—</td>
<td>625</td>
<td>625</td>
<td>3,470</td>
<td>3,470</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4,094</td>
<td>4,094</td>
</tr>
<tr>
<td>Ficus uniauriculata</td>
<td>—</td>
<td>—</td>
<td>803</td>
<td>803</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>803</td>
<td>803</td>
</tr>
<tr>
<td>Flacourtia rukam</td>
<td>—</td>
<td>—</td>
<td>1,021</td>
<td>1,021</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1,021</td>
<td>1,021</td>
</tr>
<tr>
<td>Garcinia myrtifolia</td>
<td>8,546</td>
<td>8,546</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>8,546</td>
<td>8,546</td>
</tr>
<tr>
<td>Garuga floribunda</td>
<td>—</td>
<td>—</td>
<td>3,043</td>
<td>3,043</td>
<td>6,990</td>
<td>6,990</td>
<td>7,664</td>
<td>7,664</td>
<td>11,465</td>
<td>11,465</td>
<td>29,161</td>
<td>29,161</td>
</tr>
<tr>
<td>Glochidion ramiflorum</td>
<td>1,128</td>
<td>910</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1,128</td>
<td>910</td>
</tr>
<tr>
<td>Hernandia moerenhoutiana</td>
<td>—</td>
<td>—</td>
<td>1,370</td>
<td>1,370</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1,370</td>
<td>1,370</td>
</tr>
<tr>
<td>Hernandia nymphaefolia</td>
<td>—</td>
<td>—</td>
<td>3,043</td>
<td>3,043</td>
<td>6,990</td>
<td>6,990</td>
<td>7,664</td>
<td>7,664</td>
<td>11,465</td>
<td>11,465</td>
<td>29,161</td>
<td>29,161</td>
</tr>
<tr>
<td>Hibiscus tiliaceus</td>
<td>38,219</td>
<td>16,001</td>
<td>120,213</td>
<td>40,818</td>
<td>78,089</td>
<td>36,473</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>236,521</td>
<td>76,671</td>
</tr>
<tr>
<td>Intsia bijuga</td>
<td>3,663</td>
<td>3,663</td>
<td>1,978</td>
<td>1,978</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5,642</td>
<td>5,642</td>
</tr>
<tr>
<td>Kleinhovia hospita</td>
<td>9,932</td>
<td>9,932</td>
<td>9,249</td>
<td>6,446</td>
<td>6,027</td>
<td>6,027</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>25,207</td>
<td>21,352</td>
</tr>
<tr>
<td>Macaranga grayana</td>
<td>—</td>
</tr>
<tr>
<td>Macaranga harveyana</td>
<td>1,650</td>
<td>1,650</td>
<td>13,399</td>
<td>7,571</td>
<td>4,912</td>
<td>3,455</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>19,961</td>
<td>10,867</td>
</tr>
<tr>
<td>Mangifera indica</td>
<td>—</td>
<td>—</td>
<td>1,150</td>
<td>1,150</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>11,195</td>
<td>11,195</td>
<td>12,345</td>
<td>12,345</td>
</tr>
<tr>
<td>Morinda citrifolia</td>
<td>7,541</td>
<td>5,394</td>
<td>3,006</td>
<td>1,770</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>10,547</td>
<td>6,217</td>
</tr>
<tr>
<td>Musa paradisiaca</td>
<td>4,725</td>
<td>4,725</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4,725</td>
<td>4,725</td>
</tr>
<tr>
<td>Musa spp.</td>
<td>4,111</td>
<td>4,111</td>
<td>17,243</td>
<td>11,291</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>21,354</td>
<td>14,846</td>
</tr>
<tr>
<td>Myristica imutilus</td>
<td>53,709</td>
<td>19,586</td>
<td>87,081</td>
<td>28,828</td>
<td>31,035</td>
<td>18,770</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>171,826</td>
<td>57,875</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Diameter class (inches)</td>
<td>Tons</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Neisosperma oppositifolia</td>
<td></td>
</tr>
<tr>
<td>Neonauclea forsteri</td>
<td>1.0–5.0</td>
<td>10,093</td>
<td>5,287</td>
<td>15,198</td>
<td>9,227</td>
<td>27,052</td>
<td>27,052</td>
<td>143,075</td>
<td>115,791</td>
<td>195,418</td>
<td>144,491</td>
<td></td>
</tr>
<tr>
<td>Palaquium stehlinii</td>
<td>5.0–9.9</td>
<td>8,480</td>
<td>8,480</td>
<td>14,804</td>
<td>14,804</td>
<td>23,284</td>
<td>23,284</td>
<td>23,284</td>
<td>23,284</td>
<td>23,284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pandanus tectorius</td>
<td>10.0–14.9</td>
<td>14,821</td>
<td>13,492</td>
<td>14,804</td>
<td>14,804</td>
<td>31,562</td>
<td>31,562</td>
<td>31,562</td>
<td>31,562</td>
<td>31,562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipturus argenteus</td>
<td>15.0–19.9</td>
<td></td>
</tr>
<tr>
<td>Planchonella garberi</td>
<td>20.0+</td>
<td></td>
</tr>
<tr>
<td>Planchonella samoensis</td>
<td>All classes</td>
<td>228,007</td>
<td>37,169</td>
<td>471,206</td>
<td>78,370</td>
<td>607,226</td>
<td>122,131</td>
<td>310,892</td>
<td>68,180</td>
<td>804,866</td>
<td>303,261</td>
<td>2,422,196</td>
</tr>
</tbody>
</table>

