Submarine Warfare in the 20th and 21st Centuries: A Bibliography

Huygen, Michaele Lee

http://hdl.handle.net/10945/6978
This page is deliberately blank.
INTRODUCTION

The game of war outgrows the combat rules
When blindman’s buff is played beneath the lid
Of ocean’s bleak arena on the grid
Of hemispheres where steel fish stage their duels.

The armored monsters of the shipping lane
Have shown no mercy to the tarrier
In convoy; and got none from the warrior.
The ocean pays no homage to the slain.

This bibliography is a revised edition of the bibliography *Submarine Warfare in the 20th & 21st Centuries*, 2003, which is in turn a revised and expanded version of *Submarine Warfare in the 20th Century*, 2002. It is a bibliography listing books, periodical articles, and web sites related to submarine and antisubmarine warfare in the 20th Century, a rapidly growing body of literature as more WWII military history becomes available for research. It has become increasingly apparent that there has been a translation race, so foreign catalogs have been searched in depth, if they utilize the roman alphabet. Formal series statements are presented as (series statement) between publication date and pagination to set them apart within a single bibliographic citation.

Some entries have brief annotations taken directly from library catalogers’ notes. Some have comments from the item in hand. The Bibliographies/References Cited for all titles as received in our collection have been compared to the contents of this bibliography.

The letters "NPS/DKL," followed by location and call number information, identify the books held by the Naval Postgraduate School’s Dudley Knox Library. Many of the journal articles are also accessible in the Dudley Knox Library. Please note that DKL does not loan to individuals. Consult with your local library’s Reference or Interlibrary Loan Department for advice on obtaining materials of interest.

This Bibliography will also be available online at
http://www.nps.edu/Library/Research/Bibliographies/index.html

June 2009
TABLE OF CONTENTS

SEA POWER/NAVAL STRATEGY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL</td>
<td>1</td>
</tr>
<tr>
<td>AMERICAN</td>
<td>37</td>
</tr>
<tr>
<td>ARGENTINIAN</td>
<td>63</td>
</tr>
<tr>
<td>ASIA/PACIFIC</td>
<td>64</td>
</tr>
<tr>
<td>AUSTRALIAN</td>
<td>69</td>
</tr>
<tr>
<td>AUSTRIAN</td>
<td>71</td>
</tr>
<tr>
<td>BANGLADESH</td>
<td>72</td>
</tr>
<tr>
<td>BRAZILIAN</td>
<td>72</td>
</tr>
<tr>
<td>BRITISH</td>
<td>74</td>
</tr>
<tr>
<td>CANADIAN</td>
<td>84</td>
</tr>
<tr>
<td>CHILE</td>
<td>86</td>
</tr>
<tr>
<td>CHINESE</td>
<td>86</td>
</tr>
<tr>
<td>FRENCH</td>
<td>90</td>
</tr>
<tr>
<td>GERMAN</td>
<td>93</td>
</tr>
<tr>
<td>INDIAN</td>
<td>101</td>
</tr>
<tr>
<td>IRANIAN</td>
<td>101</td>
</tr>
<tr>
<td>ITALIAN</td>
<td>102</td>
</tr>
<tr>
<td>JAPANESE</td>
<td>104</td>
</tr>
<tr>
<td>KOREAN</td>
<td>111</td>
</tr>
<tr>
<td>MEDITERRANEAN</td>
<td>112</td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>113</td>
</tr>
<tr>
<td>NORWEGIAN</td>
<td>113</td>
</tr>
<tr>
<td>POLISH</td>
<td>114</td>
</tr>
<tr>
<td>RUSSIAN/SOVIET</td>
<td>114</td>
</tr>
<tr>
<td>SOUTH AFRICAN</td>
<td>123</td>
</tr>
<tr>
<td>SPANISH</td>
<td>125</td>
</tr>
<tr>
<td>SWEDISH</td>
<td>126</td>
</tr>
<tr>
<td>TURKISH</td>
<td>127</td>
</tr>
<tr>
<td>WWI</td>
<td>127</td>
</tr>
<tr>
<td>GENERAL</td>
<td>127</td>
</tr>
<tr>
<td>AMERICAN</td>
<td>131</td>
</tr>
<tr>
<td>AUSTRALIAN</td>
<td>132</td>
</tr>
<tr>
<td>AUSTRIAN</td>
<td>133</td>
</tr>
<tr>
<td>BRITISH</td>
<td>134</td>
</tr>
<tr>
<td>FRENCH</td>
<td>139</td>
</tr>
<tr>
<td>GERMAN</td>
<td>139</td>
</tr>
<tr>
<td>GREEK</td>
<td>142</td>
</tr>
<tr>
<td>ITALIAN</td>
<td>143</td>
</tr>
<tr>
<td>JAPANESE</td>
<td>143</td>
</tr>
<tr>
<td>WWII</td>
<td>143</td>
</tr>
<tr>
<td>GENERAL</td>
<td>143</td>
</tr>
<tr>
<td>AMERICAN</td>
<td>152</td>
</tr>
<tr>
<td>AUSTRALIAN</td>
<td>162</td>
</tr>
<tr>
<td>BRITISH</td>
<td>163</td>
</tr>
<tr>
<td>FRENCH</td>
<td>170</td>
</tr>
<tr>
<td>GERMAN</td>
<td>171</td>
</tr>
<tr>
<td>ITALIAN</td>
<td>184</td>
</tr>
<tr>
<td>JAPANESE</td>
<td>185</td>
</tr>
<tr>
<td>POLISH</td>
<td>191</td>
</tr>
<tr>
<td>RUSSIAN/SOVIET</td>
<td>191</td>
</tr>
<tr>
<td>COLD WAR</td>
<td>194</td>
</tr>
<tr>
<td>PERSIAN GULF WAR</td>
<td>197</td>
</tr>
<tr>
<td>FICTION (SELECTED AUTHORS)</td>
<td>198</td>
</tr>
<tr>
<td>ANTISUBMARINE WARFARE (ASW)</td>
<td>200</td>
</tr>
<tr>
<td>GENERAL</td>
<td>200</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>WWII</td>
<td>207</td>
</tr>
<tr>
<td>WWI</td>
<td>211</td>
</tr>
<tr>
<td>KOREAN WAR</td>
<td>225</td>
</tr>
<tr>
<td>NPS THESIS & REPORTS</td>
<td>226</td>
</tr>
<tr>
<td>OTHER THESIS & REPORTS</td>
<td>280</td>
</tr>
<tr>
<td>SUBMARINES</td>
<td>314</td>
</tr>
<tr>
<td>GENERAL</td>
<td>314</td>
</tr>
<tr>
<td>BIBLIOGRAPHIES</td>
<td>329</td>
</tr>
<tr>
<td>COLD WAR</td>
<td>331</td>
</tr>
<tr>
<td>FICTION (SELECTED AUTHORS)</td>
<td>333</td>
</tr>
<tr>
<td>NUCLEAR</td>
<td>341</td>
</tr>
<tr>
<td>WWII</td>
<td>348</td>
</tr>
<tr>
<td>WWI</td>
<td>350</td>
</tr>
<tr>
<td>AMERICAN</td>
<td>358</td>
</tr>
<tr>
<td>GENERAL</td>
<td>358</td>
</tr>
<tr>
<td>KOREAN WAR</td>
<td>375</td>
</tr>
<tr>
<td>NUCLEAR</td>
<td>377</td>
</tr>
<tr>
<td>PERSIAN GULF WAR</td>
<td>386</td>
</tr>
<tr>
<td>WWII</td>
<td>388</td>
</tr>
<tr>
<td>WWI</td>
<td>389</td>
</tr>
<tr>
<td>ARGENTINIAN</td>
<td>411</td>
</tr>
<tr>
<td>AUSTRALIAN</td>
<td>412</td>
</tr>
<tr>
<td>GENERAL</td>
<td>412</td>
</tr>
<tr>
<td>WWI</td>
<td>413</td>
</tr>
<tr>
<td>SUBMARINES -- AUSTRIAN</td>
<td>414</td>
</tr>
<tr>
<td>BRAZILIAN</td>
<td>415</td>
</tr>
<tr>
<td>BRITISH</td>
<td>415</td>
</tr>
<tr>
<td>GENERAL</td>
<td>415</td>
</tr>
<tr>
<td>NUCLEAR</td>
<td>418</td>
</tr>
<tr>
<td>WWII</td>
<td>418</td>
</tr>
<tr>
<td>WWI</td>
<td>423</td>
</tr>
<tr>
<td>CANADIAN</td>
<td>432</td>
</tr>
<tr>
<td>CHINESE</td>
<td>433</td>
</tr>
<tr>
<td>DANISH</td>
<td>434</td>
</tr>
<tr>
<td>DUTCH</td>
<td>434</td>
</tr>
<tr>
<td>FINNISH</td>
<td>434</td>
</tr>
<tr>
<td>FRENCH</td>
<td>435</td>
</tr>
<tr>
<td>GERMAN</td>
<td>438</td>
</tr>
<tr>
<td>GENERAL</td>
<td>438</td>
</tr>
<tr>
<td>WWII</td>
<td>444</td>
</tr>
<tr>
<td>WWI</td>
<td>462</td>
</tr>
<tr>
<td>GREEK</td>
<td>527</td>
</tr>
<tr>
<td>INDIAN</td>
<td>527</td>
</tr>
<tr>
<td>IRANIAN</td>
<td>527</td>
</tr>
<tr>
<td>ISRAELI</td>
<td>528</td>
</tr>
<tr>
<td>ITALIAN</td>
<td>528</td>
</tr>
<tr>
<td>GENERAL</td>
<td>528</td>
</tr>
<tr>
<td>WWII</td>
<td>528</td>
</tr>
<tr>
<td>WWI</td>
<td>529</td>
</tr>
<tr>
<td>JAPANESE</td>
<td>532</td>
</tr>
<tr>
<td>GENERAL</td>
<td>532</td>
</tr>
<tr>
<td>WWI</td>
<td>532</td>
</tr>
<tr>
<td>WWI</td>
<td>533</td>
</tr>
</tbody>
</table>
PERUVIAN .. 541
POLISH... 542
 GENERAL ... 542
 WWII ... 542
 GENERAL ... 542
RUSSIAN/SOVIET .. 546
 NUCLEAR ... 546
 WWI ... 554
 WWII ... 554
SOUTH AFRICAN ... 567
SPANISH .. 567
SWEDISH ... 568
TAIWANESE ... 569
TURKISH .. 570
YUGOSLAV ... 570

SPECIAL TOPICS ... 571

CONFERENCES ON LIMITATION OF ARMAMENT .. 571
 WASHINGTON DC 1921-1922 ... 571
 LONDON NAVAL CONFERENCE (1930) ... 574
 LONDON NAVAL CONFERENCE (1935) ... 576
CONVOYS .. 577
 GENERAL ... 577
 WWI ... 578
 WWII ... 579
 GENERAL ... 579
 ARCTIC .. 583
 ATLANTIC ... 590
 MALTA/MEDITERRANEAN .. 599
 PACIFIC ... 602
CUBAN MISSILE CRISIS .. 603
ENIGMA -- ULTRA -- MAGIC -- CRYPTOGRAPHY ... 616
FALKLAND ISLANDS WAR, 1982 .. 633
JUTLAND ... 646
MIDGET SUBMARINES, KAITEN & FROGMEN ... 655
Q-SHIPS/COMMERCE RAIDERS/HILFSKREUZER ... 670
SUBMARINE CHASERS/TORPEDO BOATS ... 686

PERIODICAL ARTICLES .. 687

CUBAN MISSILE CRISIS ... 687
ENIGMA -- ULTRA -- MAGIC -- CRYPTOGRAPHY ... 688
MARITIME STRATEGY ... 689
SUBMARINES ... 691
 GENERAL ... 691
 BY COUNTRY .. 743
 AMERICAN .. 743
 ARGENTINIAN .. 750
 AUSTRALIAN .. 750
 AUSTRIAN .. 752
 BRITISH ... 752
 CANADIAN .. 754
 CHILEAN ... 754
 CHINESE ... 755
 DUTCH ... 756
 EGYPTIAN ... 756
 FRENCH .. 756
SEA POWER/NAVAL STRATEGY

GENERAL

Abstract: Historical evidence of genuine concern about the impact of war on the human environment can be found since the earliest civilisations. Yet, the history of war is replete with examples of serious devastation of the enemy's land and property. The relationship between peacetime human activities and the environment is in the stage of advanced public debate and scholarly attention, and much progress has been made in recent years regarding the development of appropriate instruments and institutions pertaining to the protection of the environment in peacetime. The cornerstone of modern International Environmental Law is the prohibition of transfrontier pollution, according to which, States have the responsibility to ensure that activities within their jurisdiction or control do not cause damage to the environment of other States or to areas beyond national jurisdiction. In addition, there is now a substantial body of international treaties laying down detailed regimes for various environmental sectors. Recent international conflicts, such as the 1980-1988 Iran-Iraq and the 1990-1991 Gulf wars, have raised fundamental questions about the relationship between modern International Environmental Law and armed conflict. The notion that rules of general International Environmental Law continue to apply during armed conflict is now well accepted. In its 1996 Advisory Opinion on the Legality of the Threat or Use of Nuclear Weapons, the International Court of Justice stressed that "the obligations of States to respect and protect the natural environment," applied equally "to the actual use of nuclear weapons in armed conflict." However, the international legal principles for the protection of the environment in armed conflict which are usually cited, remain at a very high level of abstraction. In the above advisory opinion, the Court offered the following broad statement.

NPS/DKL Location: GENERAL K70.E58 B64 2000
Electronic access: http://handle.dtic.mil/100.2/ADA422385

NPS/DKL Location: GENERAL JX4411 .B66 1985

Contents: Fledgling wings. -- Air power in World War I. -- Fighters and Bombers. -- Growth of air power theory. -- Air power Between the wars. -- The search for air power 1939-41. -- The growth of air power 1941-43. -- True air Superiority, then air Supremacy. -- The Cold War. -- The Cold War 1963-73. -- Post World War II Middle Eastern wars.

Abstract: For hundreds of years before the first flight at Kittyhawk on December 17, 1903, man had sought to gain the ultimate view from the sky. There were as many ideas about how the ability to fly could be of use as there were failed machines that attempted to accomplish it. This quest for air power, defined as the ability to conduct military, commercial, or humanitarian operations from the air, has had far-reaching implications not only for combat technology, but also in politics, diplomacy, technology, and mass culture. Where Alfred Thayer Mahan's classic work, The Influence of Sea Power upon History,
catalogues the elements that made naval prowess a determinant of a nation's strength, this book studies the development of air-power philosophy by examining its theory and practice as demonstrated not only in War, but in the myriad demands it makes upon the nations that employ it. In air power, as in sea power, the evolution from concept to practical execution goes through many individuals, each improving on previous work. The personalities of the inventors emerge as important factors in the creation and application of the new technology. This book focuses extensively on the impact of these personalities on air power and, thus, their effect on history. Many factors influenced the development of air power, including entirely new technologies that, in recent years, have included the jet engine and precision-guided munitions. The influence of air power was aided immeasurably by the simultaneous growth of aviation, motion pictures, radio, and, later, television. In turn, the media's influence grew tremendously because of its profound ability to observe and transmit events around the globe, thereby imposing an urgency on both military and civilian life. The Influence of Air Power upon History is a thorough examination of how air power was applied from the very earliest Days of the balloon down to the latest use of space technology. Including both air and aerospace military power in his considerations, Boyne (a retired U.S. Air Force colonel) surveys, in a celebratory fashion, the use of air power in international conflict. His analysis is perfectly in line with the technological fetishism of most U.S. war planners, almost invariably arguing that the imposition of superior air power is the most decisive factor in winning wars, and even suggesting that the American war in Vietnam would have been won with just a little more bombing. Chapters cover the development and deployment of air power doctrines by the United States, its allies, and its enemies in wars in which it was politically concerned.

NPS/DKL Location: GENERAL UG630 .B622 2003

agreements. -- Practice. -- During armed Conflict. -- Egypt-Israel 1967. -- India-Pakistan 1971. -- Arab-
War. -- Manuals. -- Soviet Union. -- United States. -- Germany. -- Judicial decisions. -- Publicists. -- The
most highly qualified publicists. -- Service lawyers. -- Legal Problems concerning the use of anti-ship
Missiles. -- The uncontroversial core. -- Attacks on Vessels sustaining the Enemy's war effort. --
Discrimination. -- Incidental Attack. -- The Possible effect of Counter-Measures. -- 5. Conclusions:
Indiscriminate use. -- Durability of peacetime agreements. -- Broadening scope of legitimate use. --
Customary basis of Contemporary law. -- Difficulties with opinio juris. -- General Principles of law.
NPS/DKL Location: GENERAL KZ6563 .B87 1998

Spanish translation of “Gunboat Diplomacy.”

NPS/DKL Location: GENERAL JX1662 .C26 1985

Originally published: London, Chatto & Windus for the Institute for Strategic Studies; New York, Praeger for the Institute for Strategic Studies, 1971 as “Gunboat Diplomacy; Political Applications of Limited Naval Force.”

Originally published: London, Chatto & Windus for the Institute for Strategic Studies; New York, Praeger for the Institute for Strategic Studies, 1971 as “Gunboat Diplomacy; Political Applications of Limited Naval Force.”
NPS/DKL Location: GENERAL V25 .C22

NPS/DKL Location: GENERAL V25 .C327 1994

"With an introduction and notes by Colin S. Gray."

Papers presented in these Adelphi Papers were given at the 17th Annual Conference of the IISS at Ronneby Brunn, Sweden, in September 1975.

Command. -- Defence Against Invasion. -- Attack and Defence of Trade. -- Attack, Defence and Support of Expeditions.

NPS/DKL Location: GENERAL/BUCKLEY V163.C8 1988

NPS/DKL Location: GENERAL V25.L84 1995

“Papers from a conference held in Halifax, N.S., in May 1996.”

NPS/DKL Location: GENERAL VA40 .M85 1998

Dutch translation of “Der Kampf um die Weltmeere.”

Dotsenko, V. D. (Vitalii Dmitrievich). Floty v Lokal'nykh Konfiktakh Vtoroi Poloviny

Abstract: With the dissolution of the Soviet Union and Warsaw Pact, the threat of global war has all but been eliminated. At the same time, the Third World is experiencing a rising tide of instability, brought about by economic and social inequities, religious fundamentalism, and resurgent ethnic and political rivalries—and fuelled by increasing military capabilities caused by the proliferation of advanced-Technology weapons. As a result of these changes, U.S. security strategy is turning from its Cold War focus on global containment to the protection of U.S. interests against regional instabilities. The most dramatic confirmation of this change in direction was the announcement by the President on 2 August 1990 of a new National Security Strategy which would focus on maintaining stability and responding to regional crises, rather than on preparing for a global conflict against the Soviet Union.

