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1. Introduction 

The ultra-wideband (UWB) radar technology has many applications to sensing 
scenarios where high resolution and typically low microwave frequencies are 
required, such as sensing through the wall, ground, or foliage penetrating radar. The 
US Army Research Laboratory has investigated this technology for more than 2 
decades, with an emphasis on radar imaging applications. 

A previous study by this author1 suggested that UWB waveforms are not the best 
choice for Doppler radar processing due to the issue of target range migration 
during the integration interval. However, more recent investigations2,3 have 
demonstrated that this problem can be overcome by the correct choice of the 
matched filter in the case of UWB waveforms. While the ideas, mathematical 
derivations, and numerical examples in this note were developed independently, 
they are very similar to the results already published by Le Chevalier2 and He et 
al.3 Although not entirely original, this note was written mainly as an update to the 
conclusions of our previous work.1 Additionally, we include a discussion of the 
computational aspects of this technique as well as a detailed account of the 
wideband ambiguity function (AF) and related Doppler ambiguity issues, which, to 
our knowledge, have not been published elsewhere.  

This report is organized as follows. In Section 2, we develop the theory behind the 
new Doppler processing technique using UWB waveforms. Section 3 presents a 
simple numerical example and compares the new method with the conventional 
Doppler processing approach. In Section 4, we discuss both the computational 
aspects of implementing the wideband matched filter and the issue of Doppler 
ambiguities in the context of the new processing scheme. We finalize with 
conclusions in Section 5. 

2. Theoretical Description 

The following symbols are used in this and the following sections: 

p – complex envelope of the transmitted waveform in the time domain 

P – transmitted waveform envelope spectrum (frequency domain) 

x – transmitted waveform (complex form) 

y – received waveform (complex form) 

z – demodulated received waveform (complex form) 
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s – 2-D received signal in the fast time domain 

S – 2-D received signal in the frequency domain 

Q – phase factor in the 2-D point target response 

RDM – 2-D range-Doppler map 

t – time (in general) 

tf – fast time 

ts – slow time 

Tr – pulse repetition interval 

TCPI – coherent processing interval 

τ – received waveform delay 

r – target range 

R – target range in the middle of the coherent processing interval (CPI) 

f – RF frequency (Fourier pair of fast time) 

f0 – carrier frequency 

fd – Doppler frequency 

B – pulse bandwidth 

v – radial velocity of the target 

c – speed of light 

ρ – variable representing the Fourier pair of range (R) 

u – variable representing the Fourier pair of velocity 

δfd – Doppler frequency resolution 

δv – velocity resolution 

δR – range resolution 

Typically, Doppler processing in radar consists of creating range-Doppler (R/D) 
maps—these are 2-D reflectivity maps of the scene under investigation by the radar 
sensor, plotted as a function of the range and radial velocity (or, equivalently, 
Doppler frequency) dimensions. The creation of the R/D map can be seen as the 
application of a matched filter along these 2 dimensions. To determine the equation 
governing this matched filter, we need to derive the radar response of a point target. 
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Assume that a point target is moving with constant radial velocity v toward the 
radar during a CPI. Then, its range varies as ( ) vtRtr −= , where R is the range in 

the middle of the CPI and t runs from 
2

  to
2

CPICPI TT
− . Also, assume that the 

transmitted waveform consists of a train of N short UWB impulses with complex 
envelope ( )tp  and carrier frequency f0, with a repetition interval Tr: 

 ( ) ( ) ( )∑
−

=

−=
1

0
02exp

N

n
r tfjnTtptx π . (1)

 

The signal received from the point target considered previously is proportional to a 
delayed version of the transmitted signal, up to a complex constant factor. We write 
the received signal as  

 ( ) ( ) ∑
−
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Note that throughout this note, we work with complex analytic signals, meaning we 
consider both the in-phase and quadrature (I–Q) signal components. Upon down-
conversion to baseband, we eliminate the factor ( )tfj 02exp π  and obtain 

 ( ) ∑
−

=
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c
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c
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c
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c
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ππ
. (3)

 

At this point, we need to mention that this theoretical derivation is valid for any 
type of UWB waveforms, not only short impulses as considered in Eq. 1. When 
pulse compression waveforms are used for this purpose, ( )tp  represents the pulse 
envelope obtained after compressing the received signal. 