Note: Totals may be off because of rounding; estimates are subject to sampling error; SE = standard error.

Includes all live trees ≥1 inch in diameter at breast height.
Table A2-8—Average understory vegetation cover and number of Forest Inventory and Analysis plots where the species occurred

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name</th>
<th>Average cover</th>
<th>Number of plots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhizophora mangle</td>
<td>American mangrove</td>
<td>15.7</td>
<td>1</td>
</tr>
<tr>
<td>Astronidium pickeringii</td>
<td></td>
<td>11.2</td>
<td>1</td>
</tr>
<tr>
<td>Cyathea spp.</td>
<td>tree fern</td>
<td>11.2</td>
<td>1</td>
</tr>
<tr>
<td>Cyrtandra pulchella</td>
<td>cyrtandra</td>
<td>11.2</td>
<td>1</td>
</tr>
<tr>
<td>Procris pedunculata</td>
<td>fua lole</td>
<td>11.2</td>
<td>1</td>
</tr>
<tr>
<td>Weinmannia affinis</td>
<td></td>
<td>11.2</td>
<td>1</td>
</tr>
<tr>
<td>Cananga odorata</td>
<td>ilang-ilang, moso’oi</td>
<td>10.5</td>
<td>1</td>
</tr>
<tr>
<td>Neonauclea forsteri</td>
<td>afa</td>
<td>10.5</td>
<td>1</td>
</tr>
<tr>
<td>Terminalia richii</td>
<td>malili</td>
<td>10.5</td>
<td>1</td>
</tr>
<tr>
<td>Tree unknown</td>
<td>other or unknown live tree</td>
<td>10.2</td>
<td>2</td>
</tr>
<tr>
<td>Carica papaya</td>
<td>papaya</td>
<td>9.1</td>
<td>1</td>
</tr>
<tr>
<td>Allophylus timorensis</td>
<td>ebeludes, chebeludes</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Baccaurea taitensis</td>
<td>saitamu</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Canarium mafoa</td>
<td>mafoa</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Crossostylis biflora</td>
<td>saitamu</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Dysoxylum huntii</td>
<td>maota mea</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Elaeocarpus uliamus</td>
<td>elaeocarpus a’amatie</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Ficus obliqua</td>
<td>aoa</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Ficus tinctoria</td>
<td>mati</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Intsia bijuga</td>
<td>ifilele</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Meryta macrophylla</td>
<td>fagufagu</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Palaquium stehlinii</td>
<td>gasu</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Securinega flexuosa</td>
<td>poumuli</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Syzygium dealatum</td>
<td>asi vai</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Syzygium samarangense</td>
<td>nonu vao</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Musa paradisiaca</td>
<td>fa’i French plantain</td>
<td>8.4</td>
<td>1</td>
</tr>
<tr>
<td>Tarenna sambucina</td>
<td>manunu</td>
<td>8.4</td>
<td>1</td>
</tr>
<tr>
<td>Bischofia javanica</td>
<td>Javanese bishopwood, koka</td>
<td>8.1</td>
<td>2</td>
</tr>
<tr>
<td>Cocos nucifera</td>
<td>coconut palm</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Cyathea lunulata</td>
<td>olioli</td>
<td>7.9</td>
<td>4</td>
</tr>
<tr>
<td>Elattostachys falcata</td>
<td>taputoi</td>
<td>7.9</td>
<td>2</td>
</tr>
<tr>
<td>Syzygium inophyloides</td>
<td>asi</td>
<td>7.8</td>
<td>7</td>
</tr>
<tr>
<td>Glochidion cuspidatum</td>
<td>masame</td>
<td>7.4</td>
<td>2</td>
</tr>
<tr>
<td>Myristica inutilis</td>
<td></td>
<td>7.4</td>
<td>11</td>
</tr>