NPS/DKL Location: THESIS D78873
Electronic access: http://handle.dtic.mil/100.2/ADA256442

Contents:

PART I: OPINION IN FOCUS: Risk Perceptions: Taking on Societal Salience / Lennart Sjöberg. -- Cultural Theory, Risk Perceptions among Political Elites and Public Opinion / Ulf Bjereld. --

PART II: ACTORS IN FOCUS: Mediated Threats / Alexa Robertson. -- Verbal Politics of Estonian Policymakers: Reframing Security and Identity / Erik Noreen. --

PART III: ISSUES IN FOCUS: Securitising Submarine Intrusions / Fredrik Bynander. -- Securitising IT / Johan Eriksson. -- Framing the Palme Assassination / Eric K. Stern and Dan Hansen. -- Framing an American Threat: The European Commission and the Technology Gap / Ulrika Morth. --

Conclusion: Towards a Theory of Threat Politics / Johan Eriksson.

"SIPRI, Stockholm International Peace Research Institute."

"SIPRI, Stockholm International Peace Research Institute."

NPS/DKL Location: GENERAL D842 .D75 2000

NPS/DKL Location: GENERAL UA646.55 .N38 2000

NPS/DKL Location: GENERAL V165 .H54 1986

NPS/DKL Location: GENERAL V25 .H65

"Contains the edited proceedings of an International conference on Small and Medium Aircraft Carriers held in Southampton in December 1997."--p. 3.

Originally published: London: Constable & Co., 1999 as "Naval Battles of the Twentieth Century."

Also published as “Dreadnought, History of the Modern Battleship.”

German translation of “Jane’s War at Sea 1897-1997.”

Chinese translation of “War at Sea, 1914-45.”

Jackson, Robert and Steve Crawford. Fighting Ships of the World: Over 600

"The published writings of Arthur J. Marder":p. 233-234
NPS/DKL Location: GENERAL DA89 .N32

NPS/DKL Location: GENERAL V53 .K44 1989

Originally published: London: Hutchinson, c1988 as 1988 as “The Price of Admiralty:
War at Sea from Man of War to Submarine."

Czech translation of “Sea Warfare.”

NPS/DKL Location: GENERAL D511 .W33 1985

Committee print. 93d Congress, 2d session.

NPS/DKL Location: GENERAL V163 .M46 1998

NPS/DKL Location: GENERAL V53 .M553 1986

NPS/DKL Location: GENERAL V25 .M63 1988

Spanish translation of “La Guerre Navale.”

English translation of “La Guerre Navale.”
NPS/DKL Location: GENERAL V163 .M6413 1983

NPS/DKL Location: GENERAL U42 .M556 1996

Papers evolved from the 20th Military History Symposium, held at the Royal Military

Contents: A regular Confusion. -- Land Warfare afloat: Before 1650. -- The Anglo-Dutch Wars. -- At the dawn of the enlightenment. -- The conundrum of the line ahead. -- The advent of numerary signaling Systems. -- The zenith of the age of fighting Sail. -- The age of steam through the Great War. -- From 1918 through the Second World War. -- The Cold War and beyond. -- The crucial paradox of knowledge.

NPS/DKL Location: GENERAL DJK66 .B58 2003

Conference held to celebrate the 40th anniversary of the foundation of NATO and the 75th anniversary of the foundation of the Royal Naval Staff College at the Royal Naval College, Greenwich.
NPS/DKL Location: GENERAL VA50 .E37 1990

English translation with revisions of: "Von Salamis bis Okinawa."
NPS/DKL Location: GENERAL V27 .P34

Pemsel, Helmut. **Shi jie hai zhan Jian shi** [D.G. Shimisi Ying yi; Tu Su, Gong Tong, He Zuo yi; Wu Zhuyu jiao. Di 1 ban. Beijing Shi: Hai yang chu ban she, 1986. 328p.

Contents: Bd. 1. Beginn der Seefahrt bis 1850. -- Bd. 2. 1850 bis Heute.

Based on Thesis (M.A.) -- Dalhousie University, 1999, Sailing the blood-dimmed Tide: The Navy and the post-Modern state.

Abstract: The end of the Cold War represents a time of fundamental and perhaps Revolutionary change, akin to the other great Historical turning points in European History 1648, 1789, 1815, 1918, and 1945. The advanced industrial liberal democratic states have undergone changes, emerging as ‘post-modern’ states. The post-modern state is far more vulnerable to societal pressures than was the case during the Cold War. In such states, the concept of the national interest is under siege, as public opinion, the media, and various nonnational and transnational interests -- whether economic, social or cultural -- exert a greater degree of influence in the shaping of foreign policy. This will lead to an increasing demand for action by these states, as each particular group looks to advance its own causes. However, at the same time, these states are experiencing a decline in military budgets, as politicians search for the ‘peace dividend’. Commitments will increase as capabilities erode and are not replaced. Given the fear these states have of casualties, however, they will be reluctant to send in ground troops. Instead, it will be the navy that has to carry the burden of the commitment, which is necessarily limited, of these states to the wider world. An increasingly heavy burden, with opportunity costs and implications that are not all beneficial to the navy, may be the result.

Review: A nonacademic narrative about the major navies of the world during the past century, these three volumes divide into periods symbolized by dominant ships: The Battleship, Aircraft carrier, and nuclear Submarine. Rose, an author of specialty naval histories who served in the U.S. Navy in the 1950s, instills clarity about a tension that animates any modern navy, that Between its national strategy and the ships necessary to effect that strategy. Since ships inherently fix a strategy for years into the future, contentious theorizing erupts over the optimal vessels to construct. Rose reprises this intranaval conflict in each tome, incorporating a nation's domestic interests, which are inevitably involved because of the Great expense of navies. -- Gilbert Taylor, Booklist 103(7):8 December 1, 2006.

English translation of “Land und Meer.”

Chinese translation of “Land und Meer.”

Italian translation of “Land und Meer.”

Spanish translation of “Land und Meer.”

Contents: The twilight of Sail, 1815-30. -- Continuity and change, 1830-50. -- The 1850s. -- The ironclad Revolution. -- The 1870s. -- The Jeune Ecole. -- The rebirth of the Battleship. -- The Dreadnought and the origins of the First World War. -- Reflections on deterrence.

NPS/DKL Location: GENERAL V51 .S66 2001

NPS/DKL Location: GENERAL V53 .S66 2001

Contents: War, Intervention, and the birth of the successor states, 1914-19. -- Naval development in the
Spanish translation of “Maritime Strategy and the Nuclear Age.”

NPS/DKL Location: GENERAL V163 .T56

NPS/DKL Location: GENERAL V163 .T56 1984

NPS/DKL Location: GENERAL VA10 .T54 1987

NPS/DKL Location: GENERAL V25 .T55 2004

Contents: I. Doctrine and Fleet Tactics in the Royal Navy / James J. Tritten. -- II. Navy and Military

NPS/DKL Location: GENERAL V163 .T74 1995

NPS/DKL Location: FEDDOCS D 208.207:50

NPS/DKL Location: REFERENCE V23 .N32 2002

NPS/DKL Location: GENERAL V27.U55 1979

NPS/DKL Location: GENERAL V27.U55 1981

NPS/DKL Location: GENERAL V27 .U55 1983

NPS/DKL Location: GENERAL V27 .U55 1985

NPS/DKL Location: GENERAL V27 .U55 1991

United States Naval Academy History Symposium (12th: 1995). New Interpretations in Naval History: Selected Papers from the Twelfth Naval History Symposium held

NPS/DKL Location: GENERAL V27 .U55 1995

agony, and revulsion, the Issue of Bundesmarine reactivation for Junior Kriegsmarine Officers / Eric C. Rust. -- National Rearmament and American assistance, the case of the French Navy During the 1950s / Philippe Vial. -- Part VI, Postwar United States Navy: Waldo Lyon and the Arctic Submarine / William M. Leary. -- Charting institutional change, the United States Naval Academy During the 1960s / Todd Forney. -- Symposium keynote address: A useful Navy for 2017, what can Naval History tell us? / Robert L. O'Connell.

NPS/DKL Location: GENERAL V27 .U55 1997

Contents: Keynote speech: A useful Navy for 2017: What can Naval History tell us? / Robert L. O'Connell. -- Session 1A: "American Naval operations, 1778-1814 [Chair: Sheldon Cohen; Commentator: Michael J. Crawford]: Fox in the hen house: The successes and Failures of Rear Admiral George Cockburn in the Chesapeake, 1813-1814 / Christopher T. George. -- Investigating the Revolutionary War Penobscot Expedition / Warren C. Riess. -- Never so critical a situation as the present: English provincial reaction to John Paul Jones, 1778-1779 / Gregory P. Ripple. -- Session 1B: Twentieth Century Naval Strategic Thought and Practice [Chair: David M. Stevens; Commentator:George Baer]: "Away all Boats": The Army-Navy Joint Amphibious maneuvers of 1925 / Leo J. Daugherty. -- Naval Strategy and the origins of the Second World War in the Mediterranean / Reynolds Salerno. -- Note: Peter John Brobst, who was scheduled to speak on K.M. Pannikar and the Official mind of Indian sea power, was unable to attend. -- Session 1C: Special operations and Naval Intelligence [Chair: Dr. John Prados; Commentator: Gordon Rudd]: Donovan's boys take to the waves: OSS Maritime units and the beginnings of Subsurface Waterborne infiltration / Joseph R. Rischer. -- Archaeologists were all Spies: Sylvanus Griswold Morely, et al., and the Office of Naval Intelligence, 1917-1921 / Louis R. Sadler. -- Note: Charles H. Harris, who had been scheduled to speak, was unable to attend. -- Session 1D: U.S. Marines in the 20th Century [videorecording]: Three landmark Battles [Chair: Joseph H. Alexander; Commentator: Edwin H. Simmons]: Belleau Wood: The legend, the Myth, the reality / John G. Miller. -- Iwo Jima: The Marine Corps' toughest landing / Theodore L. Gatchel. -- Chosin: The coldest point in a Cold War / Jon T. Hoffman. -- Session 2A: The United States Naval Academy [Chair: Michael Palmer; Commentator: Thomas J. Cutler]: Naval Academy's cadet Engineering program and the rise of the U.S. Shipbuilding Industry, 1880-1920 / William H. Theisen. -- Breaking the color barrier: Wesley A. Brown and racial integration at the Naval Academy / Robert John Schneller. -- Charting institutional change: The United States Navy in the 1960s / Todd A. Forney. -- Session 2B: Small Wars: U.S. operations in the Littorals, 1987-96 [Chair: Scott Belliveau; Commentator: Frank L. Kalesnik]: Low-intensity Conflict at sea: U.S. Marines in the Persian Gulf, 1987-1988 / David Crist. -- Eagle, globe and anchor astride the isthmus: Marine operations in Panama, 1988-1990 / Preston McLaughlin. -- Liberia's civil War and the United States Marines, 1990-1996 / James Antal. -- Session 2C: European Navies [Chair: Larry V. Thompson; Commentator: Keith Bird]: Neutrality and neglect: Norwegian Naval policy, 1905-1940 / David G. Thompson. -- German Naval policy and Strategy in the inner[sic]-War period / Werner Rahn. -- Prosopographical analysis of the Polish Naval Officer Corps, 1918-1945 / M.B. Biskupska. -- Session 2D: The three German Navies in the modern era: The Kriegsmarine, Bundesmarine, and Volksmarine [Chair: James Tent; Commentator: Michael Hadley]: Staffing and training the East German Navy During it's founding Years: Old comrades, Kriegsmarine veterans, and communist youth Activities / Douglas Carl Peifer. -- Between eagerness, agony, and revulsion: The Issue of Bundesmarine reactivation for junior

NPS/DKL Location: GENERAL V27 .U55 1999

NPS/DKL Location: REFERENCE VA40 .C8

Continues: Combat Fleets of the World

NPS/DKL Location: REFERENCE VA40 .C8

Contents: The factor of space. -- positions; Bases. -- theatre and its elements. -- Strategic objectives and Fleet distribution. -- sea Control and sea denial. -- methods. -- Securing Command. -- exercising Command. -- contesting Command. -- Attacks on Maritime Trade. -- protection of Maritime Trade. -- support of the army flank.

NPS/DKL Location: GENERAL V163 .V44 1999

NPS/DKL Location: GENERAL VA10 .V68

NPS/DKL Location: GENERAL VA10 .V68

NPS/DKL Location: GENERAL E183.8.C5 Z42 1994

Abstract: This dissertation examines Anglo-American policy toward the People's Republic of China Between 1949 and 1958 and the Chinese Communist Party's reaction to that policy. The dissertation utilized recently declassified British and American documents as well as new Chinese sources to explore the interactions between a Revolutionary state and two established Western powers between 1949 and 1958. It stressed mutual influences and mutual constraints in the formation of Anglo-American policies, examining how considerations of each other's reactions affect decisions.

SEA POWER/NAVAL STRATEGY – GENERAL

AMERICAN
NPS/DKL Location: GENERAL VM140.E44 A79 1998

NPS/DKL Location: GENERAL VA58.4 A52 1993

NPS/DKL Location: GENERAL VA58.4 A76 1989

NPS/DKL Location: GENERAL DS839.7 A87 2006

NPS/DKL Location: GENERAL VA58 .B283 1994

NPS/DKL Location: GENERAL VA10 .B25

NPS/DKL Location: VA50 .B22

Transcript of a seminar held 29 May 1986, at Naval Air Station, Jacksonville, FL, moderated by James A. Barber. Participants were Dr. Francis West, Admiral Wesley McDonald, Vice Admiral Henry Mustin, and Ambassador Robert Komer.

Abstract: The Chief of Naval Operations defines FORCEnet as the "operational construction and architectural framework for Naval Warfare in the Information Age which integrates Warriors, sensors, networks, Command and control, platforms and weapons into a networked, distributed combat force, scalable across the spectrum of conflict from seabed to space and sea to land." The Trident Warrior experiments are the Navy's premier FORCEnet Sea Trial experiments. The purpose of the Trident Warrior experiments is to provide "speed to capability" and to develop supporting tactics, Techniques, and procedures. The purpose of this thesis will be to provide a basic overview of the Trident Warrior Experimentation Process. Through a step-by-step analysis, this thesis will explain and justify the many steps required to complete a successful experiment/experimentation campaign.
NPS/DKL Location: THESIS B237522
Electronic access: http://handle.dtic.mil/100.2/ADA435742

NPS/DKL Location: GENERAL VA55 .B36 1986

This report was prepared by Systems Engineering and Analysis Cohort Six (SEA-6).
Thesis technical report; December 2005.
Abstract: Recent conflicts such as Operation Desert Shield/Storm and Operation Iraqi Freedom highlight the logistics difficulties the United States faces by relying on foreign access and infrastructure and large supply stockpiles ashore to support expeditionary operations. The Navy's transformational vision for the future, Sea Power 21, involves Seabasing as a way to address these difficulties by projecting and sustaining joint forces globally from the sea. This study analyzes logistics flow to, within and from a Sea Base to an objective, and the architectures and systems needed to rapidly deploy and sustain a brigade-size force. Utilizing the Joint Capabilities Integration and Development System (JCIDS), this study incorporates a systems Engineering framework to examine current systems, programs of record and proposed systems out to the year 2025. Several capability gaps that hamper a brigade-size force from seizing the initiative anywhere in the world within a 10-day period point to a need for dedicated lift assets, such as high-speed surface ships or lighter-than-air ships, to facilitate the rapid formation of the Sea Base. Additionally, the study identifies the need for large-payload/high-speed or load-once/direct-to-objective connector capabilities to minimize the number of at-sea transfers required to employ such a force from the Sea Base in 10 hrs. With these gaps addressed, the Joint Expeditionary Brigade is supportable from the Sea Base.
NPS/DKL Location: FEDDOCS D 208.14/2:NPS-97-05-001
Branco, Robert John. The Effects of Environmental Factors on Naval Strategy. Monterey, CA: Naval Postgraduate School, 1974. (ADA781868). 104p. Thesis (M.S. in Management) -- Naval Postgraduate School, 1974. Abstract: (U) The thesis treats the need to understand the effects of environmental factors on naval strategy. Studies are made of the navies of the United States and Soviet Union with several examples of how these factors have influenced naval policy in the past. A detailed examination of these factors such as political issues, economics, and Third World nationalism, illustrates how significant these subjective elements of naval strategy are in determining policy judgments. (Author). NPS/DKL Location: THESIS B79836

Brook, Douglas A., Bryan Hudgens with Nam Nguyen, and Katherine Walsh. Benchmarking Best Practices in Transformation for Sea Enterprise. Monterey, Ca: Naval Postgraduate School, 2006. (NPS-GSBPP-06-011; ADA456223). 99p. “Technical report; 4/1/06-9/30/06; "Prepared for: Naval Sea Systems Command"-- Cover. Abstract: “Sea Enterprise is the resource-enabling component of the Navy's Sea Power 21 initiative. In recognition of a future resource-constrained environment, Sea Enterprise seeks to reform the culture and business practices of the Navy so as to generate resources internally that can be applied to reinvestment and recapitalization. Sea Enterprise contracted the Center for Defense Management Reform to research transformation and benchmarking best practices in the private sector. The aim of this research is to help Sea Enterprise understand, design and implement its agenda for organizational change. This report presents a brief recent history of management reform within the Department of Defense and a summary review of current business management transformation initiatives in the DoD and in the services. Then, a survey of the scholarly and practitioner literature on organizational change explores the questions of first-order and second-order change, and looks at models of incremental, episodic and continuous change. Next, this report examines various types of benchmarking and identifies benchmarking candidates from both private- and public-sector organizations categorized by distinctive best practices that may be applicable to Sea Enterprise. The report concludes that further in-depth benchmarking by matching Sea Enterprise with specific organizations could contribute to the success of Sea Enterprise. Modeling and benchmarking can help the leaders and managers of Sea Enterprise understand, promote, and advance the success of this important change initiative." -- p. iv. NPS/DKL Location: FEDDOCS D 208.14/2: NPS-GSBPP-06-011 Electronic access: http://edocs.nps.edu/npspubs/scholarly/TR/2006/NPS-GSBPP-06-011.pdf Electronic access: http://handle.dtic.mil/100.2/ADA456223

"This report was prepared for as an integral part of the Total Ship Systems Engineering (TSSE) educational process, which, in turn, was partially supported by funding from the Naval Sea Systems Command (NAVSEA). The work described was performed between July and December 2002."