The signal ( )tz  is sampled in the time variable, and its samples ( )ktz  are rearranged 
in a 2-D array indexed by the discrete variables rkfm nTtt −= (fast time) and 

rsn nTt = (slow time; note that the radar waveform is already discretized along this 
dimension by its pulsed nature). When denoting the new 2-D signal ( )snfm tts ,  

returned by a point target at range R and moving with velocity v, we add the 
arguments R and v to its description: 
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with 1 ... ,0 −= Mm  and 1
2

 ... ,
2

−−=
NNn . In the last equation, we neglected tfm 

whenever it appeared together with tsn inside the same factor, since snfm tt << , 
which amounts to saying that the pulse width of ( )tp  is assumed much smaller than 
the repetition interval Tr. Note the strong similarity between this equation and 
Eq. 11 in our previous note,1 where a Gaussian envelope was chosen for the 
transmitted pulse. Let us take the discrete Fourier transform (DFT) of PTs  along 
the tfm dimension, whose Fourier variable pair is the discrete frequency fm: 
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where 
M
Bmfm = , with 1

2
 ... ,

2
−=

MMm , and ( )fP  is the spectrum of ( )tp . 

( )fP  is typically a real-valued function; this is the case when ( )tp  is a symmetric 
pulse envelope as well as when ( )tp  is obtained by compression of the original 
transmitted waveform. 

The transfer function of the matched filter is designed to compensate the phase of 
the response of a point target at range R and moving with velocity v. Therefore, 
assuming ( )fP  is real, the matched filter transfer function is ( )vRtfQ snm ,,,* . The 
R/D map, which represents the output of the matched filter for the pair of 
coordinates ( )vR,  and the input ( )snm tfS ,  (the response of an arbitrary scene), can 
be expressed as 
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Before we take a more in-depth look at Eq. 6, we compare this formula to that 
obtained by conventional Doppler processing (as considered in our previous 
work1). Starting again with the ( )snm tfS ,  2-D signal, the R/D map in conventional 
Doppler processing is obtained according to 

 ( ) ( )∑∑
−

=

−

=











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0
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0
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exp,,
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n
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vtf
c

Rf
jtfSvRRDM

ππ
. (7)

 

Equation 7 can be clearly interpreted as a 2-D DFT4 of the ( )snm tfS ,  signal. 
(Although R and v are formally written as continuous variables in our equations, 
they always take on discrete values in a practical implementation.) Thus, the sum 
over m amounts to a DFT along the frequency-range dimension, while the sum over 
n amounts to a DFT along the slow time-velocity dimension. The additional phase 

factor 







c
Rf

j 04
exp

π
 appearing in Eq. 6 is unimportant and was simply included to 

make the formula more symmetric. However, the factor 





−

c
tf

j snmπ4
exp , which 

is missing from  Eq. 7, is critical for Doppler processing with UWB waveforms. Its 
omission from Eq. 7 means that the matched filter fails to compensate for the 
corresponding factor present in Eq. 5 and explains the R/D map artifacts for the 
method described in our previous work.1 Notice that neglecting this phase factor is 
well justified in the case of narrowband signals, where 0ffm << ; however, this 
approximation is not valid for UWB waveforms, where fm and f0 are of the same 
order of magnitude. 

It is also interesting to rewrite the formula in Eq. 6 as a function of the delay (τ) 

and Doppler frequency (fd) variables, which are connected to R and v by 
c
R2

=τ

and v
c
f

fd
02

= , respectively. 
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Going back to Eq. 6, we introduce the new variables ( )
c

ffm
m

02 +
=ρ  and

( )
c

tff
u snm

nm
0

,
2 +

−=  and rewrite the R/D map formula as  
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 ( ) ( ) ( )( )∑ ∑
−

=

−

=

+=
1

0

1

0
,, 2exp,,

M

m

N

n
nmmnmm vuRjuSvRRDM ρπρ . (9)

 

The last equation is reminiscent of a 2-D DFT of the signal ( )nmm uS ,,ρ , involving 
the Fourier variable pairs ( )R,ρ  and ( )vu, . However, when the frequency and slow 
time variables are sampled on a regular rectangular grid (at equal intervals in both 
dimensions), the samples of ρ and u cover a wedge-shaped domain in the ρ − u 
plane, as illustrated in Fig. 1. As a consequence, we cannot apply efficient 
algorithms, such as the 2-D fast Fourier transform (FFT), to directly compute the 
expression in Eq. 9; instead, we need to apply a brute-force approach to evaluate 
Eq. 9. A further discussion of the computational aspects of this procedure is offered 
in Section 4.1. 

