ADMS Test Bed Capabilities

Annabelle Pratt
Principal Engineer, NREL
ADMS Test Bed Project PI

November 13, 2019
DOE ADMS and DERMS Core Development

Transform utility electric distribution management systems to enable the integration and management of all assets and functions across the utility enterprise regardless of vendor or technology.

Today
Closed, proprietary, vendor specific

Future
Open architecture, standards-based data exchange

Four program areas:
- **Platform:** Develop open-source platform; evaluate advanced applications.
- **Test bed:** Build a vendor-neutral test bed to evaluate existing and future advanced distribution management system (ADMS) functionalities in a realistic setting.
- **Applications:** Develop an initial suite of ADMS applications.
- **Advanced control:** Develop new integrated optimization and control solutions.
ADMS Test Bed Overview

Project description:

• Model large-scale distribution systems for evaluating ADMS applications.

• Integrate distribution system hardware in the Energy Systems Integration Facility for hardware-in-the-loop experiments.

• Develop advanced visualization capability for mock utility distribution system operator’s control room.
ADMS Test Bed Use Case Development

1. Define question
 - Determine question/challenge to address
 - Define use case
 - Identify value proposition

2. Create test to answer question
 - Define test plan
 - Provide equipment capabilities

3. Run test
 - Provide field data (models, load data)
 - Configure test bed and execute test plan
 - Provide technical support

4. Get answer to question
 - Improve operations, reduce costs, gain new insights
 - Results analysis
 - Product performance insights
ADMS Test Bed Capabilities

Existing/updated:
• Enabling tools for model conversion
• Controller hardware-in-the-loop (CHIL)
• Power hardware-in-the-loop (PHIL)
• Remote hardware-in-the-loop.

New:
• Multi-timescale simulations
• Integration of multi-vendor simulation platforms
• Integrated data collection and management system.
Model Conversion Tools

Also used NREL’s DiTTo tool, providing an open-source framework to convert various distribution systems modeling formats: https://github.com/NREL/ditto.
1. Reduced voltage error by using a closed-loop voltage control filter.

2. Used reduced-order feeder model (100 µs) to interface slow (15-min) large-scale quasi-static time series (QSTS) with power hardware.

Multi-Timescale Simulation Capability

- Can select one or more simulators to fit use case.
- Can run parts of feeder in different simulators.
- Currently using:
 - OpenDSS by Electric Power Research Institute:
 - QSTS
 - 1-s minimum time step; minutes typical.
 - ePHASORSIM by OPAL-RT:
 - Dynamic phasor
 - 1- to 10-ms time step
 - Developed LTC, capacitor bank, and VR models for CHIL
 - Developed photovoltaic model for PHIL.
- Can incorporate other simulators, e.g., RTDS.
Multi-Timescale Simulation Capability

- Orchestrated by test bed coordinator software
- Written in Python
- Uses Hierarchical Engine for Large-Scale Infrastructure Co-Simulation (HELICS) framework:
 - U.S. Department of Energy (DOE) investment through Grid Modernization Initiative
 - www.helics.org.
Integration of Multi-Vendor Platforms

- ADMS to OpenDSS:
 - Device simulator developed to provide communications interface
 - Interfaces through Dbus
 - Low overhead data exchange based on TCP.

- ADMS to Opal-RT:
 - DNP3 drivers available.
Architected and implemented data management tools

Started with JavaScript-based code; moved to C++ for better performance and scaling

3-D visualization under development.
ADMS Test Bed Use Cases

• Use Case 0: Centralized and distributed volt/volt-ampere reactive (VAR) optimization (VVO):
 – Duke Energy and General Electric
 – Completed in 2017 using ADMS power flow.

• Use Case 1: Model quality impacts on VVO:
 – Xcel Energy and Schneider Electric
 – ADMS test bed currently set up for this use case.

• Use Case 2: Peak load management with ADMS + distributed energy resource management systems (DERMS):
 – Holy Cross Energy and Survalent
 – To be completed in early 2020.
ADMS Test Bed Capability Development

Use Case 0
- GE DMS
 - VVO
 - SE
 - SCADA
- Internal Powerflow
- eMEGASIM
- Power hardware

Use Case 1
- SE ADMS
 - VVO
 - SE
 - SCADA
- OpenDSS
- ePHASORSIM
- Controller hardware
- Power hardware
- Remote hardware

Use Case 2
- NREL RTOPF DERMS Coord Local
- Survalent ADMS DVR SCADA
- Remote GE EMS
- OpenDSS
- eMEGASIM
- Controller hardware
- Power hardware
- Remote PowerWorld

Remote hardware
Projects Using Test Bed Capabilities

- Grid modernization via control and optimization using distributed energy resources: ADMS + DERMS
- Evaluating Anterix wireless communications system for utility applications.
Enabling Extreme Real-Time Grid Integration of Solar Energy (ENERGISE) ECO-IDEA:

- ADMS + DERMS for photovoltaics + Varentec devices.
Thank you

www.nrel.gov

Annabelle.Pratt@nrel.gov

NREL/PR-5D00-75418

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Electricity, Advanced Grid Research & Development. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.