Abstract: The need for effective operation from the sea while conducting amphibious operations ashore has never been more evident than in today's modern conflicts. As important as this task is it has not significantly changed since World War I. Sea Force is an attempt to show that sea basing, as discussed by the Chief of Naval Operations (CNO) in Sea Power 21, can be accomplished by the year 2020 with reasonable advances in technology. The concept of sea basing implies a number of capabilities that are not inherent in current expeditionary forces, among these are Ship to Objective Maneuver (STOM), indefinite sustainment, selective offload, reconstitution of forces ashore, long range Naval Surface Fire Support (NSFS), and an increased capability in command and control. The Marine Corps has also established the requirement of a 3.0 Marine Expeditionary Brigade (MEB) lift capability that is not currently met by the existing force structure. The Total Ship Systems Engineering Program undertook the task of designing a system of ships that could be brought together to enable the sea basing of one MEB for an indefinite period of time. The Sea Force design completely supports all of the operational requirements of STOM in addition to providing a path for re-supply and a method for reconstitution of forces ashore. Sea Force also is designed to be reconfigurable from a Warship to a supply ship during a shipyard availability period with minimal effort through the use of modularity. The first design analysis was based on combining the capabilities of the MPF, LMSR, and LHA ships into a single hull one-ship-does-all concept. The second design analysis was based on an MPF/LMSR variant with a separate LHA design. The third design analysis, the LHA/MPF with LMSR design, combines two ships on similar hull forms but with different structural requirements, layouts, and Missions. (53 tables, 85 figures, 11 appendixes.)

Abstract: This thesis explores the prospects for a U.S./Brazilian naval partnership for the Twenty-First Century. It examines the viability of existing multilateral agreements between the United States and Latin American countries for maritime defense of the South Atlantic. It argues that the existing agreements are outdated and ineffective, primarily due to a reduction in Cold War threat. With a naval capability ranked among the highest in the third world, and historical naval ties to the United States from both World Wars, the Brazilian navy offers the possibility to assume a greater role in western defense. As a possible means to cultivate this beneficial relationship, a shift in emphasis from the current posture of U.S./Latin American multilateral hemispheric defense, to a focused bilateral U.S./Brazilian naval partnership is suggested. The thesis also suggests that national Security threats to the hemisphere have changed to terrorism, narco-
trafficking, the spread of high technology weapons, and the rise of ethnic tensions. These threats affect both the United States and Brazil, and could lead to closer cooperation in U.S./Brazilian naval relations.

NPS/DKL Location: THESIS C573

NPS/DKL Location: GENERAL UA23 .C645

Cote, Owen R. The Politics of Innovative Military Doctrine the U.S. Navy and Fleet Ballistic Missiles. 2v.

Thesis (Ph.D.)--Massachusetts Institute of Technology, 1996.

Abstract: The Polaris and Trident II SLBM weapon systems were developed by the U.S. Navy during periods of major strategic nuclear modernization, when national leaders were concerned about the vulnerability of U.S. Air Force land based nuclear forces to Soviet attack. Both Navy systems provided a superior alternative to bomber and ICBM weapon systems of the time, but only Polaris provoked innovative changes in U.S. nuclear doctrine. These cases of innovative and stagnant doctrine are compared and used to test the explanatory power of three competing theories of the sources of innovative military doctrine. The three theories hypothesize independent, explanatory roles for civil-military conflict, intraservice bargaining, and interservice competition. The first case shows a strong causal link between intense interservice competition, a Navy decision to develop Polaris as an alternative to Air Force land based forces, and an ensuing improvement in the survivability of those land based forces. The second case shows a somewhat weaker correlation between institutionalized interservice cooperation, a Navy decision to develop Trident II as a complement rather than an alternative to land based forces, and the absence of any ensuing improvement in the survivability of those forces. Thus, Polaris caused an innovative change in nuclear doctrine while Trident II did not, and the cases show that differing patterns of interservice relations had more to do with these outcomes than civil-military or intraservice relations. The thesis concludes with a discussion of the sources of different patterns of interservice relations, and argues that civilian defense leaders can manipulate interservice competition to cause doctrinal innovation.

Electronic access: http://dspace.mit.edu/handle/1721.1/11217

NPS/DKL Location: GENERAL DS335 .C82

NPS/DKL Location: GENERAL V874.3 .C6 2000

NPS/DKL Location: BUCKLEY V103 .C9

42

German translation of “Naval Warfare.”

Abstract: With a FY 2004 budget of $114 billion, there is no question that the Department of the Navy is involved in big business. If compared to the sales revenues of the Fortune 500, the Navy would rank sixth. After having weathered a prolonged drawdown through the 1990's, Naval leadership must recapitalize its aging legacy systems. The plan to accomplish this task is the Sea Enterprise component of the Navy's Sea Power 21 strategy. In order to reach these goals, the Chief of Naval Operations needs a cadre of business-savvy line officers who can properly allocate scarce resources. The core of this group is comprised of line officers who hold the Financial Management (FM) Subspecialty designator. This thesis applies a managerial control system approach to the process of filling Financial Management billets with properly qualified FM line officers. Complex and multifaceted, the process contains three distinct components: Promotion, assignment and education. After examining levers of control that can be accessed by the FM community manager, this thesis identifies system weaknesses. Recommendations to solve the weaknesses include improved control and tailored incentives. The combination of control and incentives could improve the qualification rate of the Navy's FM officer positions and, ultimately, allow the Navy to meet its Sea Enterprise goals.

NPS/DKL Location THESIS C973325
Electronic access: http://handle.dtic.mil/100.2/ADA424816

Contents: Security planning for new uncertainties. -- Smart carrier for the RMA world. -- New operational concepts and employment considerations. -- Forward engagement after the Cold War. -- Navy operational synergies and Joint planning. -- Integrated independence of operations. -- Leveraging Technology for CVX. -- Why CVX? Why now?

NPS/DKL Location: GENERAL V874.3 .D38 1998

NPS/DKL Location: GENERAL V858 .D38 1997

Abstract: From 1923 to 1940 the U.S. Navy held Twenty-one major exercises, known as “Fleet Problems.” While only part of annual fleet training, these exercises differed from routine maneuvers and gunnery exercises. All available fleet units were integrated into a single major action…. Concepts such as dive-bombing, independent submarine operations, antisubmarine warfare, and amphibious operations were explored in a medium that stressed the thinking of naval officers as how best to fight a naval War with modern weapons.

Abstract: (U) This study attempts to identify technology required for the Navy to engage in forms of limited Warfare not previously widely studied, but whose plausibility may increase significantly over the next quarter Century. The asymmetric character of the U.S. and Soviet fleets is studied to reveal their vulnerabilities as well as opportunities for U.S. technological initiatives. (Author).

Corporate author: United States. Office of Naval Intelligence.

46

NPS/DKL Location: GENERAL VA58.4.G46 1992

NPS/DKL Location: GENERAL VA50.G68 1998

NPS/DKL Location: GENERAL VA50.N385 1997

Abstract: The purpose of this dissertation is to provide an understanding of the historical naval or maritime role in hemispheric defense by tracing the evolution of U.S. naval policy in Latin America through seven distinct although overlapping phases. These seven historical phases include the development of U.S.-Latin American Navy-to-Navy relations as well as the development of the U.S. Navy from one of deployed squadrons through the development of the fleet system into a globally recognized force. In conjunction with this, the concept of hemispheric defense and the recognition of the value of credible Latin American navies evolved through the implementation of U.S. Naval Missions, culminating in the cooperation of World War II. Through this process Navy-to-Navy relations evolved from confrontation to cooperation.

NPS/DKL Location: GENERAL VA50.G72 1982

NPS/DKL Location: GENERAL E182 .H16 1991

NPS/DKL Location: BUCKLEY V857 .H37 1997

NPS/DKL Location: GENERAL VA58.4 .H374 1990

NPS/DKL Location: FEDDOCS D 208.212:19

NPS/DKL Location: GENERAL V165 .H38 2000

NPS/DKL Location: GENERAL VA58 .H53 2006

NPS/DKL Location: GENERAL VA55 .H66 1988

NPS/DKL Location: GENERAL V167 .H84 2000

NPS/DKL Location: GENERAL V167 .H84 1986

Abstract: Foreign affairs journalist Kaplan lets readers experience up close the American military worldwide in the air, at sea, and on the ground: Flying in a B-2 bomber, living on a nuclear submarine, and traveling with a Stryker brigade on missions around the world. Provided unprecedented access, Kaplan moves from destroyers off the coast of Indonesia to submarines in the central Pacific, from simulated Iraqi training grounds in Alaska to technology bases in Las Vegas. He goes deep into their
highly technical and exotic worlds, and tells this story through the words and perspectives of the enlisted personnel and junior officers themselves--men and women who, as he writes, have "had their national identities as Americans engraved in sharp bas-relief." He not only conveys the vast scope of America's military commitments, but also shows us astonishing and vital operations as they unfold--from the point of view of the troops themselves.--from publisher description.

NPS/DKL Location: GENERAL UA23.K345 2007

NPS/DKL Location: GENERAL VA55.N24 1989

NPS/DKL Location: GENERAL V163.K64 1990

Contents: The Operational Environment Today and Tomorrow. -- Naval Expeditionary Forces. -- Surface Combatants. -- Maneuvering from the Sea. -- In Harm's Way. -- Signs of the Future. -- A Future Model. -- Inter-Service Cooperation. -- Summary and Conclusion. -- Appendixes.
NPS/DKL Location: GENERAL VA50.K73 1997

NPS/DKL Location: GENERAL UA23.K746 1984B

Abstract: Today's Navy numbers about 285 Battle force ships (a category that includes Aircraft carriers, submarines, surface combat ships, amphibious warfare ships, and various support vessels). Recently, the Navy indicated that it needs a fleet of 313 ships to perform all of its missions. Building and sustaining such a force, however, would require greater budgetary resources over the next three decades than the Navy has received in recent years. The Congressional Budget Office (CBO) estimates that the Navy would have to spend an average of about $21 billion per year (in 2007 dollars) on ship procurement to carry out its 313-ship plan -- more than 70 percent greater than its average spending between 2000 and 2005. At the same time, the Navy has plans to modernize its aircraft that, if fully implemented, would require more resources than the service currently spends on new planes and helicopters. Given the many pressures that the federal budget will face in coming decades, the Navy might not receive a sizable increase in funding. In that case, what alternative force structures could be accommodated within existing spending levels? This CBO study -- prepared at the request of the Subcommittee on Seapower of the Senate Committee on Armed Services -- examines that question. It looks at the Navy's modernization plans for ships and aircraft and their budgetary implications. It also analyzes five alternative approaches to modernization that would cost roughly the same average annual amount as the Navy has spent since 2000. In keeping with CBO's mandate to provide impartial analysis, this study makes no recommendations.
With an introduction by Fred T. Jane.

Thesis (Ph.D.) -- Harvard University, 1972.

NPS/DKL Location: GENERAL VA70.S36 L55 2001

NPS/DKL Location: E182.M242 L58 198

NPS/DKL Location: GENERAL UG485 .L63 1999

Lott, Arnold S. *A Long Line of Ships; Mare Island's Century of Naval Activity in California.* Annapolis, United States Naval Institute, 1954. 268p.
NPS/DKL Location: BUCKLEY VA70.M3 L6 1954

Abstract: This thesis reexamines the Warfighting component of the Maritime Strategy in light of recent political changes in the communist world as well as recent arms control advances. The following conclusions are reached: First, a Conventional Forces Europe (CFE) agreement and the political changes in Eastern Europe will make mobilization and reinforcement key factors in any future European conflict. Secondly, under the conditions of a START agreement, it will no longer be necessary for the Soviet Union to form protected bastions to guard its SSBNs; seeking out and attacking Soviet SSBNs could be more
risky and destabilizing. Thirdly, the START and CFE agreements, combined with improving Soviet
t submarine technology, will make the likelihood of a Soviet SLOC interdiction campaign much greater in
the event of future conflict; the U.S. should adopt a layered defense strategy in response to these
developments. Fourth and finally, because of the political difficulties associated with ground-based
intermediate-range nuclear forces, the U.S. Navy must be assuming a larger role in providing theater
nuclear deterrence in Europe.

MacGregor, David. Innovation in Naval Warfare in Britain and the United States
Between the First and Second World Wars. Rochester, NY: The University of
Thesis (Ph.D.) -- The University of Rochester, 1990.
Abstract: The dissertation compares the progress of the Royal Navy and the U.S. Navy between the
World Wars in developing and implementing new methods of air, amphibious, surface, antisubmarine and
submarine warfare. Using British Cabinet and Admiralty and U.S. Navy and Marine Corps records, it
describes the major developments in each navy in each area of Warfare and evaluates the factors which
made each navy stronger in some areas than in others. Broadly, the U.S. Navy made more progress in
air and amphibious warfare, and the Royal Navy more in surface and antisubmarine warfare. Institutional
and strategic factors favored naval aviation and amphibious warfare in the United States but discouraged
them in Britain. Those same factors, and a cultural bias favoring cautious innovation in traditional forms of
Warfare, caused the Royal Navy to make more progress in surface and antisubmarine warfare.

Mahan, A. T. (Alfred Thayer). Naval Strategy Compared and Contrasted with the
Principles and Practice of Military Operations on Land: Lectures Delivered at the
U.S. Naval War College, Newport, R.I., Between the Years 1887 and 1911.
Westport, CT: Greenwood Press, 1975, c1911. 475 p
Originally published: Boston: Little, Brown, 1911.
NPS/DKL Location: GENERAL V163 .M2 1975

Marolda, Edward J., ed. The U. S. Navy in the Korean War. Annapolis, MD: Naval
Contents: 1. Sea Power and Defense of the Pusan Pocket, June-September 1950 / Thomas J. Cutler. --
2. Assault from the Sea. The Amphibious Landing at Inchon / Curtis A. Utz. -- 3. Naval Leadership in
Korea. The First Six Months / Thomas B. Buell. -- 4. Fleet Operations in a Mobile War, September 1950-
June 1951 / Joseph H. Alexander. -- 5. Long Passage to Freedom. Black Sailors and the Integration of
NPS/DKL Location: GENERAL DS920.A2 U85 2007

McBride, William M. The Rise and Fall of a Strategic Technology: The American
Battleship from Santiago Bay to Pearl Harbor, 1898-1941. 414p.
Ph.D. Johns Hopkins University; 1990.
Abstract: The naval profession, perhaps more so than any other, has always identified with, and drawn
its power from, its artifacts. The history of the battleship within the United States Navy indicates that a
strategic imperative, interpreted by the preeminent faction within the naval officer corps, has governed the
selection of naval technologies. The social status quo has been maintained, at the cost of strategic
inflexibility, through control of the strategic and tactical roles assigned to alternate technologies.
Beginning with the anti-technology policy immediately after the Civil War, this work explores the American
adoption of the battleship and the Subsequent efforts by sea-going officers to wrest control of the
technological basis of their profession from engineering specialists between 1880 and 1910. In 1898, the
battleship strategic ethos acquired new geo-political components that affected battleship designs and naval-industrial technology development. With the refinement of submarine warfare and the development of aviation during World War I, technological factions emerged within the officer corps that challenged the supremacy of the battleship and the social status quo. The battleship hierarchy was anxious to adopt aviation, but only to augment the battleship. The 1922 Washington Naval Treaty, and the anti-naval policies of the New Era, severely limited the battleship, but the special hearings held by the navy in 1924 reaffirmed the existing technological hierarchy and the primacy of the battleship ethos. The social preeminence of the battleship faction was institutionalized through strategic and tactical doctrine refined during the 1920-30s. Naval aviation had progressed, but could not counter the momentum of the battleship strategy. The navy was rebuilt under New Deal public works funding, but the policies of Franklin Roosevelt ensured that the battleship remained supreme. The battleship ethos ended only after the majority of its artifacts were destroyed at Pearl Harbor in 1941. During World War II, the aircraft carrier replaced the battleship as the navy’s capital ship and the new aviation faction shaped strategic and tactical doctrine in order to control technology selection and sustain their preeminent status within the post-War naval officer corps.

NPS/DKL Location: GENERAL VA55 .M33 2000

NPS/DKL Location: GENERAL U102 .R48 2005

NPS/DKL Location: GENERAL/BUCKLEY VA50 .M43 1996

NPS/DKL Location: GENERAL VK388 .M47 2003

NPS/DKL Location: FEDDOCS D 201.2:SU 1

NPS/DKL Location: GENERAL HF1602.15.U6 M55 2007

NPS/DKL Location: GENERAL VA50 .M53 1991

NPS/DKL Location: FEDDOCS D 207.10/4:6

Murfett, Malcolm H. Fool-Proof Relations: The Search for Anglo-American Naval

Electronic access: http://www.nap.edu/books/0309088739/html/

NPS/DKL Location: GENERAL VA55 .T42 1997
Electronic access: http://www.nap.edu/html/tech_21st/tfnf.htm

NPS/DKL Location: GENERAL VA50 .O36 1991

Contents: Force and diplomacy in American History. -- Naval Strategy in the Twentieth Century. -- Disarmament Between World Wars. -- The negotiation and enforcement of multilateral agreements. -- The application or threat of sanctions under the League Covenant. -- Attempts to modify or implement the sanctioning provisions of the League Covenant. -- Agreements embodying sanctions outside the League Covenant: Violations and responses. -- United States responses to treaty violations by the use of sanctions, 1931-1941. -- The sanction of nonrecognition as Practiced by the United States. -- Roosevelt and Churchill: A reinterpretation of the diplomacy of World War II. -- President Truman's Control of national Security policy. -- Victory in Modern War.
NPS/DKL Location: GENERAL UA23 .O32 1972

Contents: Preface; Introduction; Background; Potential Oversight Issues; Appendix A.
NPS/DKL Location: GENERAL VA583 .O76 2006

NPS/DKL Location: GENERAL VA58.4 .O94 1995

NPS/DKL Location: FEDDOCS D 221.2:IN 8
NPS/DKL Location: GENERAL VA58 .P28 1988

NPS/DKL Location: GENERAL VA58.4 .P46 1999

NPS/DKL Location: GENERAL/BUCKLEY E182 .P84

Dissertation (Doctoral)--Johannes Gutenberg-Universität, 2002.

NPS/DKL Location: GENERAL V858 .R57 1994

Proceedings of a conference held at the University of Exeter, in July 1994.
NPS/DKL Location: BUCKLEY VA25 .N38 1996

NPS/DKL Location: GENERAL VA10 .R75 2007

Thesis (Doctoral)--Universität Frankfurt am Main, 1988.