 
 (a) (b) 

Fig. 1 Sample points used in creating R/D maps by the matched filter method, illustrating 
the radar data support in (a) the frequency-slow time domain and (b) the ρ-u domain. The 
samples correspond to the numerical example in Section 3, down-sampled for figure clarity.  

A computationally efficient processing scheme for the implementation of Eq. 9, 
which takes advantage of the 2-D FFT algorithm, can be obtained using the 
Keystone transform.3 This consists of remapping the radar data samples from their 
original format (rectangular in the f – ts plane) onto a new grid such that the resulting 
samples in the ρ − u plane have a rectangular support. The formula describing the 
coordinate transformation in the f – ts plane is 

 u
f
ct

f
ff

t ss
00

0

2
' =

+
= . (10) 

When replotted in the 'stf − coordinates, the radar data samples are arranged in the 
pattern shown in Fig. 2a. Correspondingly, the new data support in the ρ − u plane 
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takes on a rectangular shape (Fig. 2b), which allows the application of the 2-D FFT 
to compute the expression in Eq. 9. An intermediate step consisting of interpolating 
the radar data from the f – ts to the 'stf −  coordinates is required by this method. 

 
 (a) (b) 

Fig. 2 Sample points used in creating R/D maps by the Keystone transform method, 
illustrating the radar data support in (a) the frequency-slow time domain and (b) the ρ-u 
domain. The samples correspond to the numerical example in Section 3, down-sampled for 
figure clarity. 

With regard to the resolution of this radar data-processing approach, the same 
formulas as for conventional, narrowband Doppler processing apply. Thus, the 
range, Doppler frequency, and velocity resolutions are, respectively:

 

 
B
cR

2
=δ , (11a) 

 CPI
d T

f 1
=δ , and (11b)

 

 02 fT
cv

CPI

=δ . (11c)
 

All these resolution formulas are approximate and do not account for possible 
windowing of the radar data in the frequency and slow time domains. The formulas 
in Eqs. 11b and 11c assume that the slow time interval covered by the radar samples 
at f0 is TCPI. Importantly, the resolution in both dimensions (R and v) is uniform 
over the entire R/D space, unlike the processing scheme in our previous work.1 

Before concluding this section, we should mention that the Doppler processing with 
UWB pulses described in this note is just another example of multidimensional 
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signal processing encountered in radar applications. Particularly, we can draw a 
parallel with the formation of wideband, widebeam synthetic aperture radar (SAR) 
images, where a similar coupling between the 2 dimensions of the radar data space 
(frequency and aperture position) requires the application of a 2-D matched filter. 
The conventional Doppler processing is analogous to the Doppler beam 
sharpening5 method in SAR imaging, which is known to produce significant 
artifacts when used in conjunction with UWB signals and wide angle apertures. The 
brute-force matched filter for R/D maps described by Eq. 6 corresponds to the 
matched filter method for SAR image formation, which is the frequency-domain 
version of the popular backprojection algorithm.5 On the other hand, the Keystone 
transform method corresponds to the range migration algorithm for SAR image 
formation,6 which uses the Stolt interpolation to remap the data samples from the 
original wedge-shaped support in the kx – ky plane to a rectangular grid, followed 
by the application of a 2-D FFT (note that the Stolt transform formula differs from 
the Keystone transform due to different sensing geometries and radar data 
dimensions, but the principle of the 2 methods is very similar). 

3. Numerical Example 

We present a numerical example to illustrate the processing scheme developed in 
the previous section by a simple simulation. Consider 2 point targets moving with 
radial velocities v1 = 0.4 m/s and v2 = – 0.6 m/s (positive v indicates a target moving 
toward the radar), with initial ranges m 05.401 =R  and m 3.302 =R . The radar 
transmits a train of modulated Gaussian pulses1 with the envelope 

( ) 









−= 2

0

2
exp

τ
ttp . The pulse width is ps 5000 =τ  (which corresponds to a 

bandwidth of approximately 2 GHz) and the carrier frequency is GHz 5.20 =f . An 
illustration of the individual pulse in the time and frequency domains is shown in 
Fig. 3.  