<tr>
<td>Calophyllum inophyllum</td>
<td>Alexandrian laurel, fetau</td>
<td>7.3</td>
<td>2</td>
</tr>
<tr>
<td>Canarium vitiense</td>
<td>maali</td>
<td>7.3</td>
<td>3</td>
</tr>
<tr>
<td>Ficus godeffroyi</td>
<td>mati</td>
<td>7.3</td>
<td>2</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Common name</td>
<td>Average cover</td>
<td>Number of plots</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Ficus uniauriculata</td>
<td>mati</td>
<td>7.3</td>
<td>2</td>
</tr>
<tr>
<td>Polyscias samoensis</td>
<td>tagitagí</td>
<td>7.2</td>
<td>5</td>
</tr>
<tr>
<td>Ficus scabra</td>
<td>mati vao</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Psychotria insularum</td>
<td>matalafi</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Barringtonia samoensis</td>
<td>falaga</td>
<td>6.8</td>
<td>4</td>
</tr>
<tr>
<td>Diospyros samoensis</td>
<td>auauli</td>
<td>6.8</td>
<td>9</td>
</tr>
<tr>
<td>Inocarpus fagifer</td>
<td>ifi</td>
<td>6.8</td>
<td>4</td>
</tr>
<tr>
<td>Samanea saman</td>
<td>raintree</td>
<td>6.7</td>
<td>1</td>
</tr>
<tr>
<td>Theobroma cacao</td>
<td>cacao</td>
<td>6.7</td>
<td>1</td>
</tr>
<tr>
<td>Cordyline fruticosa</td>
<td>ti plant</td>
<td>6.6</td>
<td>11</td>
</tr>
<tr>
<td>Aglaia samoensis</td>
<td>laga ali</td>
<td>6.5</td>
<td>3</td>
</tr>
<tr>
<td>Artocarpus altulis</td>
<td>breadfruit, ulu</td>
<td>6.5</td>
<td>1</td>
</tr>
<tr>
<td>Arytera brackenridgei</td>
<td>taputoi</td>
<td>6.5</td>
<td>1</td>
</tr>
<tr>
<td>Dysoxylum maota</td>
<td>maota</td>
<td>6.5</td>
<td>10</td>
</tr>
<tr>
<td>Elaecarpus floridanus</td>
<td><code>a</code>mati`e</td>
<td>6.5</td>
<td>1</td>
</tr>
<tr>
<td>Elaecarpus grandis</td>
<td>sapatua</td>
<td>6.5</td>
<td>1</td>
</tr>
<tr>
<td>Macaranga harveyana</td>
<td>lau pata</td>
<td>6.5</td>
<td>1</td>
</tr>
<tr>
<td>Morinda citrifolia</td>
<td>Indian mulberry, noni</td>
<td>6.5</td>
<td>8</td>
</tr>
<tr>
<td>Musa spp.</td>
<td>fa`i</td>
<td>6.5</td>
<td>1</td>
</tr>
<tr>
<td>Pandanus tectorius</td>
<td>Tahitian screwpine</td>
<td>6.5</td>
<td>1</td>
</tr>
<tr>
<td>Syzygium samoense</td>
<td>fena vao</td>
<td>6.5</td>
<td>1</td>
</tr>
<tr>
<td>Barringtonia asiatica</td>
<td>sea putat</td>
<td>6.4</td>
<td>1</td>
</tr>
<tr>
<td>Dysoxylum samoense</td>
<td>mamala</td>
<td>6.4</td>
<td>1</td>
</tr>
<tr>
<td>Hernandia moerenhoutiana</td>
<td>pipi</td>
<td>6.4</td>
<td>2</td>
</tr>
<tr>
<td>Flacourtia rukam</td>
<td>filimoto</td>
<td>6.2</td>
<td>3</td>
</tr>
<tr>
<td>Planchnella samoensis</td>
<td>mamalava</td>
<td>6.2</td>
<td>3</td>
</tr>
<tr>
<td>Calophyllum neo-ebudicum</td>
<td>tamanu</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Pometia pinnata</td>
<td>tava</td>
<td>5.6</td>
<td>1</td>
</tr>
<tr>
<td>Sterculia fanaiho</td>
<td>fanaio</td>
<td>5.5</td>
<td>2</td>
</tr>
<tr>
<td>Garuga floribunda</td>
<td>manuau vivao</td>
<td>5.1</td>
<td>1</td>
</tr>
<tr>
<td>Homalanthus nutans</td>
<td>fanuamamala</td>
<td>5.1</td>
<td>1</td>
</tr>
<tr>
<td>Cinnamomum verum</td>
<td>cinnamon</td>
<td>4.9</td>
<td>1</td>
</tr>
<tr>
<td>Dendrocnide spp.</td>
<td></td>
<td>4.9</td>
<td>1</td>
</tr>
<tr>
<td>Manihot spp.</td>
<td>manihot, cassava</td>
<td>4.9</td>
<td>1</td>
</tr>
<tr>
<td>Cerbera manghas</td>
<td>leva</td>
<td>4.8</td>
<td>3</td>
</tr>
<tr>
<td>Buchanania merrillii</td>
<td>gasu</td>
<td>4.3</td>
<td>1</td>
</tr>
</tbody>
</table>
Glossary