NPS/DKL Location: GENERAL VA58.4 .R97

"Sponsored by the Institute for Joint Warfare Analysis, Naval Postgraduate School, Monterey, California."--Cover.

NPS/DKL Location: FEDDOCS D 208.14/2:NPS-IJWA-00-002

Thesis (M.S. in Military History) --. Army Command and General Staff College, June 2004.
Abstract: In a surprise move during the summer of 1955 the Secretary of the Navy selected Rear Admiral Arleigh Burke over 92 more senior admirals to become the Navy's next Chief of Naval Operations. The junior admiral went on to serve an unprecedented three terms as the Navy's principal leader, a record yet to be broken. With no formal leadership instruction aside from his Naval Academy days and abbreviated experience at the senior operational level, Burke nonetheless became a prolific strategic level leader. At the height of the Cold War Burke led the Navy through a transition in technology, moving from an era of bullets and propellers to one of guided missiles and jets. Under his watch nuclear propulsion became the standard for all US submarines while the Navy greatly enhanced its contribution to the nation's strategic nuclear capability with nuclear missile submarines. In driving these transitions Burke left his mark on Navy culture and morale, shaking the service out of the doldrums and reinvigorating it. Today's military leaders are required to deal with a large degree of ambiguity. Understanding how previous leaders dealt with complex issues may help current and future leaders understand how to deal with difficult issues effectively. It may also help leaders understand circumstances as they exist today by examining the visions and decisions of strategic leaders in the past.
Electronic access: http://handle.dtic.mil/100.2/ADA428986

Also showing as title The Navy of the Nuclear Age, 1947-2007.

NPS/DKL Location: REFERENCE VA61.S54 1987

NPS/TKL Location: GENERAL D810.S7 L49 1988

NPS/DKL Location: GENERAL VA50.G58 2002/FEDDOCS D 5.417/2:G 51

NPS/DKL Location: GENERAL VA58.4 .T495 2007

NPS/DKL Location: GENERAL V394.A4 T52 1984

Contents: Naval Aviation in Crisis. -- Seaplanes and Strategy. -- The Carrier Conundrum. -- Seaplane Reborn. -- Designs. -- SeaMaster. -- New Look, New Missions. -- Toward an Operational Force. -- End of

NPS/DKL Location: GENERAL V163 .T74 1995

NPS/DKL Location: GENERAL E746 .T9

NPS/DKL Location: GENERAL VA58 V103 .U37 1994

NPS/DKL Location: FEDDOCS Y 4.AR 5/2A:2007-2008/30

Electronic Access: http://purl.access.gpo.gov/GPO/LPS108594

First ed. by the Operations Committee of the Naval Science Dept. of the U.S. Naval Academy.

NPS/DKL Location: GENERAL V167 .U625 1977

Tektite. -- Current accomplishments & capabilities. -- Future of Navy diving. -- Display, ship visits &
demonstrations. -- Exhibitors gallery.

Woodard, Jimmy Clifford. **The U.S. Maritime Strategy in the North Atlantic and

Cover title: The U.S. and the Norwegian Sea

Abstract: This thesis examines the evolution, and theoretical basis of the United States' maritime strategy in the North Atlantic and what is referred to as NATO's Northern Flank. The strategy associated with past Secretary of the Navy, John Lehman, is no longer considered applicable in the context of today's East-West relationship and is in need of reassessment. The paper assesses the current, post Cold War situation and looks at future Security interest the United States may have in the region. Additionally, the security and defense capabilities of our allies in the region are examined. Given the United States will remain closely linked with European security issues, by examining the successes and failures of past strategies and the strengths and weaknesses of our allies, one will be better able to develop a new strategy.

NPS/DKL Location: THESIS W8343

SEA POWER/NAVAL STRATEGY -- GENERAL

ARGENTINIAN

Abstract: The Office of the Chief of Naval Operations, Plans, Policy and Operations asked the Center for Naval Analyses to evaluate Argentine naval strategy, its political and economic sustainability, its impact on other key nations in South America, and the implications for U.S. naval relations with countries of the Southern Cone. Thus, we examined in-depth the political-military Environment in Argentina, Brazil, and Chile—the three naval powers of the Southern Cone. The study considers the impact of civilian leadership on the Southern Cone armed forces, and navies in particular. It documents the themes of defense policies evolving within the region, examines broad political support for the armed forces in general, and gives special attention to navy roles and missions. The study also recommends approaches for the U.S. Navy in developing a long-term strategy toward the Southern Cone and Latin America.

NPS/DKL Location: GENERAL VA402.5 .H38 1994
Electronic access: http://handle.dtic.mil/100.2/ADA362685

Pertusio, Roberto L. **Una Marina de Guerra: Para Hacer Qué?** Buenos Aires, República Argentina: Centro Naval, Instituto de Publicaciones Navales, c1989. (Ediciones del Instituto de Publicaciones Navales; v. 85; Ediciones del Instituto de Publicaciones Navales. Colección Ciencia y técnica; 18o libro.). 255p.

Storni, Segundo R. **Intereses Argentinos en el Mar; Dos Conferencias.** 3. ed.. Buenos Aires, Instituto de Publicaciones Navales, 1967. (Colección Estrategia, 4; Ediciones del Instituto de Publicaciones Navales, 12). 121p.

SEA POWER/NAVAL STRATEGY -- GENERAL

ASIA/PACIFIC

Breckon, M. Lyall. **The Security Environment in Southeast Asia and Australia, 1995-2010.** Alexandria, VA: Center for Naval Analyses, 1996. (Research memorandum CRM-95-212; ADA304392). 69p. Abstract: The Commander, Seventh Fleet, asked CNA to assess the security environment of the Asia-Pacific Region (APR) between now and 2010. This research memorandum focuses on the most probable trends relating to Southeast Asia and Australia during this period. The project's final report, The dynamics of security in the Asia-Pacific Region (CNA Research Memorandum 95-172,January 1996), discusses the implications of these trends (and of the probable trends in other countries of the region) for U.S. forces, particularly the Navy. NPS/DKL Location: GENERAL UA832.5 .B42 1996 Electronic access: http://handle.dtic.mil/100.2/ADA306359

Abstract: Rapid change in the Asia-Pacific Region (APR)—including explosive economic growth and the shifts in regional political and security perceptions this growth will generate—will present new Problems and opportunities for U.S. defense planning in the next 15 years. Yet elements of continuity will remain, notably the critical importance of the U.S.-Japan defense relationship and continued basing of U.S. forces in that country for stability throughout the region. This will be true even as economic power becomes relatively more important than military power in Asian affairs, and as the United States becomes more interdependent with, and vulnerable to, developments in Asian economies. The Navy will become a proportionately larger element of U.S. force presence in the Pacific, carrying more of the burden of preserving regional balance and maintaining the informal security system that has evolved since 1950. Apart from Korea, no formal region-wide or subregional security structures or force-related confidence-building arrangements on the European model are in prospect. Peacetime fleet missions in the APR will focus on reassurance and on deterrence of a diffuse range of threats to regional stability. Region-wide arms modernization will reflect economic growth more than reactive arms races, unless the U.S. balancing role in regional security loses credibility. Sea and air forces will expand, but there will be no significant military challenge to U.S. forces in the Pacific. Yet distance and, especially, the perceptions of regional states require that fleet units be regionally based: Surge capability, transitory presence, or assignment or earmarking of externally based forces will not be Substitutes.

NPS/DKL Location: GENERAL UA23 B42 1996
Electronic access: http://handle.dtic.mil/100.2/ADA304392

Abstract: Since the end of the Cold War, the principle naval powers of East Asia—China, Japan, and the Republic of Korea—have increased the importance they attach to their maritime strategies relative to the changing situation in East Asia and adjoining waters. With the growing reliance on each of these countries on seaborne trade and supply of resources, including oil, the countries’ maritime defense policies, including the sea lanes of communications (SLOCs), are more important than ever. The purpose of this thesis is to explore the maritime visions of these three countries, the changing maritime security environment they address the maritime territorial disputes, in which they are engaged and the potential for a naval arms race in East Asia. It assesses the impact of Korean reunification and Chinese reunification on their maritime strategies and prospects for a regional multilateral maritime security regime. This thesis emphasizes the importance of the U.S. Navy's Forward presence in stabilizing potential problems at sea in East Asia.
NPS/DKL Location: THESIS B934
Electronic access: http://edocs.nps.edu/npspubs/scholarly/theses/2003/Mar/03Mar_Butler.pdf
Electronic access: http://handle.dtic.mil/100.2/ADA414654

NPS/DKL Location: GENERAL/BUCKLEY DS849.U6 B9

Reprint of the 1921 ed.

NPS/DKL Location: GENERAL HE327 .I54 1990

Thesis (Ph. D.) -- Australian National University, 1989. 349 l.

NPS/DKL Location: BUCKLEY V27 .A2

Abstract: The study analyses the development of the navies of South and South East Asia from the end of the Second World War until 1992. Included within the history are the services of Pakistan, India, Sri Lanka, Bangladesh, Thailand, the Philippines, Malaysia, Singapore, Brunei and Indonesia. The factors involved within the development of each navy over the last forty seven years are treated, with particular emphasis on strategic, economic and cultural considerations. The great majority of these navies have undergone considerable expansion in size and improvement in capability within the last two decades. This is partly the result of increases in budgets arising from rapid economic development within the region, but it also reflects increasing awareness amongst the countries concerned of the significance of the maritime sphere and of the complex strategic environment arising from the end of the Cold War and the rise of powers such as China, Japan and India. 145 All but the least developed now possess surface to surface missiles, modern ocean going combatants with organic helicopters and a variety of other weapons and sensors. India, Pakistan and Indonesia possess modern diesel-electric submarines, while India has experimented with a nuclear submarine. Still other countries are examining proposals to acquire submarine forces. Every nation is improving its maritime surveillance capabilities. The theme within the region is one of improved capabilities to meet ever more demanding requirements. The study analyses these changes and suggests the likely directions which each service will take, as well as the associated implications for the local security situation.
Electronic access: http://handle.dtic.mil/100.2/ADA260572

NPS/DKL Location: GENERAL DU112.4 .G73 1998

Report of a conference sponsored by the Institute for Foreign Policy Analysis Inc. for the United States Naval War College Center for Advanced Research, held March 24-26, 1977.
NPS/DKL Location: GENERAL V163 .E63

Partial contents: Co-operative Maritime Security Concerns in Northeast Asia. -- Naval Arms Build-up

NPS/DKL Location: GENERAL VA620 .K55 2000

This volume grew out of the International conference on "Marine Policy, Maritime Security and Ocean Diplomacy in the Asia-Pacific," held in Seoul, Korea, on 7-8 September 1994--p. v.

Based on a series of lectures at the Japanologisches Seminar, Universität Bonn, Wintersemester 1987/88.

Contents: 1 East Asia to 1905. -- 2 Unstable Balance 1905-1935. -- 3 The road to War 1935-1941. -- 4 The Cold War: First phase. -- 5 The Cold War: Final phase. -- 6 The quadrilateral continues. -- Conclusion: War without end?.

Cover title: Seapower in the next Century.
NPS/DKL Location: GENERAL VA58 .S42 1998

Contents: Part I. Naval weapons and arms Races: Extending the theory and findings -- East asian Naval weapons acquisitions in the 1990s -- The theory of arms Races -- Competitive arms Process Models and east asian Navies -- Submarine acquisitions in East Asia, 1989-2004 -- Part II. From theory to Practice: Some significant Regional Maritime rivalries -- Enduring rivalries and Naval arms Races -- China and Taiwan: Naval arms competition -- Part III. Great powers Naval Forces, and efforts to prevent Naval Conflict in East Asia -- The Role of the PLA Navy -- Role of the U.S. Naval Forces and Naval weapons transfers -- Preventing Naval Conflict in East Asia.

"A lecture delivered to Eton Colege History Society, February 12 1996"--Cover.

NPS/DKL Location: GENERAL VA730 .N38 1993

NPS/DKL Location: GENERAL DU29 .T54 1995

SEA POWER/NAVAL STRATEGY -- GENERAL

AUSTRALIAN

Breckon, M. Lyall. *The Security Environment in Southeast Asia and Australia, 1995-2010*. Alexandria, VA: Center for Naval Analyses, 1996. (Research memorandum CRM-95-212; ADA304392). 69p. Abstract: The Commander, Seventh Fleet, asked CNA to assess the security environment of the Asia-Pacific Region (APR) between now and 2010. This research memorandum focuses on the most probable trends relating to Southeast Asia and Australia during this period. The project's final report, The dynamics of security in the Asia-Pacific Region (CNA Research Memorandum 95-172, January 1996), discusses the implications of these trends (and of the probable trends in other countries of the region) for U.S. forces, particularly the Navy.

NPS/DKL Location: GENERAL UA870 .R69 2001

NPS/DKL Location: GENERAL VA713 .N5297 1995

NPS/DKL Location: GENERAL V214 .A8 S74 2005

NPS/DKL Location: GENERAL VA713 .M37 1998

NPS/DKL Location: GENERAL UA870 .S68 2001

Papers from "Maritime War 21" conference.

SEA POWER/NAVAL STRATEGY – GENERAL

AUSTRIAN

Contents: Framework; Foundations; Launching the Modern Navy, 1904-7; the Bosnian Crisis of 1908-9; Naval Build-up Intensifies, 1909-11; the Mediterranean Problems, 1911-12; the Naval Convention of 1913; the Balkan Wars and the Adriatic, 1912-1913; the Road to War.
NPS/DKL Location: GENERAL VA473 .V54 1996

SEA POWER/NAVAL STRATEGY-- GENERAL

BANGLADESH

SEA POWER/NAVAL STRATEGY -- GENERAL

BRAZILIAN

Bonturi, Orlando. **Brazil and the Vital South Atlantic.** Washington, DC: National Defense University: Supt. Of Docs., U.S. GPO [distributor], 1988. (ADA259350). 96p. Abstract: Throughout history, control of the seas has been critical in War and indispensable to economic prosperity. In today's global economy, the security of the world's oceans remains critical. Captain Bonturi contends that Brazil is well suited to take a leading role in the defense of the South Atlantic; Brazil's own defense is closely tied to the South Atlantic, he notes. By virtue of its geographical position and numerous good ports, Brazil is increasingly looking toward the sea for its growth as a major trading nation. In his analysis, Captain Bonturi examines the sea lines of communication so critical to Brazil's and the West's economic well-being. He identifies major choke points that could become vulnerable during a crisis, including the straight formed by the western-most coast of Africa and the eastern-most coast of South America--a line often overlooked in strategic analyses. The author also suggests a possible defense line --the 'South Atlantic Early Warning Belt'--be established between the two Continents. Captain Bonturi recommends a NATO-like organization--a South Atlantic Treaty Organization--made up of South American and African nations for the Defense of the South Atlantic.
NPS/DKL Location: GENERAL/FEDDOCS VA422 .B65 1988

Abstract: This thesis explores the prospects for a U.S./Brazilian naval partnership for the Twenty-First Century. It examines the viability of existing multilateral agreements between the United States and Latin American countries for maritime defense of the South Atlantic. It argues that the existing agreements are outdated and ineffective, primarily due to a reduction in Cold War threat. With a naval capability ranked among the highest in the third world, and historical naval ties to the United States from both World Wars, the Brazilian navy offers the possibility to assume a greater role in western defense. As a possible means to cultivate this beneficial relationship, a shift in emphasis from the current posture of U.S./Latin American multilateral hemispheric defense, to a focused bilateral U.S./Brazilian naval partnership is suggested. The thesis also suggests that national security threats to the hemisphere have changed to terrorism, narco-trafficking, the spread of high technology weapons, and the rise of ethnic tensions. These threats affect both the United States and Brazil, and could lead to closer cooperation in U.S./Brazilian naval relations.

NPS/DKL Location: THESIS C573

Abstract: The Brazilian Navy is unique among most world navies today. Since the end of the Cold War, most nations have reduced their naval power, yet Brazil has maintained a determination to possess a Blue-water fleet. Brazil is also attempting to assert itself as the regional power in South America, in this case through the development of a modern yet modest naval force capable of projecting power beyond its shores. This thesis seeks to explore Brazil's recent naval expansion through three points of view. First, Brazil is seeking possession of a blue water naval force as a likely means for it to achieve greater power and prestige amongst other powerful states in the world. Second, Brazil aspires for a permanent seat on the United Nations Security Council, and is expanding its fleet to increase its chances of being chosen. Finally, domestic politics also have a great effect on Brazil's current drive to blue water. Creation of the civilian-led defense ministry, the expensive SIVAM surveillance system, and general public sentiment all work to favor naval expansion. The thesis concludes by summarizing the three arguments and stating that each of the three arguments have collectively contributed to Brazil's naval expansion.

NPS/DKL Location: THESIS C716

Electronic access: http://handle.dtic.mil/100.2/ADA435681

Abstract: Captain Ferreira provides a perspective not available from one of our United States Fellows. Many observers foresee an increasingly influential place for Brazil in international affairs. Is the Brazilian Navy prepared to take on an expanded international role? Captain Ferreira examines the history of his country's navy, analyzes current problems, and suggests directions for future development. He identifies the basic issues facing the Brazilian Navy: Overdependence on foreign equipment, lack of funds, and excessive concentration of forces in Rio de Janeiro. As possible solutions, he proposes building more ships and naval equipment in Brazil, modernizing and expanding the fleet, and redeploying forces. Captain Ferreira's perceptions of his country's navy are of special interest to US naval strategists and to the national security planning community concerned with issues in Latin America and the South Atlantic.

"Conferência proferida pelo Vice-Almirante Hilton Berutti Augusto Moreira, no Instituto
Rio-Branco, em 17 de maio de 1972.”

SEA POWER/NAVAL STRATEGY-- GENERAL

BRITISH

British Strategic policy 1925-1943.