The pulse repetition interval is Tr = 25 ms, which corresponds to a pulse repetition 
frequency (PRF) of 40 Hz. The CPI has a duration TCPI = 1.2 s and involves the 
coherent processing of N = 48 pulses. The total observation interval is 3 s. A 
representation of the radar data returned by the targets as a function of range and 
slow time is shown in Fig. 4. In the subsequent processing examples, we create a 
single R/D map corresponding to a CPI centered at t = 1.5 s, with the targets at 
ranges m 45.31011 =−= tvRR  and m 2.42022 =−= tvRR , in the middle of the 
CPI. The unambiguous velocity interval covered by this processing scheme runs 
from –1.2 to 1.2 m/s. 
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 (a) (b) 

Fig. 3 Representation of the modulated Gaussian UWB impulse used as excitation in the 
numerical example, in (a) the time domain and (b) the frequency domain. The red dotted lines 
represent the pulse envelope. 

 

Fig. 4 Representation of the radar-received data in the range-slow time domain, showing 
the 2 targets considered in the numerical example 

Each received waveform within a repetition interval is discretized into M = 300 fast 
time samples, using a time step ps 167=∆t . The total fast time interval covered by 
these samples is 50 ns, which corresponds to a target range running from 0 to 7.5 m. 
The frequency-domain increment is 20 MHz, covering 6 GHz of bandwidth (from 
1 to 7 GHz). However, since the processing scheme uses I–Q data in the fast time 
domain, only the first half of the spectrum (from 1 to 4 GHz) contains nonzero data 
samples. Note that the frequency offset (fm in Eq. 6) runs from –1.5 to 4.5 GHz, 
although only data corresponding to frequency offsets from –1.5 to 1.5 GHz 
contribute to the sum over m. 
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To mitigate the sidelobes in the R/D maps, we use the original Gaussian frequency-
domain window of the transmitted pulse (for range sidelobe suppression) and a 
Hanning slow time domain window (for Doppler sidelobe suppression). 

In Figs. 5–7 we present the R/D map obtained for the CPI centered at 1.5 s using 3 
different processing schemes: 1) conventional Doppler processing, corresponding 
to Eq. 7 (Fig. 5); 2) the direct implementation of the matched filter described by 
Eq. 6 (Fig. 6); and 3) the matched filter implemented via the Keystone transform 
method (Fig. 7). The target images in Fig. 5 illustrate the main issues with 
conventional Doppler processing applied to UWB radar: poor resolution in both 
range and Doppler, which degrades even further with increasing target velocity. On 
the other hand, Figs. 6 and 7 demonstrate that careful implementation of the R/D 
matched filter for UWB radar can reach the same Doppler resolution limit as a 
narrowband radar system, independent of the target velocity. The only difference 
between the target images in Figs. 6 and 7 consists of the sidelobe directions, which 
cannot be distinguished in the R/D maps due to the limited dynamic range. 

 

Fig. 5 R/D map of the 2 targets considered in the numerical example, obtained by 
conventional Doppler processing, for a 1.2-s CPI centered at t = 1.5 s 
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Fig. 6 R/D map of the 2 targets considered in the numerical example, obtained by the 
matched filter method, for a 1.2-s CPI centered at t = 1.5 s 

 

 

Fig. 7 R/D map of the 2 targets considered in the numerical example, obtained by the 
Keystone transform method, for a 1.2-s CPI centered at t = 1.5 s. Cubic spline interpolation 
was used in the implementation of the Keystone transform. 
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4. Discussion 

4.1 Computational Aspects 

In this section, we analyze the computational aspects of the various UWB Doppler 
processing schemes. As suggested by a comparison of Eqs. 6 and 7, the 
implementation of the exact matched filter should come at an increased complexity 
in computational terms, as compared to the conventional Doppler processing 
formula. 

We assume that the radar data are already organized in a 2-D array of size M by N, 
( )snm tfS , , with the 2 dimensions representing frequency and slow time. Note that 

some UWB waveform implementations, such as stepped frequency or linear 
frequency modulation combined with stretch processing,7 generate radar data 
directly in the frequency domain. For other types of waveforms, such as UWB 
impulses or pulse compression waveforms, the radar data are generated in the time 
domain and need to be transformed to the frequency domain via FFTs. 

The conventional Doppler processing described by Eq. 7 is efficiently implemented 
as a 2-D FFT. The typical form of this algorithm is the row-column decomposition4 
and requires ( )MNMNO 2log  floating-point operations (the symbol O stands for 
“on the order of”). When the radar data are directly available in the time domain, 
there is no need to convert to frequency domain in this Doppler processing scheme. 
Instead, the R/D map can be simply obtained by 1-D FFTs along the slow time 
dimension for each range bin, with a computational load of ( )NMNO 2log . 
However, one should keep in mind that the difference between ( )MNMNO 2log  
and ( )NMNO 2log  is smaller than it appears at first sight: when M = N, the 
difference is a factor of 2. 