abiotic—Pertaining to nonliving factors such as temperature, moisture, and wind.

aerial photography—Imagery acquired from an aerial platform (typically aircraft or helicopter) by means of a specialized large-format camera with well-defined optical characteristics. The geometry of the aircraft orientation at the time of image acquisition is also recorded. The resultant photograph will be of known scale, positional accuracy, and precision. Aerial photography for natural resource use is usually either natural color or color-infrared, and is film-based or acquired using digital electronic sensors.

aspect—Compass direction that a slope faces.

biodiversity—Variety and variability among living organisms and the ecological complexes in which they occur. Diversity can be defined as the number of different items and their relative frequencies. http://www.epa.gov/OCEPAterms/bterms.html (5 January 2015).

biomass—The aboveground weight of wood and bark in live trees 1.0 inch diameter at breast height (d.b.h.) and larger from the ground to the tip of the tree, excluding all foliage. The weight of wood and bark in lateral limbs, secondary limbs, and twigs under 0.5 inch in diameter at the point of occurrence on sapling-size trees is included in but is excluded on poletimber and sawtimber-sized trees. Biomass is typically expressed as green or oven-dry weight and the units are tons.

bole—Trunk or main stem of a tree.

damage—Damage to trees caused by biotic agents such as insects, diseases, and animals or abiotic agents such as weather, fire, or mechanical equipment.

diameter at breast height (d.b.h.)—The diameter of a tree stem, located at 4.5 feet above the ground (breast height) on the uphill side of a tree. The point of diameter measurement may vary on abnormally formed trees (USDA FS 2006).

disturbance—Any relatively discrete event in time that disrupts ecosystem, community, or population structure and changes resources, substrate availability, or the physical environment (Helms 1998).

ecosystem—A spatially explicit, relatively homogeneous unit of the Earth that includes all interacting organisms and components of the abiotic environment within its boundaries. An ecosystem can be of any size: a log, a pond, a field, a forest, or the Earth’s biosphere (Helms 1998).

elevation—Height above a fixed reference point, often the mean sea level.
erosion—The wearing away of the land surface by running water, wind, ice, or other geological agents.

fixed-radius plot—A circular sampled area with a specified radius in which all trees of a given size, shrubs, and other items are tallied (USDA FS 2006).

forb—A broad-leaved herbaceous plant, as distinguished from grasses, shrubs, and trees (USDA FS 2006).

forest land—Land that is at least 10 percent stocked by forest trees of any size, or land formerly having such tree cover, and not currently developed for a nonforest use. (USDA FS 2006).

forest type—A classification of forest land based on and named for the tree species that forms the plurality of live-tree stocking (USDA FS 2006).

forest type group—A combination of forest types that share closely associated species or site requirements (USDA FS 2006).

graminoid—Grasses (family Gramineae or Poaceae) and grasslike plants such as sedges (family Cyperaceae) and rushes (family Juncaceae).

glossary

grassland—Land on which the vegetation is dominated by grasses, grasslike plants, or forbs.

invasive plant—A plant that is not native to the ecosystem under consideration and that causes or is likely to cause economic or environmental harm or harm to human, animal, or plant health. http://www.invasivespeciesinfo.gov/docs/council/isacdef.pdf. (5 January 2015).

live trees—All living trees, including all size classes, all tree classes, and both commercial and noncommercial species listed in the FIA field manual (USDA FS 2006).