NPS/DKL Location: REFERENCE VA454 .B42 1982

NPS/DKL Location: GENERAL VA454 .B443 2000

NPS/DKL Location: GENERAL DK265.3 .B4

Summary: The importance of marine salvage during armed conflict has been vastly underestimated since becoming a vital Naval arm during the First World War. Between 1915 and 1918 the Admiralty Salvage Section saved nearly 400 merchant vessels, desperately needed to bring food and War materials into Britain. During the Second World War, some two million tons of shipping was successfully recovered. From D-Day onwards Admiralty salvage men cleared many stricken craft from the Normandy beaches alone, often under heavy shellfire. Then, as the Germans retreated back across Europe, salvage teams undertook vital port clearance duties, greatly aiding the Allied advance on Germany. During the Suez Crisis, Falklands Conflict and even the last Gulf War the same story can be told. Drawing on a wealth of official documents, Admiralty Salvage is the first book to explore in depth the courage, personal sacrifice and invaluable contribution these forgotten heroes have made during both peace and War. -- --
http://www.pen-and-sword.co.uk/

NPS/DKL Location: GENERAL DS777.53 .B66 1973

144p.
NPS/DKL Location: REFERENCE VA454 .B74 1985

NPS/DKL Location: GENERAL VA454 .C13 1983

NPS/DKL Location: GENERAL VA454 .D58 1965

NPS/DKL Location: BUCKLEY V103 .D6

Fraser, T.G. and Peter Lowe, eds. **Conflict and Amity in East Asia: Essays in Honour of Ian Nish.** Houndmills, Basingstoke, Hampshire: Macmillan Academic and Professional, 1992. 190p.
List of works by I. Nish: P. 182-185

NPS/DKL Location: GENERAL VC265.G7 G67 1988

Previous ed. published as “The fundamentals of British Maritime Doctrine, 1995.”

NPS/DKL Location: GENERAL CT6.I74 H8

Also published: New York: Macmillan, 1970, as "Admiral of the Fleet; the Life of John Fisher."

NPS/DKL Location: GENERAL CT6.I74 H8

NPS/DKL Location: GENERAL VA454.K3

NPS/DKL Location: VA 454.B8647 2005

German translation of “The Rise and Fall of British Naval Mastery.”

NPS/DKL Location: GENERAL DA85.K3

NPS/DKL Location: GENERAL DA89.1.F5 L36 2002

With an introduction by Fred T. Jane.

NPS/DKL Location: GENERAL VK1491 .L7

MacGregor, David. *Innovation in Naval Warfare in Britain and the United States*
Abstract: The dissertation compares the progress of the Royal Navy and the U.S. Navy between the World Wars in developing and implementing new methods of air, amphibious, surface, antisubmarine and submarine warfare. Using British Cabinet and Admiralty and U.S. Navy and Marine Corps records, it describes the major developments in each navy in each area of Warfare and evaluates the factors which made each navy stronger in some areas than in others. Broadly, the U.S. Navy made more progress in air and amphibious warfare, and the Royal Navy more in surface and antisubmarine warfare. Institutional and strategic factors favored naval aviation and amphibious warfare in the United States but discouraged them in Britain. Those same factors, and a cultural bias favoring cautious innovation in traditional forms of Warfare, caused the Royal Navy to make more progress in surface and antisubmarine warfare.

NPS/DKL Location: GENERAL DA47.2.M19 1998

NPS/DKL Location: BUCKLEY CT6.I74 M67 1995

NPS/DKL Location: GENERAL CT32.F57 1995

NPS/DKL Location: GENERAL VA454.M873 1995

NPS/DKL Location: GENERAL DS885.48 .N57 2002

NPS/DKL Location: FOLIO VA454 .H53 1987
NPS/DKL Location: GENERAL VA454 .T26

NPS/DKL Location: GENERAL DA70 .R37 1990

NPS/DKL Location: GENERAL VA10 .R75 2007

German translation of “The Strategy of Sea Power.”

Based on the Lees-Knowles lectures delivered in the University of Cambridge, 1961.
NPS/DKL Location: GENERAL V163 .R7

Based on the Lees-Knowles lectures delivered in the University of Cambridge, 1961.

NPS/DKL Location: GENERAL VA454 .R6753 2005

NPS/DKL Location: GENERAL VA454 .F95 1984

NPS/DKL Location: GENERAL V163 .T74 1995

NPS/DKL Location: GENERAL DA89 .W2
NPS/DKL Location: GENERAL VA454.W43 1982

SEA POWER/NAVAL STRATEGY -- GENERAL

CANADIAN

Issued also in French under title: "Rien de plus noble."
NPS/DKL Location: GENERAL D779.C2 O44 2002 VOL. 2 PT. 1

NPS/DKL Location: GENERAL D768.15.D71

NPS/DKL Location: GENERAL VA400.R39 1988

Also issued in English under title: "No higher purpose."

NPS/DKL Location: GENERAL UA11.S33 2002

Subtitle on cover: The golden age of the Canadian Navy in the War Against terrorism.

Abstract: As part of a major defence review meant to streamline and re-prioritize the Canadian Armed Forces (CAF), in 1969, the Trudeau government decommissioned Canada's last aircraft carrier, HMCS Bonaventure. The carrier represented a major part of Maritime Command's NATO oriented anti-submarine warfare (ASW) effort. There were three main reasons for the government's decision. First, the carrier's yearly cost of $20 million was too much for the government to afford. Second, several defence experts challenged the ability of the Bonaventure to fulfill its ASW role. Third, members of the government and sections of the public believed that an aircraft carrier was a luxury that Canada did not require for its defence. There was a perception that the carrier was the wrong ship used for the wrong role. In sum, the decision to decommission the Bonaventure was politically attractive because of economic reasons, but was made based on strategic rationale.

NPS/DKL Location: GENERAL V25 .M36 1995

NPS/DKL Location: GENERAL VA400 .H34 1991

“Prepared under DND contract no. 2SR80-00067.”

Published simultaneously in French as: Le Canada et la Bataille de l'Atlantique.

SEA POWER/NAVAL STRATEGY -- GENERAL

CHILE

SEA POWER/NAVAL STRATEGY -- GENERAL

CHINESE

Austin, Greg. **China's Ocean Frontier: International Law, Military Force, and National Development.** St. Leonards, NSW, Australia: Allen & Unwin in association with the Department of International Relations and the Northeast Asia Program,
Abstract: Since the end of the Cold War, the principle naval powers of East Asia--China, Japan, and the Republic of Korea--have increased the importance they attach to their maritime strategies relative to the changing situation in East Asia and adjoining waters. With the growing reliance on each of these countries on seaborne trade and supply of resources, including oil, the countries' maritime defense policies, including the sea lanes of communications (SLOCs), are more important than ever. The purpose of this thesis is to explore the maritime visions of these three countries, the changing maritime security environment they address the maritime territorial disputes, in which they are engaged and the potential for a naval arms race in East Asia. It assesses the impact of Korean reunification and Chinese reunification on their maritime strategies and prospects for a regional multilateral maritime security regime. This thesis emphasizes the importance of the U.S. Navy's forward presence in stabilizing potential problems at sea in East Asia.
NPS/DKL Location: THESIS B934
Electronic access: http://handle.dtic.mil/100.2/ADA414654

NPS/DKL Location: GENERAL VA633.C65 2001

"Published in cooperation with the China Maritime Studies Institute."

NPS/DKL Location: GENERAL V859.C6 C55 2007

Abstract: Relations between Washington and Beijing improved swiftly in the wake of the 9/11 terrorist attacks, especially in comparison to the nadir that had been reached during the April 2001 EP-3 incident. This new tide of cooperation has included counterterrorism initiatives, regional partnership in such complex situations as Afghanistan and North Korea, and even some modest agreement on the importance of maintaining the status quo with respect to Taiwan's status. A strong foundation for this strategic cooperation is, of course, a burgeoning trade relationship, which received a further boost from China's entry into the World Trade Organization in November 2001. In 2003, trade between the United States and China amounted to $191.7 billion, up 23.2 percent from 2002. Remarkably, the total for 2003 was more than double the figure for 1998. The United States is China's second most important trading partner nation (Japan is first). Many reasonable strategists, observing this data, consider armed conflict between Washington and Beijing impossible, given the economic losses that both would incur almost immediately. Unfortunately, history has not been kind to the school of theorizing, known as commercial liberalism, which holds that economic interdependence prevents conflict. Indeed, the belligerent powers prior to both World Wars had achieved impressive levels of economic interdependence.

NPS/DKL Location: FEDDOCS D 208.212:22

Electronic access: http://handle.dtic.mil/100.2/ADA430846

Asian Maritime Stability.

Summary: Few theorists can rival Mahan’s influence upon statesmen and strategists. He was feted not only in the United States but in Victorian Britain, the Kaiser’s Germany, and Imperial Japan. Chinese analysts now routinely invoke Mahan’s writings, exhorting their nation to build a powerful navy.

NPS/DKL Location: GENERAL VA633 H65 2008

NPS/DKL Location: GENERAL V859.C6 H68 2006

Abstract: Since 1978, China has experienced a strategic transformation in its national development. China abandoned its self-reliant approach and began a new maritime-oriented development. This study primarily examines China's maritime-oriented national development, its roles in elevating China's comprehensive national strength, and its implications for China's national security. This study discusses the rationales for China's seaward development. In terms of the geostrategic environment, China encountered less threat from its land border, but more economic and security interests from the sea.

NPS/DKL Location: GENERAL VA633 K36 2002

Cover title: Zhong guo hai jun li liang/Chung-kuo hai chün li liang

Contents: Preface; Introduction; Background; Potential Oversight Issues; Appendix A.

NPS/DKL Location: GENERAL VA633 .O76 2006

Yi, Hong-p'yo. **Chungguk ui Haeyang Chollyak Kwa Tong Asia Anbo.** Soul T'ukpyolsi: Han'guk Haeyang Chollyak Yon'guso, 2003. (Haksul ch'ongso; 27). 395p.

Revisions of papers originally presented at a haksul hoeui entitled "Chungguk ui haeyang chollyak kwa Tong Asia anbo" held at Soul Hilt'un Hot'el on June 27, 2003.

SEA POWER/NAVAL STRATEGY -- GENERAL

FRENCH

English translation of selections from “Théories Stratégiques.”

NPS/DKL Location: GENERAL V163 .C37 1994

Originally published: Tokyo: Kobo Shiron Kankokai, 1919 as (Kobo shiron; 2(5)). Japanese translation of “La Guerre sur mer.”

Swedish translation of “War on the Sea, Strategy and Tactics.”

English translation of “La Guerre sur mer, stratégie et Tactique.”
NPS/DKL Location: GENERAL/ BUCKLEY V103 .D2

English translation of “La Guerre sur mer”, and “L’esprit de la Guerre Navale.

Daveluy, René. *The Genius of Naval Warfare* [tr. by Philip R. Alger.]. Annapolis, MD, United States Naval Institute, 1910-1911. 2v.
Owing to translator's death, v. 3 ("Organisation des Forces") remains untranslated (July 1916).
English translation of “L'esprit de la Guerre Navale.”

German translation of “Étude sur le Combat Naval.”

Contents: Introduction. -- Military Abbreviations and Special Terms. -- Early Days. -- The First World War and After. -- War Comes to the CFS. -- The Blockade. -- Interregnum. -- The Base. -- Conclusion. -- Appendixes: Characteristics of French Naval Vessels: A Representative List. -- Tonnage Received by the CFS by Sea, 1940-1941. -- The Port of Djibouti. -- Sea Distances from Djibouti. -- Djibouti-Based Gulf Crisis Units. -- Winds, Tides, and Currents.
NPS/DKL Location: GENERAL VA506.D57 K63 1992

Moulin, Jean et Jacques Isnard. *De la Mer à la Terre: Les Enjeux de la Marine*

NPS/DKL Location: GENERAL V163 .T74 1995

SEA POWER/NAVAL STRATEGY -- GENERAL

GERMAN

Volume numbers for the English ed. do not correspond with those of the German ed.
English translation of “Die deutsche Kriegsmarine, 1935-1945.”

Collection of essays published in honour of Michael Salewskis 60th birthday.

Contents: Part One The Changing Framework of International Rivalry, 1840-1914: Industrialization, People's War, and the Limits to Land and Sea Power. -- The End of the Congress System, the Advent of
NPS/DKL Location: GENERAL V163 .H63 2002

German translation of "Imperialism at Sea."

German translation of "Kriegsmarine: The Illustrated History of the German Navy in World War II."

NPS/DKL Location: GENERAL D771 .J238 2001

Olivier, David H. Staatskaperei [Nationalization of Privateering]: The German Navy and Commerce Warfare, 1856-1888, 2001. 342p. Thesis (Ph.D.)--University of Saskatchewan, 2001. Abstract: This dissertation is the first attempt to examine the effects German commerce-raiding philosophies had on naval operations planning and construction policies from 1856 to 1888. Commerce-raiding doctrines reflected the awareness of the importance of overseas trade, provided a simple strategy for a second-class navy, and gave officers and crews a means of contributing to the War-effort. Electronic access: [click on Filename at bottom]

NPS/DKL Location: GENERAL CT18.A2 A2

NPS/DKL Location: GENERAL VA10 .R75 2007

NPS/DKL Location: GENERAL VA513 .S66 1997

Göttingen, Phil. F., Diss. v. 15. Febr. 1955.

Thesis (Ph.D.) -- University of Tennessee, Knoxville,1982.

Abstract: The subject of this study is the construction of the German High Seas Fleet at the turn of the Century from 1897 to 1912. Specifically, it focuses on the efforts of the Imperial Naval Office (RMA) under the direction of Admiral Tirpitz as State Secretary to coordinate and control fleet construction and the many firms caught up in that program. From the Admiral's appointment to the RMA in 1897 until the Reichstag's budget priorities shifted back to the army in 1912, the fleet was one of the outstanding sources of debate in Germany and among the western powers. Previous historical research has concentrated on political and social ramifications, but has ignored the naval-industrial relationship that was fundamental to the development of the fleet.

1st-5th ed. published by Alexander Meurer.

SEA POWER/NAVAL STRATEGY -- GENERAL
INDIAN

"A United Service Institution of India project."

SEA POWER/NAVAL STRATEGY -- GENERAL

IRANIAN

Partial contents: The Iranian Navy. -- Iranian antiship Missiles and Missile craft. -- Iranian Mine Warfare capabilities. -- Iranian Amphibious assets. -- Iranian Naval air. -- Iran's Submarine Forces. -- The Role of the IRGC's Naval branch. -- Iran's Naval Force Deployments. -- Iran's overall Naval capabilities.

NPS/DKL Location: GENERAL UA853.I7 C633 2005
NPS/DKL Location: GENERAL JX5221 .I72 1993

NPS/DKL Location: GENERAL DS318.85 .N38 1996

NPS/DKL Location: FEDDOCS D 208.207:74

SEA POWER/NAVAL STRATEGY -- GENERAL

ITALIAN

Abstract: Introduction to use of term doctrine* as used in Italy. In Italian navy, term is applied to naval thought and strategy and is similar to what is referred to in the U.S. as operational art. Doctrine may also be used at the tactical level of War. Report reviews history of Italian navy doctrine from earliest known times, medieval and pre-unitary navies are covered, with specific emphasis on the navies of Naples, the Kingdom of Sardinia-Piedmont. Venice, and with less emphasis on the Pontiff navy and the navy of Tuscany. Italian navy covered since unification. Analysis of doctrinal role during early years of Italian navy, World War I, the interwar years, World War II. And since the end of World War II. Conclusions
include: Doctrine existed in both written and non-written form; there are parallels in the building of a national Italian navy doctrine from its many parts and current efforts to create multinational navy doctrine; the influence of foreign navies was strong in the development of Italian navy doctrine; Italy has a strong tradition of doctrinal development; Italy may be an excellent case study for the development of navy doctrine by a medium-power navy; Italy shares with most other navies the problems associated with translating naval doctrine into concepts understandable by political and military leaders. (kar)p. 3

Electronic access: http://handle.dtic.mil/100.2/ADA296628

NPS/DKL Location: GENERAL V163 .T74 1995

SEA POWER/NAVAL STRATEGY -- GENERAL

103
JAPANESE

NPS/DKL Location: GENERAL DS836.B2

NPS/DKL Location: GENERAL CT20.O3 B6

NPS/DKL Location: BUCKLEY CT20.O3 B6

Abstract: Since the end of the Cold War, the principle naval powers of East Asia--China, Japan, and the Republic of Korea--have increased the importance they attach to their maritime strategies relative to the changing situation in East Asia and adjoining waters. With the growing reliance on each of these countries on seaborne trade and supply of resources, including oil, the countries' maritime defense policies, including the sea lanes of communications (SLOCs), are more important than ever. The purpose of this thesis is to explore the maritime visions of these three countries, the changing maritime security environment they address the maritime territorial disputes, in which they are engaged and the potential for a naval arms race in East Asia. It assesses the impact of Korean reunification and Chinese reunification on their maritime strategies and prospects for a regional multilateral maritime security
regime. This thesis emphasizes the importance of the U.S. Navy's forward presence in stabilizing potential problems at sea in East Asia.

NPS/DKL Location: THESIS B934
Electronic access: http://edocs.nps.edu/npspubs/scholarly/theses/2003/Mar/03Mar_Butler.pdf
Electronic access: http://handle.dtic.mil/100.2/ADA414654

Japanese translation of “Japan's quest for comprehensive Security.”

NPS/DKL Location: BUCKLEY DS839 .F2

1941. --The Asia-Pacific War, 1941-1943. -- Concluding Thoughts.
NPS/DKL Location: GENERAL DS885.48 .N57 2002

Japanese translation of “Japanese foreign Policy, 1869-1942.”

Japanese translation of “Japanese foreign policy in the interwar period.”

Spanish translation of “Life of Admiral Togo”.

Contents: Maritime dreams, Meiji realities, 1868-1878. -- Parochialism and empire: Satsuma, the South Seas, and Naval expansion, 1878-1889. -- Political baptism by fire: The Navy and the early Diet Sessions, 1890-1894. -- The rich rewards and rivalry of War, 1894-1904. -- War, pageantry, and propaganda in the service of Naval expansion, 1905-1910. -- Coercion, pragmatism, and interservice
rivalry: Elite-level Politics and Naval expansion, 1910-1913. -- The Rise and Fall of Navy Political fortunes, 1913-1914. -- Opportunism, expansion, and limitation: The Imperial Navy and Japan's Great War, 1914-1922.

NPS/DKL Location: GENERAL VA653 .S38 2005

"Illustrated London news" of September 18, 1909, attributes the translation of "Rasplata" to Prince Louis Alexander of Battenberg, in Command of the British Atlantic fleet.