For the direct (or brute-force) matched filter implementation described by Eq. 6, 
we cannot apply FFT-like algorithms due to the shape of the support in the ρ – u 
domain. Instead, one needs to compute the double sum in Eq. 6, pixel-by-pixel. 
Since there are MN pixels in an R/D map, and each pixel requires ( )MNO
operations, the total computational load is ( )22 NMO , which is significantly larger 
than that required by the 2-D FFT algorithm. Note that the same load would be 
obtained if we implemented the 2-D DFT in Eq. 7 directly by double summation, 
instead of taking advantage of the efficiencies afforded by the FFT algorithm. When 
the original radar data are in the time domain, additional ( )MMNO 2log  operations 
are required to convert them to the frequency domain via FFTs. 
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Another option for the direct matched filter implementation is to organize the data 
as a single-column vector of length MN, using the Kronecker product.7 In that case, 
the R/D map is also organized as a vector of length MN, while the matched filter 
can be represented as an MN by MN matrix. The R/D map vector is then obtained 
by the matrix-vector multiplication of the matched filter with the radar data vector. 
The matrix-vector multiplication dictates a computational load of ( )22 NMO , same 
as the method described in the previous paragraph. However, this method is not 
particularly efficient in terms of computing resource usage due to the large storage 
size of the matched filter matrix, as well as the time required to compute its 
elements (as an example, for the parameters of the simulation in Section 3, the 
matrix would have a size of 1.66 GB). This approach could only be justified in a 
scenario where we must repeatedly apply the same matched filter to a stream of 
radar data, such as in creating a joint range-time-frequency representation 
(JRTFR)1 where successive R/D maps obtained at different time intervals are 
stacked into a 3-D data structure. 

The matched filter implemented via the Keystone transform is more efficient than 
the brute-force method, since it uses the 2-D FFT algorithm. As in the conventional 
Doppler processing, creating the R/D map requires only ( )MNMNO 2log  
operations, which represents significant savings versus the ( )22 NMO  operations 
required by the brute-force implementation. However, now we have to take into 
account the extra operations involved in the interpolation required by remapping 
the data samples. The additional computational load depends on the interpolation 
method employed; this can vary from ( )MNO  for linear interpolation (which is 
simple but generally inadequate for this purpose) to ( )NMNO 2log  for Fourier- (or 
sinc-) type interpolation. In the latter case, the data interpolation step approaches 
the load of the 2-D FFT itself, which means that it may represent a large part of the 
total computational time required by this method. 

4.2 Range and Doppler Ambiguities 

So far, we have not discussed the issue of ambiguities created by the range-Doppler 
processing of radar data. Since this is an important problem in the implementation 
of radar waveforms and processing schemes, this section analyzes it in detail. In 
particular, as suggested by Le Chevalier,2 the UWB Doppler processing presented 
in this note may significantly reduce the Doppler ambiguities as compared to the 
conventional processing method. The derivation of the AF presented in this section 
confirms this fact in a quantitative way. 

We start by analyzing the conventional (or narrowband, hence the subscript N) AF, 
as defined by Rihaczek.8 
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 ( ) ( ) ( ) ( )∫
∞

∞−

−−= dttfjtxtxf ddN πττχ 2exp, * . (12)
 

When the radar waveform ( )tx  consists of a train of baseband pulses, described as

( ) ( )∑
−

=

−=
1

0

N

n
rnTtptx , this function becomes

 

 ( ) ( ) ( ) ( )∑ ∫
−

=

∞

∞−

−−−=
1

0

* 2exp,
N

n
drdN dttfjnTtptxf πττχ . (13)

 

A straightforward interpretation of this equation is that the AF represents the R/D 
map of a stationary (v = 0) point target placed at range R = 0, obtained by the 
conventional Doppler processing method. Equation 13 involves pulse compression, 
which corresponds to correlating the received signal with the transmitted pulse ( )tp . 
However, as discussed in Section 2, our method of creating R/D maps omitted the 
pulse compression step by considering ( )tp  as either a UWB impulse or the output 
of the pulse compression operation on the original transmitted waveform. A modified 
AF that more closely resembles the conventional Doppler processing scheme 
described in Section 2 is the following (note the superscript S for “simplified”): 

 
( ) ( ) ( ) ( )