mortality—The death of trees from natural causes, or subsequent to incidents such as storms, wildfire, or insect and disease epidemics (Helms 1998).

native species—Plant species that were native to an American region prior to Euro-American settlement. For vascular plants, they are the species that are not present on the USDA Natural Resources Conservation Service (NRCS) (2000) list of nonnative species (see nonnative species) (USDA NRCS 2000).

nonforest land—Land that has never supported forests or formerly was forested and currently is developed for nonforest uses. Included are lands used for agricultural crops, residential areas, and constructed roads. The area must be at least 1.0 ac and 120.0 ft wide.
nonnative species—Plant species that were introduced to America subsequent to Euro-American settlement. Nonnative vascular plants are present on the USDA Natural Resources Conservation Service list of nonnative species (USDA NRCS 2000).

nontimber forest products (NTFP)—Species harvested from forests for reasons other than production of timber commodities.

ownership—A legal entity having an ownership interest in land, regardless of the number of people involved. An ownership may be an individual; a combination of persons; a legal entity such as corporation, partnership, club, or trust; or a public agency. An ownership has control of a parcel or group of parcels of land (USDA FS 2006).

pathogen—An organism or virus directly capable of causing disease.

regeneration—The established progeny from a parent plant, seedlings or saplings existing in a stand, or the act of renewing tree cover by establishing young trees naturally or artificially. May be artificial (direct seeding or planting) or natural (natural seeding, coppice, or root suckers) (adapted from Helms 1998).

remote sensing—Capture of information about the Earth from a distant vantage point. The term is often associated with satellite imagery but also applies to aerial photography, airborne digital sensors, ground-based detectors, and other devices.

reserved forest land—Land permanently reserved from wood products utilization through statute or administrative designation. Examples include national forest wilderness areas and national parks and monuments (USDA FS 2006).

sampling error—Difference between a population value and a sample estimate that is attributable to the sample, as distinct from errors due to bias in estimation, errors in observation, etc. Sampling error is measured as the standard error of the sample estimate (Helms 1998).

sapling—A live tree 1.0 to 4.9 inches in diameter (USDA FS 2006).

seedlings—Live trees <1.0 in diameter at breast height and at least 6 inches in height (softwoods) or 12 in in height (hardwoods) (USDA FS 2006).

shrub—Perennial, multistemmed woody plant, usually less than 13 to 16 ft in height, although under certain environmental conditions shrubs may be single-stemmed or taller than 16 ft. Includes succulents (e.g., cacti) (USDA FS 2006).
slope—Measure of change in surface value over distance, expressed in degrees or as a percentage (Helms 1998).

snag—Standing dead tree ≥5 in diameter at breast height and ≥4.5 ft in length, with a lean of <45 degrees. Dead trees leaning more than 45 degrees are considered to be down woody material (DWM). Standing dead material shorter than 4.5 feet are considered stumps (USDA FS 2006).

species group—A collection of species used for reporting purposes (USDA FS 2006).

stand size class—A classification of stands based on tree size. Large diameter stands have the majority of trees at least 11.0 inches diameter at breast height (d.b.h.) for hardwoods and 9.0 inches d.b.h. for softwoods; medium diameter stands have the majority of trees at least 5.0 inches d.b.h. but not as large as large diameter trees; and small diameter stands have the majority of trees less than 5.0 inches d.b.h.

stratification—A statistical tool used to reduce the variance of the attributes of interest by partitioning the population into homogenous strata (Bechtold and Patterson 2005).

succession—The gradual supplanting of one community of plants by another (Helms 1998).

terrestrial—Of or relating to the Earth or its inhabitants; of or relating to land as distinct from air or water. http://www.merriam-webster.com/dictionary/terrestrial. (5 January 2015).

transect—A narrow sample strip or a measured line laid out through vegetation chosen for study (Helms 1998).

tree—A woody perennial plant, typically large, with a single well-defined stem carrying a more or less definite crown; sometimes defined as attaining a minimum diameter of 3 inches and a minimum height of 15 ft at maturity. For FIA, any plant on the tree list in the current field manual is measured as a tree (USDA FS 2006).

understory—All forest vegetation growing under an overstory (Helms 1998).
<table>
<thead>
<tr>
<th>Pacific Northwest Research Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
</tr>
<tr>
<td>Telephone</td>
</tr>
<tr>
<td>Publication requests</td>
</tr>
<tr>
<td>FAX</td>
</tr>
<tr>
<td>E-mail</td>
</tr>
<tr>
<td>Mailing address</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>