NPS/DKL Location: BUCKLEY DS517 .S4

disposition and strength of Japanese ground Forces. -- Japan's Surrender Manoeuvers Events leading up
to and immediately following Japan's surrender, July-August 1945.
NPS/DKL Location: GENERAL D810.S7 L49 1988
Takagi, Sokichi. Jidenteki Nihon Kaigun Shimatsuki: Teikoku Kaigun no Uchi ni
Teratani, Takeaki. Kindai Nihon no Zosen to Kaigun: Yokohama, Yokosuka no
Yi, Hong-p`yo. Ilbon ui Haeyang Chollyak Kwa 21-Segi Tongbuga Anbo. Soul

SEA POWER/NAVAL STRATEGY -- GENERAL

KOREAN

Abstract: Since the end of the Cold War, the principle naval powers of East Asia--China, Japan, and the
Republic of Korea--have increased the importance they attach to their maritime strategies relative to the
changing situation in East Asia and adjoining waters. With the growing reliance on each of these
countries on seaborne trade and supply of resources, including oil, the countries' maritime defense
policies, including the sea lanes of communications (SLOCs), are more important than ever. The purpose
of this thesis is to explore the maritime visions of these three countries, the changing maritime Security
environment they address the maritime territorial disputes, in which they are engaged and the potential
for a naval arms race in East Asia. It assesses the impact of Korean reunification and Chinese
reunification on their maritime strategies and prospects for a regional multilateral maritime security
regime. This thesis emphasizes the importance of the U.S. Navy's forward presence in stabilizing
potential problems at sea in East Asia.
NPS/DKL Location: THESIS B934
Electronic access: http://edocs.nps.edu/npspubs/scholarly/theses/2003/Mar/03Mar_Butler.pdf
Electronic access: http://handle.dtic.mil/100.2/ADA414654
Kang, Yong-o. Haeyang Chollyak Uro P`Urobon Han-Il Kasang Tokto Haejon.
Abstract: Since the end of World War II, stability in Northeast Asia has been a key goal of the United States. Maintaining a balance of power in this maritime theater has proven important for regional stability and global economic growth. The modernization of the South Korean Navy and its changing maritime strategy will have ramifications for the U.S.-Republic of Korea (ROK) relationship in the future. In the current world situation, changing regional threats will require new approaches to maintaining future stability. The United States and South Korea must work together toward achieving stronger bilateral and multilateral relationships with other principal actors in the region to achieve this goal. The purpose of this thesis is to review the changing strategies of the United States and South Korean Navies in Northeast Asia and to examine the ramifications should a more cooperative maritime alliance structure be utilized in the future. It is relevant because the United States has played a vital role in the security of the Korean peninsula since the end of World War II, and because decisions made by South Korea regarding security matters affect the United States and its interests in the region.
NPS/DKL Location: THESIS M16436
Electronic access: http://handle.dtic.mil/100.2/ADA406973

NPS/DKL Location: GENERAL UA667.K6 Y68 1992

SEA POWER/NAVAL STRATEGY -- GENERAL

NPS/DKL Location: GENERAL UA646.3 N63 1988
NPS/DKL Location: GENERAL DE100 .L6

NPS/DKL Location: GENERAL VA63.M42 L94

NPS/DKL Location: GENERAL UA646.5.M4 N38 1985

Snyder, Jed C. **Defending the Fringe: NATO, the Mediterranean, and the Persian Gulf.** Boulder: Westview Press with the Foreign Policy Institute, School of Advanced International Studies, the Johns Hopkins University, 1987. (SAIS papers in International Affairs; no. 11). 149p.
NPS/DKL Location: GENERAL UA646.3 .S64 1987

SEA POWER/NAVAL STRATEGY -- GENERAL

NEW ZEALAND

SEA POWER/NAVAL STRATEGY -- GENERAL

NORWEGIAN

SEA POWER/NAVAL STRATEGY -- GENERAL

POLISH

SEA POWER/NAVAL STRATEGY -- GENERAL

RUSSIAN/SOVIET

Branco, Robert John. **The Effects of Environmental Factors on Naval Strategy.** Monterey, CA: Naval Postgraduate School, 1974. (ADA781868). 104p. Thesis (M.S. in Management) -- Naval Postgraduate School, 1974. Abstract: (U) The thesis treats the need to understand the effects of environmental factors on naval strategy. Studies are made of the navies of the United States and Soviet Union with several examples of how these factors have influenced naval policy in the past. A detailed examination of these factors such as political issues, economics, and Third World nationalism, illustrates how significant these subjective elements of naval strategy are in determining policy judgments. (Author).

Abstract: This thesis seeks to provide an historical understanding of Russian and Soviet naval developments. This historical basis is provided to complement technological analysis of Soviet naval concepts and systems. The origins of Soviet naval traditions are examined, beginning with the establishment of the ancient Russian state of Kiev, the birth of the Tsarist Navy (under Peter I), the origins of the Communist State and Navy, and concluding with the Soviet naval developments during the Second World War. In examining these developments significant naval victories (Sweden, 1721; and Tchesme, 1770) and defeats (Crimean, 1853; and Tsushima, 1905) are noted, along with non-combat administrative reforms. The employment of the Russian Navy in World War One and the Soviet Navy in World War Two are also examined. The conclusion is drawn that the primary mission of the Soviet Navy is to support the Soviet Army in a continental theater. This conclusion is based on the historical failure of the Russian and Soviet Navies in conducting blue-water operations (inferring a notion of perceived futility in attempting these operations), the historical success in conducting coastal operations in support of the army (inferring the utility of these types of operations), and the historical land combat bias of the Russian and Soviet Militaries.

NPS/DKL Location: THESIS D14776

Originally published: Sankt-Peterburg: OAO "Ivan Fedorov", 1997 as “Mify i legendy russkoii morskoi istorii.”
Previously published: Peterburg: NEVA; Moskva: Izd-vo "OLMA-PRESS", 2000, Izd. 2-e, ispr, i dop.

Dotsenko, V. D. (Vitalii Dmitrievich), Georgii M. Getmanets, Viacheslav N. Shcherbakov; V. N. Ponikarovskii. **Morskie Bitvy Rossii: Tri veka Russkoi Morskoi Slavy.** Sankt-

Foreword by Arleigh Burke.
NPS/DKL Location: GENERAL VA573 .E4

NPS/DKL Location: GENERAL VA573 .F18

NPS/DKL Location: GENERAL VA573 .F2

Abstract: (U) This study attempts to identify technology required for the Navy to engage in forms of limited Warfare not previously widely studied, but whose plausibility may increase significantly over the next quarter century. The assymetric character of the U.S. and Soviet fleets is studied to reveal their vulnerabilities as well as opportunities for U.S. technological initiatives. (Author).
NPS/DKL Location: MICROFORM ADA051093

Gebhardt, James F., trans. **The Soviet War at Sea.** Minneapolis, MN: East View Publications, 1994-.
Contents: V. 1. Submarine Warfare

English translation of "Morskaia moshch’ gosudarstva."
NPS/DKL Location: GENERAL VA573 .R43

Abstract: This paper looks briefly at Soviet naval strategy and sketches the shape of the navy that will likely evolve to execute that strategy in the eighties.
NPS/DKL Location: GENERAL UA23 A34 78-3

Abstract: In this paper, a continuing topic of concern to US security policymakers is addressed--the growing qualitative and quantitative improvements in the Soviet military establishment. Perhaps one of the more interesting aspects of this trend has been the marked improvement in the strengths and capabilities of the Soviet Navy, which, as the author notes, has undergone a Revolution. Commander Steve Kime has published several earlier pieces about Soviet maritime affairs. In this issue paper he provides a useful perspective on current Soviet naval initiatives by tracing the historical development of the Russian Navy to its current status as a formidable nuclear force with global reach. In fact, as the study suggests, it is a force which challenges the national will of the United States to remain the world's leading seapower.
NPS/DKL Location: GENERAL UA23 A345 80-1

NPS/DKL Location: GENERAL VA573 S65

"This book derives from the Third annual Seminar on Soviet Naval Developments held
at Dalhousie University, Halifax, Nova Scotia, in September 1974.

NPS/DKL Location: GENERAL/BUCKLEY VA573.S66

"Published for the Centre for Foreign Policy Studies, Department of Political Science, Dalhousie University, Halifax, N.S."
NPS/DKL Location: GENERAL VA573.S67

NPS/DKL Location: GENERAL VA573.M23

NPS/DKL Location: GENERAL/BUCKLEY VA50.M43 1996

Russian Book Book 949p.

NPS/DKL Location: GENERAL DK56.M6

NPS/DKL Location: GENERAL VA513.P45 1994

NPS/DKL Location: GENERAL/REFERENCE VA573 .P598 1986

NPS/DKL Location: REFERENCE VA573 .P598 1991

Polmar, Norman, ed. *Soviet Naval Developments; Prepared at the Direction of the Chief of Naval Operations by the Director of Naval Intelligence and the Chief of Information, Department of the Navy, Washington, DC* Annapolis, MD: Nautical & Aviation Pub. Co. of America, c1979. 119p.
First published by the Office of Naval Intelligence, 1974 as Understanding Soviet Naval developments.
NPS/DKL Location: GENERAL VA573 .S64

NPS/DKL Location: GENERAL VA573 .R36 1983

NPS/DKL Location: GENERAL VA573 .R36 1989

NPS/DKL Location: GENERAL VA573 .R54 2001

NPS/DKL Location: GENERAL VA573 .S3

NPS/DKL Location: GENERAL UA770 .S63

English translation of “Voennaia Strategiia.”

Comparison of 1962 and 1963 eds. of "Voennaia Strategiia", translated with texts in parallel columns.

NPS/DKL Location: GENERAL UA770 .S6

"A Rand Corporation research study."

English translation of “Voennaia Strategiia.”

NPS/DKL Location: GENERAL U162 .S613 1963

NPS/DKL Location: GENERAL UA770 .S62

English translation of “Voennaia Strategiia.”

NPS/DKL Location: GENERAL UA770 .S64 1975

French translation of “Voennaia Strategiia.”

Walt, Stephen M. **Analysts in War and Peace: MccGwire, McConnell, and Admiral Gorshkov.** Alexandria, VA: Center for Naval Analyses, 1987. (Professional paper; 458);(ADA187842). 63p. Abstract: This paper is an attempt to evaluate the debate between two Western analysts of the Soviet Navy. The material in question is Soviet military literature, and the focus is on Admiral Sergei G. Gorshkov. Our two scholarly protagonists are James M. McConnell and Michael K. MccGwire. There are two major questions. First, was Gorshkov speaking authoritatively in his celebrated series Navies in War and Peace? Second, what was he saying? Was he elaborating a novel strategy of withholding SSBN? Alternatively, was the Gorshkov series a polemic for an expansion of the Soviet Navy along more traditional lines, with defense against Western naval strike forces as a principal mission? In this essay, I focus primarily on the second of these questions. NPS/DKL Location: MICROFORM ADA187842

SEA POWER/NAVAL STRATEGY -- GENERAL

SOUTH AFRICAN

Based on the proceedings of the Conference on Mercosur/Mercosul and SADC, which occurred at the South African Institute of International Affairs in Johannesburg, South Africa, from 27 to 28 October 1998.

"Embassy of Argentina; Embassy of Brazil; Embassy of Paraguay; Embassy of Uruguay; Embassy of Chile"--Cover.

SEA POWER/NAVAL STRATEGY -- GENERAL

SPANISH

Contents: T. 1. El Mar en la Guerra y en la Paz Hasta la II Guerra Mundial. -- t. 2. El Mar en la
Il Guerra Mundial. -- t. 3. El Mar en la era Atómica.

NPS/DKL Location: GENERAL V163 .T74 1995

SEA POWER/NAVAL STRATEGY -- GENERAL

SWEDISH

SEA POWER/NAVAL STRATEGY -- GENERAL
TURKISH

WWI

GENERAL

Groos, Otto, ed. La Guerra nel Mare del Nord [Walter Gladisch, Raffaele de Courten, and Waldimiro Pini, translators]. Livorno, Topografia della R. Accademia Navale, 192?. 3v. Italian translation of "Der Krieg in der Nordsee."

Groos, Otto, ed. War in the North Sea [translated by E.C. Magdeburger]. Newport, RI, Naval War College, Intelligence Department, 1931. 3 v. in 2v. English translation of “Der krieg in der Nordsee.”

Groos, Otto, ed. The War in the North Sea. Volume I. From the Beginning of the

Abstract: Translated from the official German naval history of the First World War, this account is based upon the War diaries of the commanding officers involved and makes extensive use of the texts of naval staff memoranda and instructions, operation and War orders, and German wireless messages. Concentrating on the North Sea area, the volume begins with an examination of the background of the conflict and the preliminary German preparations for the Warvis-a-vis those of the British Navy, and then proceeds to the early operations of the two fleets during August 1914. The detailed treatment reflects the importance of this initial stage of the contest, in which are exhibited the maritime planning and determinations that set the course of the entire naval conduct of the War: The Blockade by Britain and the German employment of the submarine and mine warfare. Relevant appendices, tables, and charts accompany each part.

English translation of “Der krieg in der Nordsee.”

English translation of “Der krieg in der Nordsee.”

English translation of “Histoire du Blocus Naval (1914-1918).”

NPS/DKL Location: BUCKLEY D581 .G9

Based on the author's thesis, Harvard University.

NPS/DKL Location: GENERAL DE98 .H2

NPS/DKL Location: GENERAL D580 .H34 1994

NPS/DKL Location: GENERAL D581 .H39 2002

NPS/DKL Location: GENERAL D580 .H6

Review: Most important are Mr. Layman's case studies of the successes and missed opportunities of naval aviation in its most significant role of the War, strategic reconnaissance. These included the defense of the Suez Canal, anti- U-Boat operations, the Dardanelles/Gallipoli Campaign, and, of course, the Battle of Jutland. Two further commendations are due to the author and his editors for covering all theaters of operations equally well (they do not disproportionately focus on the North Sea and Atlantic) and for the tremendous selection of photographs supporting the text. -- Michael E. Hanlon, Research Editor, *Relevance: The Quarterly Journal of The Great War Society*, 1997.
Electronic access: http://www.worldwar1.com/cr002.htm

Willmott, H. P. *První Svetová Válka* [z anglického originálu prelozil Karel Kopicka]. V
Czech translation of "The First World War."

SEA POWER/NAVAL STRATEGY -- WWI

AMERICAN

NPS/DKL Location: GENERAL E182 .C63 2000

NPS/DKL Location: GENERAL VA57 .C65 1987

PS/DKL Location: BUCKLEY V103 .F5 1988

Frothingham, Thomas Goddard. **The Naval History of the World War.** Cambridge,
Harvard University Press, 1924-26. 3v.
"This work has been compiled from data provided by the historical section, United States Navy."
PS/DKL Location: BUCKLEY D580 .F9

NPS/DKL Location: GENERAL/BUCKLEY E182 .S74

NPS/DKL Location: GENERAL E182 .S75

SEA POWER/NAVAL STRATEGY -- WWI

AUSTRALIAN

Originally published: Sydney: Angus & Robertson, 1928.

SEA POWER/NAVAL STRATEGY -- WWI

132

German translation of “The Imperial and Royal Austro-Hungarian Navy.”

NPS/DKL Location: GENERAL VA473 .S663 1994

SEA POWER/NAVAL STRATEGY -- WWI

BRITISH

NPS/DKL Location: GENERAL D580 .B4

Abstract: Most people think of World War I only in terms of trench Warfare and biplanes, but with [this book, the author] reveals an important but often overlooked aspect: The sea. This classic history of the Great War at sea combines graphic and stirring accounts of all the principle naval engagements-battles overseas, in British waters and, for the first time, under the sea-with analysis of the strategy and tactics of both sides. Vividly recounting these battles, [he] confirms the Allied navies' vital contribution to victory. Illustrated with maps, plans, [the book] brings long-overdue attention to the naval history of World War I. - - http://www.amazon.com.

Distribution is restricted to RFB & D members who have a documented print disability such as a visual impairment, learning disability or other physical disability.

NPS/DKL Location: GENERAL D582.J8 B73

German translation of “Strange Intelligence.”

French translation of “Their Secret purposes.”

French translation of “Strange Intelligence; Memoirs of Naval Secret Service.”

NPS/DKL Location: INTELL DA89 .B8 1931

NPS/DKL Location: GENERAL D568.3 .C3 1924

NPS/DKL Location: BUCKLEY D568.3 .C4

Groos, Otto. **Hoe Sterk is de Britische Vloot**. s'Gravenhage: Van Cleef, 1941. 29p. Dutch translation of “Die Grenzen der britischen Seemacht.”

of the U-Boat, surrender, and scuttle.
NPS/DKL Location: GENERAL D581 .H56 1986

NPS/DKL Location: GENERAL D582.F2 H8

NPS/DKL Location: GENERAL V53 .K44 1989

NPS/DKL Location: GENERAL V53 .K44 1990

NPS/DKL Location: GENERAL VA454 .M2

French translation of “Tigris Gunboats.”

Publisher’s description: March 2007 sees the anniversary of the fall of Baghdad - not in 2003, but 1917. Few people realize that the latest American-led invasion was prefigured by a poorly-resourced but ultimately successful British campaign during the First World War. Where the Americans had overwhelming air superiority, the British enjoyed a similar advantage - naval power. In fact, the army’s advance up the Tigris marshlands against heavy odds was only possible thanks to the close artillery support of the Navy’s gunboats and the transport capacities of river steamers.

Beginning as an ad hoc operation by the Indian Army to secure Western oil supplies (only the first of many echoes of the present), startling initial successes were followed by overweening ambition, the disastrous surrender at Kut, a reassessment of strategy and the final triumphant capture of Baghdad, which was quickly secured with little destruction and no looting. In each phase, the Navy played a major role, eventually building special shallow-draft vessels for the task, which were shipped out in kit form and assembled at Basra. Familiar problems, like inter-tribal rivalry, were faced from the outset, but with experienced colonial administrators brought in from India, the British were well-equipped to preserve civil order after military victory.

Written with insight and authority by the man who commanded the naval forces, it provides a fascinating insider's view of an operation that did not always run smoothly but whose results look all the more impressive when compared with the recent history of Iraq. This is emphasised in a new Foreword by Sir Jeremy Greenstock, until his resignation in 2004 the deputy to Paul Bremer in the Coalition Provisional Authority.

Originally published: London: Melrose, 1932 as "Tigris Gunboats: A Narrative of the Royal navy's Co-operation with the Military Forces in Mesopotamia from the beginning of the War to the capture of Baghdad (1914-17)".