( ) ( ) ( )rd

N

n
rd

N

n
drd

S
N

nTfjnTxfj

dttfjnTttxf

πττπ

πτδτχ

2exp2exp                

2exp,

1

0

1

0

−+−=

−−−=

∑

∑ ∫
−

=

−

=

∞

∞−

. (14)
 

The only change in Eq. 14 as compared to Eq. 13 is replacing ( )tp  inside the 
integral with a delta function ( )tδ . The second expression in Eq. 14 can be further 
analyzed by the methods developed by Rihaczek.8 Letting fd = 0, we obtain the 

expression ( )∑
−

=

+
1

0

N

n
rnTtx , which describes N replicas of the original transmitted 

signal along the range axis, spaced apart by 
2

rcT ; these replicas generate the range 

ambiguities in the R/D map. These ambiguities are characteristic to any radar 
waveforms involving a periodic train of pulses. 

In this work, we are more focused on analyzing the Doppler ambiguities obtained 
under the various processing schemes. To investigate these, we let τ = 0 in Eq. 14 

and write ( )tx  explicitly as ( )∑
−

=

−
1

0

N

k
rkTtp : 
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 ( ) ( )( ) ( )∑∑
−

=

−

=

−−=
1

0

1

0
2exp,0

N

n

N

k
rdrd

S
N nTfjTknpf πχ . (15)

 

Since the duration of ( )tp  is much smaller than Tr, the quantity under the double 
sum is nonzero only when n = k: 

 ( )( ) ( )




≠
=

=−
kn
knp

Tknp r for         0
for    0

. (16)
 

Consequently, we obtain 

 ( ) ( ) ( ) ( ) ( )
( )∑

−

=

=−=
1

0 sin
sin

02exp0,0
N

n rd

rd
rdd

S
N Tf

NTf
pnTfjpf

π
π

πχ . (17)
 

The expression on the right-hand side of Eq. 17 is a form of the Dirichlet (or digital 
sinc) function, frequently encountered in digital signal processing involving DFTs. 
A plot of ( )d

S
N f,0χ  (cut through the AF along the Doppler frequency axis), 

obtained for the simulation parameters in Section 3, is shown in Fig. 8. Notice the 

equal peaks of amplitude ( )0Np , spaced apart by 
rT

1 ; these peaks (also known as 

grating lobes) generate the Doppler ambiguities in the R/D maps obtained by 
conventional Doppler processing. 

 

Fig. 8 Cut through the narrowband AF along the Doppler frequency axis, demonstrating 
the periodic Doppler ambiguities 
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While the AF definition in Eq. 12 is adequate for describing Doppler processing 
with narrowband waveforms, it does not capture all the phenomenology of sensing 
a moving target by a radar system operating with wideband waveforms. In order to 
account for the latter, we introduce the so-called “wideband AF”,9 defined as 

 ( ) ( ) ( )∫
∞

∞−

−







+−= dttfjt

f
f

txtxf d
d

dW πττχ 2exp,
0

* . (18) 

For a train of baseband pulses ( ) ( )∑
−

=

−=
1

0

N

n
rnTtptx , we have 

 ( ) ( ) ( )∑ ∫
−

=

∞

∞−

−







+−−=

1

0 0

* 2exp,
N

n
d

d
rdW dttfjt

f
f

nTtptxf πττχ . (19)
 

Change the integration variable to rf nTtt −= : 

 

( )

( ) ( )( )

( ) ( ) ( )∑ ∫

∑ ∫
−

=

∞

∞−

−

=

∞

∞−

−







+−+−≅

+−









+−








++=

1

0 0

*

1

0 00

*

2exp2exp   

2exp1  

,

N

n
ffdr

d
frfrd

N

n
frfdr

dd
frf

dW

dttfjnT
f
ftpnTtxnTfj

dtnTtfjnT
f
f

f
ftpnTtx

f

πτπ

πτ

τχ

. (20) 

Similarly to the narrowband AF analysis, we introduce a simplified version of the 
wideband AF, which closely reflects the “wideband” matched filter processing used 
in creating R/D maps with UWB waveforms (Eq. 6). This new AF is obtained by 
replacing ( )tp  inside the integral with a delta function ( )tδ : 

 

( )

( ) ( ) ( )

( ) ( )rd

N

n

d
rd

N

n
ffdr

d
frfrd

d
S
W

nTfjnT
f
fnTxfj

dttfjnT
f
ftnTtxnTfj

f

πττπ

πτδπ

τχ

2exp2exp     

2exp2exp     

,

1

0 0

1

0 0

−







−+−≅

−







+−+−=

∑

∑ ∫
−

=

−

=

∞

∞−

. (21)