NPS/DKL Location: GENERAL D771.R695

Contents:

Review: The Gallipoli campaign of 1914–15 is one of the events of the First World War that continues to seize imaginations today. The first modern seaborne landing of British, French, Australian, New Zealand, and Indian forces on a hostile—and what proved to be a well-defended—peninsula, the attack has been
remembered for its many acts of individual heroism as well as its unprepared leaders. Of particular fascination, and until now largely overlooked in historical accounts, are the naval dimensions of the campaign. The Navy's presence at Gallipoli crucially proved how influential submarine power could be. This absorbing book provides the only account of the complete Allied submarine and related German U-Boat activity, integrated with a thorough analysis of the strategies and actions of all land, sea, and air forces. Incorporating patrol and technical reports and personal testimonies, Victor Rudenno's gripping narrative does full justice to the dramatic and inspirational battles in the Dardanelles. --

NPS/DKL Location: GENERAL D568.3 .R83 2008

NPS/DKL Location: GENERAL VA454 .S86 1989

SEA POWER/NAVAL STRATEGY -- WWI

FRENCH

SEA POWER/NAVAL STRATEGY -- WWI

GERMAN

Berghahn, Volker Rolf. *Der Tirpitz-Plan; Genesis und Verfall Einer Innenpolitischen Krisenstrategie unter Wilhelm II*. Düsseldorf, Droste Verlag, c1971. (Geschichtliche
NPS/DKL Location: GENERAL D581 .B66 2005

NPS/DKL Location: GENERAL VK1491 .B7

NPS/DKL Location: BUCKLEY VK1491 .G46 1999

German translation of “Jutland to junkyard: The raising of the scuttled German High Seas Fleet from Scapa Flow: The Greatest Salvage Operation of All Time.”

NPS/DKL Location: GENERAL D581 .H39 2002

Kelly, Patrick James. The Naval Policy of Imperial Germany 1900-1914.
Washington, DC: Georgetown University, 1970. 551 l.
Thesis (Ph.D.) -- Georgetown University, 1970.

Summary in German.

French translation of “Scapa Flow: Das grab der deutschen Flotte.”

English translation of “Scapa Flow: Das grab der deutschen Flotte.”

Italian translation of “Scapa Flow: Das grab der deutschen Flotte.”

Smith, Allen. *German Submarine Warfare, May 1915 to January 1917: An Analysis of the Provocative Events Leading the U.S. from a Strict Observance of Neutrality to Intervention in Europe, Including the Effects of These Events on U.S. Policy Prior to Entrance into World War II*. s.l.: S.n., 197-?. 22 l.
Typed MS, US Naval Academy.

NPS/DKL Location: GENERAL DD120.G7 S73 2001

Originally published: Berlin: E.S. Mittler, 1929.

English translation of "Die Seestrategie des Weltkrieges."

NPS/DKL Location: GENERAL D581 .W413 1989

NPS/DKL Location: GENERAL VA513 .W255 1992

SEA POWER/NAVAL STRATEGY -- WWI

GREEK

Contents: Greek Naval policy and the Great Powers before 1910. -- Greek Naval policy and the Great Powers, November 1910-May 1913. -- Greek Naval policy and the Great Powers, June 1913-July 1914. -- Greek Naval policy and the Great Powers, Aug. 1914-June 1917. -- Greek Naval policy and the Great...
Powers, July 1917-March 1919.

SEA POWER/NAVAL STRATEGY -- WWI

ITALIAN

SEA POWER/NAVAL STRATEGY -- WWI

JAPANESE

SEA POWER/NAVAL STRATEGY -- WWII

WWII

GENERAL

English translation of “La Guerre aéronavale en Méditerranée, 1939-1945.”

NPS/DKL Location: D770 .B4 BUCKLEY

HMS Penelope. -- USS Pensacola. -- Pola. -- Prinz Eugen. -- DESTROYERS: USS Allen M. Sumner. --
Kari Galster. -- HMS Kelly. -- USS Johnston. -- Yukikaze. -- SUBMARINES: I-400. -- USS Ray. -- USS
Tench. -- U-47. -- LANDING SHIPS: LST. -- LST Mk 3. -- ESCORTS AND PATROL SHIPS: HMS
Anchusa. -- Fairmile Type C MTB. -- HMS Jervis Bay.

NPS/DKL Location: GENERAL D770 .H68 1986

Hough, Richard Alexander. The Longest Battle: The War at Sea 1939-45. London:

Howarth, Stephen and D.G. Law, eds. The Battle of the Atlantic 1939-1945: The 50th
Anniversary International Naval Conference (May 1993, Liverpool). London:

Hughes, Terry and John Costello. The Battle of the Atlantic. Dial Press/J. Wade,
Also published: London: Collins, c1977 as “The Battle of the Atlantic,” by John Costello
and Terry Hughes.
NPS/DKL Location: GENERAL D770 .H94

Ireland, Bernard. Collins/Jane's Warships of World War II. Glasgow: HarperCollins,

Ireland, Bernard. Jane's Naval History of World War II. New York: HarperCollins,

Ireland, Bernard. Jane's Schwimmende Bastionen: Schiffe des II. Weltkriegs;
German translation of “Jane's Naval History of World War II.”

Ireland, Bernard. The War in the Mediterranean 1940-1943. Barnsley, South
Yorkshire: Leo Cooper, c2004. 224p.
Contents: To the Brink: The Situation to June 1940. -- 'Parallel War': June to September 1940. -- The
Opening Round: September to December 1940. -- Offensive and Counter-Offensive: December 1940 to
May 1941. -- Peripheral Activities; February 1941 to August 1941. -- The 'Dominant Theatre': May 1941 to
July 1941. -- To the Fall of Tobruk: December 1941 to June 1942. -- To First Alamein: June 1942 to
August 1942. -- The Turning of the Tide: August 1942 to November 1942. -- 'Torch' and Toulon:
November 1942. -- The Road to Tunis: November 1942 to March 1943. -- The End in North Africa: March
1943 to May 1943.
c1993.
NPS/DKL Location: GENERAL D763.M47 I74 2004

146
Italian translation of "Entscheidungsschlachten des Zweiten Weltkrieges."

Issued by Arbeitskreis für Wehrforschung, Stuttgart.
English translation of "Entscheidungsschlachten des Zweiten Weltkrieges."

Jacobsen, Hans Adolf and Jürgen Rohwer, eds. *Decisive Battles of World War II; the German View* [translated from the German by Edward Fitzgerald]. 1st American ed..
Issued by Arbeitskreis für Wehrforschung, Stuttgart.
English translation of "Entscheidungsschlachten des Zweiten Weltkrieges."

NPS/DKL Location: GENERAL D743 .J2

"This edition is authorized for sale only in the United States, its territories and possessions, and Canada"--T.p. verso.
NPS/DKL Location: GENERAL D770 .K418 1995

An encyclopedic reference as well as a readable narrative history of WWII covering all aspects such as social movements, alliances, ideologies, leadership, significant battles, media coverage, War crimes, the home fronts, refugees, and the aftermath. 200 Illustrations.

NPS/DKL Location: GENERAL D770 .K63 1999
NPS/DKL Location: GENERAL D767 .L48 1995

NPS/DKL Location: GENERAL D766 .M2

NPS/DKL Location: GENERAL D743.2 .M28 1987

NPS/DKL Location: GENERAL D743 .G655 2003

NPS/DKL Location: GENERAL/BUCKLEY D770 .M49 1995

NPS/DKL Location: GENERAL VF347 .P66 1997

NPS/DKL Location: BUCKLEY D770 .P9
Im Auftrag der Internationalen Kommission für Militärgeschichte und der Bibliothek für Zeitgeschichte, Stuttgart.

Rohwer, Jürgen and Hildegard Müller, eds. **Neue Forschungen zum Zweiten Weltkrieg: Literaturberichte und Bibliographien aus 67 Ländern.** Koblenz: Bernard & Graefe, 1990. (Schriften der Bibliothek für Zeitgeschichte; Bd. 28). 564p.
"In Zusammenarbeit mit dem Comité Internationale d'Histoire de la Deuxième Guerre Mondiale und der Commission Internationale d'Histoire Militaire Comparée."

Typed manuscript.
English translation of "Entscheidung im Pazifik; die Ereignisse im Stillen Ozean, 1941-1945."

NPS/DKL Location: GENERAL D770 .R44 1990

NPS/DKL Location: BUCKLEY D766 .S8

Contents: V. 1. Allied communication Intelligence and the Battle of the Atlantic. -- v.2. U-Boat Operatons. -- v. 3. German Naval communications Intelligence. -- v. 4. Technical Intelligence from Allied C.I.

"Released by the Department of the Navy, Naval Security Group Command Headquarters."

Written, under contract to the U.S. Navy Department, by Vice-Admiral Eberhard Weichold, German Admiral in Rome from June 1940 until March 1943.

NPS/DKL Location: FOLIO VA52.A94 W4 1951

NPS/DKL Location: BUCKLEY VM365 .U5

SEA POWER/NAVAL STRATEGY -- WWII

AMERICAN

Asada, Sadao.

NPS/DKL Location: GENERAL DS839.7 .A87 2006

Bath, Alan Harris.

NPS/DKL Location: GENERAL D810.S7 B35 1998

Bischof, Gunter, and Robert L. Dupont, eds.

NPS/DKL Location: GENERAL D767.P334 1997

Brodie, Bernard.

Brodie, Bernard.

NPS/DKL Location: GENERAL V107 .B82

NPS/DKL Location: GENERAL V107 .B83

NPS/DKL Location: GENERAL/BUCKLEY V107 .B8

Arabic translation of "A Guide to Naval Strategy."

Cover title: Una Guia de estrategía Naval.

Brodie, Bernard. **Sea Power in the Atomic Age.** Newport, RI: United States Naval War College, Dept. of Intelligence, 1949. 27 l.
Lecture by Professor Bernard Brodie: Naval War College, Newport RI, 19 January 1949.

Expansion of Thesis (PH. D.)--University of Chicago, 1940.
NPS/DKL Location: GENERAL V25 .B8 1941
NPS/DKL Location: GENERAL V25 .B8 1943

NPS/DKL Location: GENERAL V858 .C49 2006

NPS/DKL Location: GENERAL U42 .C56 1991

NPS/DKL Location: GENERAL D770 .C9

NPS/DKL Location: GENERAL D767.2 .F45 2006

Originally published: Westport, CT; London: Praeger, 1996 as “Commando!”

Feuer, A. B. **Commando!: The M/Z Unit’s Secret War Against Japan.** Westport, CT;

Subsequently published: Mechanicsburg, PA: Stackpole Books, 2006, as "Australian Commandos: Their Secret War Against the Japanese in World War II."

NPS/DKL Location: GENERAL/INTELL D810.S7 F45 1996

NPS/DKL Location: BUCKLEY CT7.A42 G34 1995

NPS/DKL Location: GENERAL D769.45 .G57 1990

NPS/DKL Location: GENERAL D774 .M5 G76 2004

Contents: Naval Chronology, WW II: A) 1939; b) 1940; c) 1941; d) 1942; e) 1943; f) 1944; g) 1945. -- U.S. Naval Losses. -- British Submarine Losses. -- Japanese Submarine Losses. -- German Submarine Losses. -- Italian Submarine Losses. --Principal civilian Officials and Naval Officers in Command, 7
December 1941-2 September 1945.

NPS/DKL Location: GENERAL CT6 .O7 H66 1992

Contents: The Pacific background. -- Why Japan gambled. -- The Last clear chance. -- The long postmortem. -- The course of empire. -- Bataan through Midway. -- The Counterthrust. -- The First two Days. -- The Battle of Savo Island. -- Settling in. -- Up Against it. -- A mixed picture. -- Courage and ambivalence. -- Medical Issues. -- The end of the beginning.
Approval Note: Examines the history of misunderstanding before Pearl Harbor & success of Marines' early ground action -- YBP.

NPS/DKL Location: GENERAL D779.F7 K64 1994

NPS/DKL Location: GENERAL D767.98 .K63 1995

NPS/DKL Location: GENERAL VA58.4 .L32 1983

NPS/DKL Location: GENERAL D750 .L62

Contents: The World Turned Upside Down. -- "To Retrieve Our Initial Disaster". -- The Wake "Fiasco". - To Samoa with a Carrier. -- The First Counterattack. -- To the Southwest Pacific. -- "The Best Day's

NPS/DKL Location: GENERAL D767 .L86 2006

Japanese translation of “War Plan Orange.”

NPS/DKL Location: GENERAL VA50 .M53 1991

Contents: Genesis -- The Marshalls -- The Marianas -- Peleliu -- Iwo Jima and Okinawa -- The home islands and the Bomb -- Conclusions and lessons learned.
NPS/DKL Location: INTELL/GENERAL D810.S7 M577 2004

Italian translation of “The two Ocean War; a Short History of the United States Navy in the Second World War.”

Japanese translation of “The two Ocean War; a Short History of the United States Navy in the Second World War.”

Parshall, Jonathan B. and Anthony P. Tully. *Shattered Sword: The Untold Story of*

NPS/DKL Location: GENERAL D774.M4 P37 2005

A publication of the Institute of International Studies, Yale University.

NPS/DKL Location: GENERAL D843 .R3

NPS/DKL Location: GENERAL VA58 .S6 1965

Contents: PREWAR COMMUNICATIONS INTELLIGENCE: A Brief History of Communications Intelligence in the United States, Lawrence S. Safford, USN, on pre-Pearl Harbor History, 1917-1941-- The ORANGE Maneuvers and Analysis of Information Obtained, Ellis M. Zacharias, USS Marblehead Cruise to Nagasaki-Kobe-Shanghai, October 1927. -- ORANGE Navy's Reaction to Changkufeng Incident, August 1938 Japanese Navy's response to Soviet occupation of Changkufeng in Siberian-Manchurian-Korean border dispute. -- Radio Security Station, Fourth Marine Regiment, Shanghai, China U.S. Navy's First shore-based intercept station, concentrating on Japanese (ORANGE) naval traffic,

NPS/DKL Location: GENERAL D810.S7 L49 1988

Contents: September-December 1939: I Went Down with the Royal Oak; Conquering the Magnetic Mine; The Battle of the River Plate. -- January-December 1940: One Ship and Two Men; The Jervis Bay. -- January-December 1941: Malta Submarines; Pearl Harbor and After. -- January-May 1942: The Battle of the Channel; The Atlantic and the Pacific; Bomb Disposal on a Submarine; Enter the Rescue Ships; Submarine Attack in Corfu Harbor; The Battle of the Coral Sea. -- June-December 1942: Convoy PQ17; Midway; A Girl Called Johnnie; Invasion of the Solomons; Loss of the Leedstown; Guadalcanal and Tassafaronga; Rescue Ships in Trouble. -- January-December 1943: Americans in the Atlantic; Yanks on Their Way Back; John Kennedy and PT-109; Midget Subs Versus the Tirpitz; Saga of the Liscome Bay. -- January-December 1944: The D-day Armada; The USS Rich; D-day and After; George Bush and the Flying Casket; Dace, Darter, and Leyte Gulf. -- January-August 1945: Luzon and Iwo Jima; Okinawa and the Kamikazes; British Midget Sub Versus Japanese Cruiser; The Final Victory.

Willmott, H. P. The Battle of Leyte Gulf: The Last Fleet Action. Bloomington:

NPS/DKL Location: GENERAL D767.92 .W555 2001

SEA POWER/NAVAL STRATEGY -- WWII

AUSTRALIAN

NPS/DKL Location: GENERAL D748 .D38 1989

Contents: The beginnings of Allied Intelligence and the Pensacola convoy. -- The "Rimau" Expedition. -- Commando training: Cecil Anderson's story. -- Operation "Python" in Borneo. -- Operation "Politician": The USS Bream patrols. -- The USS Pargo at Woody Island. -- The "Politician" patrols of the USS Bluegill. -- The USS Boarfish and "Politician" at Tourane Bay. -- Operation "Starfish" and the USS Rock. -- The USS Perch II and "Platypus" at Balikpapan. -- The USS Hawkbill and Operation "Crocodile". -- "Semut" Operations and the invasion of Sarawak. -- "Semut IV": Rowan Waddy's story. -- Rescue from New Britain: Fred Hargesheimer's story.

Originally published: Westport, CT; London: Praeger, 1996 as "Commando!"

NPS/DKL Location: GENERAL D810.S7 B35 1998

NPS/DKL Location: GENERAL D766.99.A4 B76 2004

NPS/DKL Location: GENERAL D759 .C6

Contents: An opening for a First-class Disaster. -- Gentlemen, we Sail at 5 o'clock. -- Relentless to the Last. -- Go all Boats!. -- This is no drill. This is fair dinkum. -- Many a good tune is played on an old fiddle. -- Probably unnoticed by the Enemy. -- This has been a very good party. -- Fire and dead bodies everywhere. -- Sweepers, man your brooms!. -- The Great traditions of the Royal Navy. -- The valiant British force on the right flank.

NPS/DKL Location: BUCKLEY VA454 .G7

Grenfell, Russell. **Die Seemacht im Nächsten Krieg [Dt. Übers. v. Rudolf Stoff].**
NPS/DKL Location: INTELL D810.S7 H64 1979

NPS/DKL Location: GENERAL D810.S7 H65

Kemp, Peter Kemp. **Key to Victory; the Triumph of British Sea Power in World War II.** 1st American ed.. Boston, Little Brown, c1957. 382p.
Originally published: London: F. Muller, 1957, as “Victory at Sea.”
NPS/DKL Location: BUCKLEY D771 .K3

American edition published in 1957 as “Key to Victory.”

Koburger, Charles W. **Naval Warfare in the Eastern Mediterranean, 1940-1945.**
NPS/DKL Location: GENERAL D775.K63 1993

NPS/DKL Location: GENERAL D810.T8 R7

Originally published: London: Collins, 1960; Annapolis, MD: U. S. Naval Institute, 1960 as “White ensign; the British Navy at War, 1939-1945.”

German translation of “The Navy at War 1939 - 1945.”

Contents: V. 1 The Defensive. -- v. 2. The period of Balance. -- v. 3. The Offensive: Pt. 1, 1st June 1943 - 31st May 1944; Pt. 2, 1st June 1944 - 14th August 1945.
NPS/DKL Location: GENERAL D771 .R7 1954

NPS/DKL Location: GENERAL D771 .R73

Publisher’s synopsis: From the year 1066 the English Channel has provided Great Britain with a natural defensive barrier, but never more than in the early days of World War Two. This book relates how the Royal Navy defended that vital seaway throughout the War. From the early days of the Dover Patrols, through the traumas of the Dunkirk evacuation, the Battles of the Channel convoys; the War against the E-Boats and U-Boats; the tragic raids at Dieppe and St Nazaire; the Escape of the German Battle-fleet; coastal convoys; the Normandy landings and the Final liberation of the Channel Islands. Many Wartime photographs, charts and tables add to this superb account of this bitterly contested narrow sea. -- http://www.pen-and-sword.co.uk/?product_id=1517

NPS/DKL Location: GENERAL D581 .S65 2005

Czech translation of “TASK FORCE 57: The British Pacific Fleet 1944-45.”

T124 [pseudo.]. see Grenfell, Russell.