 

After replacing ( )tx  by ( )∑
−

=

−
1

0

N

k
rkTtp , we obtain 

 ( ) ( ) ( )∑∑
−

=

−

=

−







−−+=

1

0

1

0 0

2exp,
N

n
rd

N

k
r

d
rd

S
W nTfjnT

f
f

Tknpf πττχ . (22) 
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By a similar argument as the one used in Eq. 16 and noting that 0ff d << , we can 
write 

 ( ) ( )




≠
=

=







−−+

kn
knp

nT
f
f

Tknp r
d

r for         0
for    

0

τ
τ . (23) 

Consequently, 

 ( ) ( )∑
−

=

−







−=

1

0 0

2exp,
N

n
rdr

d
d

S
W nTfjnT

f
f

pf πττχ . (24) 

Now let us write 







− r

d nT
f
f

p
0

τ  as an inverse Fourier transform, using τ and fm as 

the Fourier variable pair (note that fm are discrete frequency samples): 

 ( ) ( )∑
−

=


















−+=








−

1

0 0
0

0

2exp
M

m
r

d
mmmr

d nT
f
f

fffjfPnT
f
f

p τπτ . (25) 

Then, the wideband AF can be written as 

 ( ) ( ) ( ) 



























+−+= ∑∑

−

=

−

=
rd

m
m

M

m

N

n
md

S
W nTf

f
fffjfPf

0
0

1

0

1

0
12exp, τπτχ . (26) 

We can interpret this form of the wideband AF as the output of the “wideband” 
matched filter (as in Eq. 6) for a stationary point target placed at R = 0. Thus, the 
response of this target can be written as

  ( ) ( )msnmPT fPtfS =0,0,, . (27) 

The R/D map generated by this response, as a function of τ and fd , is (see Eq. 8) 

 ( ) ( ) ( ) 



























+−+= ∑∑

−

=

−

=
snd

m
m

M

m

N

n
md tf

f
fffjfPfRDM

0
0

1

0

1

0
12exp, τπτ , (28) 

which is identical to the expression in Eq. 26 given the fact that rsn nTt = . 

To investigate the Doppler ambiguities, we go back to Eq. 24 and take a cut through 
the AF along the Doppler frequency axis (or τ = 0): 
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 ( ) ( )∑
−

=

−







−=

1

0 0

2exp,0
N

n
rdr

d
d

S
W nTfjnT

f
f

pf πχ . (29)
 

It is clear that this function does not resemble the digital sinc obtained in the 
narrowband case. In fact, when we plot it as a function of fd (again for the simulation 
parameters in Section 3), we obtain the graph in Fig. 9. Notice that the peaks 

(grating lobes) present at 
r

d T
f 1

±=  are strongly attenuated with respect to the peak 

at fd = 0. We quantify this attenuation by computing the ratio 

 
( ) ( )00,0

1,0
1

0 0

Np
f
np

T

N

n

S
W

r

S
W ∑

−

=








−

=









χ

χ
. (30) 

 

Fig. 9 Cut through the wideband AF along the Doppler frequency axis, demonstrating the 
attenuation of the Doppler ambiguities 

Since ( )tp  is monotonically decreasing away from t = 0, it follows that the ratio in 
Eq. 30 is always smaller than 1. Moreover, since ( )tp  has a narrow support (typical 

for an UWB pulse), we expect 







−

0f
np  to be zero for 1Nn > , where N1 is an 

integer smaller than N. Then the first grating lobe attenuation, or the ratio in Eq. 30, 

can be approximated by 
N
N1 . We can also establish an approximate relationship 

between N1 and the pulse width of ( )tp , denoted by 0τ : 
Bf

N 1
0

0

1 ≅≅ τ , where B is 

the pulse bandwidth.  
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The condition required to obtain a large attenuation of the first grating lobe is 

11 <<
N
N ; by replacing N1 with 

B
f0  (or the inverse of the fractional bandwidth), we 

finally obtain 
B
f

N 0>> . This is identical to the formula indicated by Le Chevalier.2 

Translated in words, this formula says that the number of pulses in a CPI must be 
much larger than the inverse of the fractional bandwidth to achieve strong 
attenuation of the Doppler grating lobes in the wideband AF. This condition is 
relatively easy to satisfy for UWB pulses, which by definition have a large 

fractional bandwidth (or small 
B
f0  ratio). 

To clearly demonstrate the effect of the conventional and wideband Doppler 
processing schemes on the Doppler ambiguities, we revisit the numerical example 
in Section 3 by extending the velocity axis in the R/D maps to run from –2.4 to 
2.4 m/s. Regardless of the processing scheme, both targets create an alias visible in 
these maps: the first target at –2 m/s and the second target at 1.8 m/s. However, the 
amplitude of these ambiguities differs dramatically between the conventional 
Doppler processing (Fig. 10), where they are as large as the true targets, and the 
wideband Doppler processing (Fig. 11), where they are strongly attenuated. 

 

Fig. 10 R/D map of the 2 targets considered in the numerical example, obtained by 
conventional Doppler processing, showing an extended velocity scale to demonstrate the 
Doppler ambiguities 
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Fig. 11 R/D map of the 2 targets considered in the numerical example, obtained by the 
matched filter method, showing an extended velocity scale to demonstrate the Doppler 
ambiguities 

The importance of this result in improving radar performance can be appreciated in 
the context of 2 traditional tradeoffs typically encountered in radar systems: 1) the 
tradeoff between range and Doppler resolutions8 and 2) the tradeoff between range 
and Doppler ambiguities.5 Thus, the shortcomings of the conventional Doppler 
processing proposed in our previous work1 seemed to indicate that we cannot 
simultaneously increase the range and Doppler resolutions past certain limits by 
choosing both large signal bandwidth and long CPI duration due to the issue of 
target range migration within a CPI. However, these conflicting requirements are 
resolved through the wideband matched filter processing scheme. This allows us to 
choose a long CPI for good Doppler resolution, without limiting the signal 
bandwidth (which dictates the range resolution). 

Regarding the tradeoff between range and Doppler ambiguities, this is dictated by 
the choice of PRF. In conventional Doppler processing, avoiding the grating lobes, 
which occur at intervals equal to PRF, typically requires a large PRF. On the other 

hand, avoiding the range ambiguities, which occur at intervals equal to 
PRF2
c , 

requires a small PRF. Several complex waveforms and signal processing 
techniques have been developed to mitigate this tradeoff5,8 (e.g., transmission of 
trains of pulses with variable PRF), most of them involving additional penalties in 
system performance. Nevertheless, the processing scheme proposed in this note 
resolves this tradeoff by naturally suppressing the Doppler grating lobes as 
demonstrated in this section. Note that this effect holds only for the case of UWB 
waveforms (i.e., waveforms with large fractional bandwidth). 
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5. Conclusions 

In this note, we presented a UWB radar Doppler processing scheme that overcomes 
the limitation reported in some of our previous work. The method is based on a 
careful derivation of the matched filter for this type of processing, taking into 
account the coupling between the frequency and slow time dimensions in the radar 
response of a point target. This coupling leads to a 2-D data transformation, similar 
to that employed in the formation of wideband, widebeam SAR images.  

Theoretical and numerical comparisons of the new method with conventional 
Doppler processing clearly demonstrate the superior performance of the wideband 
matched filter in terms of both range and Doppler resolution, and at the same time 
explains why the old approach fails when UWB waveforms are employed. We also 
present an efficient implementation of the new technique, based on the Keystone 
transform, followed by a discussion of the computational complexity of all these 
processing schemes. 

The detailed derivation of the wideband AF in Section 4.2 allowed us to confirm 
the result reported by Le Chevalier2 regarding the mitigation of Doppler 
ambiguities by UWB waveforms. This is an important result showing that it is 
possible to resolve some traditional tradeoffs in radar system performance by using 
this type of waveform. 

Regarding possible applications of this new Doppler processing method, one 
should mention the combination of micro-Doppler and high-range resolution 
analysis by means of the JRTFR. Given the good resolution in all dimensions 
(range, Doppler, and time), this type of analysis should be very beneficial to target 
classification problems. An excellent example of this processing applied to the 
analysis of a walking human target is presented by He et al.3 We are confident that 
future investigations will reveal new applications of the wideband Doppler 
processing technique. 
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List of Symbols, Abbreviations, and Acronyms 

1-D 1-dimensional 

2-D 2-dimensional 

3-D 3-dimensional 

AF ambiguity function 

CPI coherent processing interval 

DFT discrete Fourier transform 

FFT fast Fourier transform 

I–Q in-phase and quadrature 

JRTFR joint range-time-frequency representation 

PRF pulse repetition frequency 

R/D range-Doppler 

SAR synthetic aperture radar 

UWB ultra-wideband 
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