Originally appeared as a classified document in 1952 prepared by G.A. Titterton for the Historical Section of the Admiralty. Vol. 2, published in 1957, was the 2nd in a series which originally was intended to comprise four vols., of which only two were published.
NPS/DKL Location: GENERAL D771 .M38 2002

Contents: September-December 1939: I Went Down with the Royal Oak; Conquering the Magnetic Mine; The Battle of the River Plate. -- January-December 1940: One Ship and Two Men; The Jervis Bay. -- January-December 1941: Malta Submarines; Pearl Harbor and After. -- January-May 1942: The Battle of the Channel; The Atlantic and the Pacific; Bomb Disposal on a Submarine; Enter the Rescue Ships; Submarine Attack in Corfu Harbor; The Battle of the Coral Sea. -- June-December 1942: Convoy PQ17; Midway: A Girl Called Johnnie: Invasion of the Solomons; Loss of the Needstown; Guadalcanal and Tassafaronga; Rescue Ships in Trouble. -- January-December 1943: Americans in the Atlantic; Yanks on Their Way Back; John Kennedy and PT-109; Midget Subs Versus the Tirpitz; Saga of the Liscome Bay. -- January-December 1944: The D-day Armada; The USS Rich: D-day and After; George Bush and the Flying Casket; Dace, Darter, and Leyte Gulf. -- January-August 1945: Luzon and Iwo Jima; Okinawa and the Kamikazes; British Midget Sub Versus Japanese Cruiser; The Final Victory.

Third volume of the trilogy: Empires in the Balance, The Barrier and the Javelin, Graves
of a dozen Schemes.-- http://www.org/
NPS/DKL Location: GENERAL D777 .W55 1996

NPS/DKL Location: GENERAL D777 .W73 2005

SEA POWER/NAVAL STRATEGY -- WWII

FRENCH

English translation of “La Marine française dans la Seconde Guerre mondiale.”
NPS/DKL Location: GENERAL D779.F8 A9

English translation of “La Marine française dans la Seconde Guerre mondiale.”
NPS/DKL Location: GENERAL D779.F8 A9

NPS/DKL Location: GENERAL D766.99.A4 B76 2004

débuts à 1815.

NPS/DKL Location: GENERAL D779.F7 K64 1994

SEA POWER/NAVAL STRATEGY -- WWII

GERMAN

German translation of “De slag op den Atlantischen Ocean.”

NPS/DKL Location: GENERAL D766 .A7

French translation of "Ostsee: Deutsches Schicksal, 1944-1945."

Based on extracts of essays written by nine German admirals, translated into English.
NPS/DKL Location: GENERAL D771 .B3726 2004

Berenbrok, Hans Dieter. See pseudonym Bekker, Cajus.

NPS/DKL Location: GENERAL D770 .B69

Cribbs, Donald A. The Influence of Maritime Theorists on the Development of German Naval Strategy from 1930 to 1936. Fort Leavenworth KS: Army Command and General Staff College, 2004. (ADA428661; USACGSC-ATZL-SWD-GD). 68p. Master's thesis. Abstract: At the end of World War I, and upon the signing of the Treaty of Versailles, the German Armed Forces had been drastically reduced by the Allies. The German Navy was stripped of its battleships, submarines, and aircraft. The effort to rebuild began immediately following the War. The decision about what direction and shape the Navy would take was influenced by several factors. The German Navy's anticipated enemy, the restrictions of the Treaty of Versailles, and the political situation all played a part in the development of the post-World War I German Navy. At least as important as any of these factors was the influence of two prominent naval theorists, A.T. Mahan, and Sir Julian Corbett. This thesis examined the extent that the theories of Mahan and Corbett influenced the development of German Naval Strategy between 1930 and 1936. The period includes the remnants of the Weimar Republic, the ascension of Adolf Hitler, and the signing of the Anglo-German Naval agreement in 1935, and finally the First of naval developments after the treaty. Electronic access: http://handle.dtic.mil/100.2/ADA428661

Fuehrer Conferences: On Matters Dealing with the German Navy 1939-1944. Washington: Navy Department, Office of Naval Intelligence, 1947. 7v. Cover title: The Office of Naval Intelligence has undertaken the translation of important documents concerning World War II which were found in the German Naval Archives captured at Tambach. Also available in microfilm and microfiche from various sources.

Contents: Bd. 2. Torpedoboote, Zerstörer, Schnellboote, Minensuchboote, Minenräumboote.

English translation of "Die deutschen Kriegsschiffe, 1815-1945."

NPS/DKL Location: GENERAL VA513 .G6813 1990

Revised Englished translation of "Die deutschen Kriegsschiffe 1815-1945."

At head of title: Oberkommando der Kriegsmarine./ Nur zum Dienstgebrauch.

On title page: "Reprint 1976."

Classified as only for service use by the German Navy./ Divided into three parts: List of former names and current names, List of current names of unnamed ships, and A collective list of all ships.

Gröner, Erich, Dieter Jung und Martin Maass. **Die Schiffe der Deutschen**

Appendixes.
NPS/DKL Location: GENERAL D779.B35 K63 1994

Contents: Introduction. -- Theater of Operations. -- The First Four Years. -- The Kriegsmarine. -- District and Escort Forces. -- Naval Control of Shipping. -- The Handelsmarine. -- Closing Down. -- Conclusion. -- Appendices.

NPS/DKL Location: GENERAL / BUCKLEY D770 .R45 2001

"Nachschlagewerk", based on official documents and other unofficial sources. cf. Nachwort des Verfassers, v. 3

Czech translation of “Schlacht im Atlantik.”

General note: "[Combines] the evidence given at Nuremberg with the material contained in the Fuehrer Conferences on naval affairs."
NPS/ DKL Location: GENERAL/BUCKLEY D771 .M2

English translation of "Krieg zur See, 1939-1945."
NPS/DKL Location: GENERAL D770 .R59 1996

Ruge, Friedrich. La Guerra Sul Mare, 1939-1945 [Trad. di Carlo De Angelis]. 2.ed.
Italian translation of "Der Seekrieg."

la cite, 1955. 349p.
French translation of "Der Seekrieg 1939-1945."

Ruge, Friedrich. Historia de la Marina de Guerra Alemana 1939-1945 [Trad. al
Spanish translation of "Der Seekrieg 1939-1945."

Ruge, Friedrich. Sea Warfare 1939-1945: A German Viewpoint [transl. by M. G.
English translation of "Der Seekrieg 1939-1945."

324p.

Ruge, Friedrich. Der Seekrieg; the German Navy's Story, 1939-1945 [translated by
English translation of "Der Seekrieg 1939-1945."
NPS/DKL Location: GENERAL/BUCKLEY D770 .R9 1957

Ruge, Friedrich. Der Seekrieg; the German Navy's Story, 1939-1945 [translated by
English translation of "Der Seekrieg 1939-1945."

Ruge, Friedrich. The Soviet Russians as Opponents at Sea: Analysis of German
Bookman, 1957. 4 v. in 2.
Submarine arm in the Second World War--v. 3 Russian weapons and materiel.

Ruge, Friedrich. The Soviets as Naval Opponents, 1941-1945. Annapolis: Naval
NPS/DKL Location: GENERAL D779.R9 R93

Ruge, Friedrich. Die Sowjetflotte als Gegner im Seekrieg 1941-1945 [die
ubertragung ins Deutche besorgte Hans Renker]. 1. Aufl. Stuttgart: Motorbuch
German translation of "Soviets as Naval opponents, 1941-1945."

Russian translation of "Der Seekrieg 1939 -- 1945."

Electronic access: http://www.wlb-stuttgart.de/seekrieg/chronik.htm

English translation of "Chronik des Seekrieges 1939-1945."

Contents: V. 1. 1939-1942. -- v. 2. 1943-1945.
English translation of "Chronik des Seekrieges 1939-1945."

English translation of "Chronik des Seekrieges 1939-1945."

NPS/DKL Location: GENERAL D770 .R5913 2005

NPS/DKL Location: GENERAL/INTELL D810 .S537 2003

NPS/DKL Location: GENERAL D771 .S55 1979

German translation of “German Navy handbook 1939 -- 1945.”

German translation of “Twilight of the Sea gods.”

German translation of "The German Navy in World War Two."

Revised edition published 1976, as "Pictorial History of the German Navy in World War II."

NPS/DKL Location: GENERAL D771 .V9

SEA POWER/NAVAL STRATEGY -- WWII

ITALIAN

NPS/DKL Location: GENERAL D775 .B8

NPS/DKL Location: D775 .S23 1994

SEA POWER/NAVAL STRATEGY -- WWII

JAPANESE

NPS/DKL Location: GENERAL DS839.7 .A87 2006

NPS/DKL Location: GENERAL D764 .B2195 1994

English translation of “Marine impériale.”

Japanese title: 大日本帝国海軍

NPS/DKL Location: GENERAL D777 .D83

NPS/DKL Location: GENERAL D767.2 .F45 2006

NPS/DKL Location: GENERAL D780 .F45 2005

Goldstein, Donald M. and Katherine V. Dillon, eds. *The Pacific War Papers*: 186
NPS/DKL Location: GENERAL D777 .P33 2004

Contents: An opening for a First-class Disaster. -- Gentlemen, we Sail at 5 o'clock. -- Relentless to the Last. -- Go all Boats!. -- This is no drill. This is fair dinkum. -- Many a good tune is played on an old fiddle. -- Probably unnoticed by the Enemy. -- This has been a very good party. -- Fire and dead bodies everywhere. -- Sweepers, man your brooms!. -- The Great traditions of the Royal Navy. -- The valiant British force on the right flank.

NPS/DKL Location: GENERAL D774 .M5 G76 2004

Polish translation of “Japanese Destroyer Captain.”

NPS/DKL Location: GENERAL D777 .H313 1961

Abstract: "Operation K" was a plan to use flying boats operating from bases in the Marshall Islands for armed reconnaissance raids on the Hawaiian bases. These aircraft would be refueled by submarines at an atoll west of Oahu to extend their range for the attacks. Only one such attack took place on the night of March 3-4, 1942. Because of cloud cover, the targets were not visible and the Japanese bombers did no real damage. Brilliant Intelligence work by U.S. intelligence officers and cryptanalysts thwarted the planned follow-on raids. Denied the knowledge of the location of American aircraft carriers, the Japanese suffered a disaster in the Battle of Midway, the crucial "turning point" in the Pacific War.

Contents: Introduction; Another Strike Is Needed; Planning the Attack; The Second Attack on Pearl Harbor; The Aftermath of the Attack; Photoreconnaissance Missions to Midway and Johnston Islands; The Doolittle-Halsey Raid and the Battle of the Coral Sea; The Battle of Midway; Bombing the United States and the Panama Canal; Epilogue; Appendix: Extending the Range; Endnotes; Glossary; Bibliography.

NPS/DKL Location: GENERAL D767 .H594 2005

English translation of “Rengo kantai no saigo.”

NPS/DKL Location: GENERAL D777 .I9

English translation of “Rengo kantai no saigo.”

Italian translation of “The end of the Imperial Japanese Navy.”

NPS/DKL Location: GENERAL DS845 .F37

NPS/DKL Location: GENERAL D777 .J31 1986

Parillo, Mark P. The Japanese Merchant Marine in World War II. Annapolis, MD: Naval Institute Press, c1993. 308p. Thesis (Ph. D.) -- Ohio State University, 1987. Abstract: Although Japan's shipyards performed beyond expectations During the War, the nation's seaborne transport capacity shrunk Substantially throughout the years of conflict. The Japanese contributed significantly to this sad result with their indifference to shipping protection. The military services commandeered shipping irresponsibly, provided escorts of inadequate quantity and quality, neglected development of anti-submarine doctrine and tactics, ignored mine warfare, and wasted much transport capacity through inefficient administration. The collapse of the merchant marine doomed both the country's economy and its military prospects.

NPS/DKL Location: GENERAL D774.M4 P37 2005

See "Target A, Pearl Harbor's most Secret weapon"p.72-115.

NPS/DKL Location: GENERAL DS890.Y25 P6 1965

NPS/DKL Location: GENERAL D783.S82 1945

English translation of “Shirarezaru senso hanzai.”

NPS/DKL Location: GENERAL D777 .U5

SEA POWER/NAVAL STRATEGY -- WWII

POLISH

SEA POWER/NAVAL STRATEGY -- WWII

RUSSIAN/SOVIET

Dotsenko, V. D. (Vitalii Dmitrievich). **Flot, Voina, Pobeda, 1941-1945.** S.-Peterburg:

NPS/DKL Location: GENERAL VA573 M46 1977

NPS/DKL Location: GENERAL D779.R9 R93

SEA POWER/NAVAL STRATEGY

COLD WAR

NPS/DKL Location: GENERAL/INTELL JF1525.I6 A436 2002

NPS/DKL Location: GENERAL/INTELL UB271.A78 C53 2000

Contents: Don't you know there's a War on? / Robert Bud and Philip Gummett. -- Royal Aircraft establishment from 1945 to Concorde / Andrew Nahum. -- Rotary-wing Aircraft / Matthew Uttley. --
NPS/DKL Location: GENERAL U395.G7 C65 1999

Dutch translation of “The Cold War Experience.”

Polish translation of “The Cold War Experience.”

Friedman, Norman. **The Fifty-Year War: Conflict and Strategy in the Cold War.**
NPS/DKL Location: GENERAL D842 .D75 2000

McHale, Gannon. **Stealth Boat: Fighting the Cold War in a Fast Attack Submarine.**
NPS/DKL Location: GENERAL V63 .M33 A3 2008

Muir, Malcolm. **Sea Power on Call: Fleet Operations, June 1951-July 1953.**

Olive, Ronald J. **Capturing Jonathan Pollard: How One of the Most Notorious Spies in American History was Brought to Justice.** Annapolis, MD: Naval Institute Press, c2006. 299p.
NPS/DKL Location: GENERAL UB271.I82 O45 2006

NPS/DKL Location: GENERAL D842.3 .C48 1998

Polmar, Norman and Kenneth J. Moore. **Cold War Submarines: The Design and**
NPS/DKL Location: GENERAL V858 .P63 2004

"A 15-volume set reproducing in facsimile 98 plans and Studies created by the Joint Chiefs of Staff."

NPS/DKL Location: GENERAL V210 .S37 2009
SEA POWER/NAVAL STRATEGY

PERSIAN GULF WAR

Papers presented to the symposium entitled "International Interests in the Gulf Region," March 15-16 2004, Abu Dhabi, UAE, organized by the Emirates Center for Strategic Studies and Research.

NPS/DKL Location: GENERAL DS79.76 .K62 2005

NPS/DKL Location: GENERAL VA667.B34 W55 2007

SEA POWER/NAVAL STRATEGY

FICTION (SELECTED AUTHORS)

NPS/DKL Location: GENERAL/BUCKLEY DS849.U6 B9
Originally published: London: Constable, 1925.
NPS/DKL Location: GENERAL UA830 .B93 1991

Originally published: London: Constable, 1925.

Ikezaki, Chuko. **Taiheiyo Senryaku Ron.** Shōwa 7 [1932], Shōwa 8 [1933]. 448p.

Ishimaru, Tota. **Showa Junengoro ni Okoru Nihon Tai Sekai Senso.** Shōwa 7 [1932]. 398p.

English translation of “Weltkrieg droht auf deutschen boden.”

English translation of “Zagadka U-137.”

NPS/DKL Location: LEISURE TOP

English translation of “Zagadka U-137.”

German translation of “Zagadka U-137.”

ANTISUBMARINE WARFARE (ASW)
See also Q-SHIPS/COMMERCE RAIDERS/HILFSKREUZER

GENERAL

Bohac, Filip. **DIFAR Sonobuoy Bearing Estimation Using the Fast Orthogonal Search Algorithm**. Canada: Royal Military College of Canada, 2005. 85p. M.Sc. dissertation. Abstract: The acoustic environment in the ocean contains numerous narrowband and broadband sources which conflict to introduce uncertainty in bearing estimates used to detect submerged targets. The detection and localization of a target of interest in the presence of noise is the key element of anti-submarine warfare. The DIFAR sonobuoy is the most effective tool for this purpose. A DIFAR sonobuoy is comprised of 3 receiving elements which can be used to extract directional information from an incoming acoustic signal. High-resolution beamforming techniques, including the Maximum Likelihood Adaptive Beamformer (MLAB), have been previously applied to real DIFAR data [Desrochers, 1999] to provide successful direction estimates of two sources in the same frequency bin. MLAB uses the Fast Fourier Transform (FFT) to compute a cross-spectral matrix that is used to estimate the bearing of acoustic targets. It has been shown that Fast Orthogonal Search (FOS) technique can yield a higher frequency resolution with a lower variance on the estimate than the FFT algorithm. This thesis applies the FOS algorithm in place of the FFT in both the arctangent bearing estimator and ML Beamformer. Using FOS to create a spectral estimate for DIFAR sonobuoy data has shown an improvement in the detection of narrowband sources. A better spectral estimate in the presence of noise leads to an improved bearing estimate calculated using both a simple arctangent bearing estimator and the Maximum Likelihood Adaptive Beamformer.

Brittingham, Edward M. **Sub Chaser: The Story of a Navy VP NFO**. Richmond, VA:

NPS/DKL Location: GENERAL TL716 .B76 1993

NPS/DKL Location: GENERAL V214 .D36 1986

NPS/DKL Location: GENERAL V214 .S63 1986

Abstract: From 1923 to 1940 the U.S. Navy held Twenty-one major exercises, known as “Fleet Problems.” While only part of annual fleet training, these exercises differed from routine maneuvers and gunnery exercises. All available fleet units were integrated into a single major action…. Concepts such as dive-bombing, independent submarine operations, antisubmarine warfare, and amphibious operations were explored in a medium that stressed the thinking of naval officers as how best to fight a naval War with modern weapons.

NPS/DKL Location: GENERAL V214 .F73 2003

NPS/DKL Location: GENERAL V825.3 .F74 1982

NPS/DKL Location: GENERAL V825.3 .F74 2004

NPS/DKL Location: GENERAL V214 .G47 1986

NPS/DKL Location: GENERAL V214 .G72 1999

NPS/DKL Location: GENERAL V214 .H55 1985

"This Advisory Report was prepared at the request of the Flight Mechanics Panel of AGARD."
Abstract: Worldwide interest in the use of shipborne aircraft as a major weapons system is very broad. Many NATO countries operate fixed wing aircraft from ships. Additionally, the use of ships as helicopter platforms is extensive in the NATO community and brings another important dimension to the aircraft/ship interface issue. Thus, it seemed that both fixed and rotary wing aviation deserved equal billing in the Aircraft/Ship Interface Symposium which is the subject of this Technical Evaluation Report. The Symposium contained Twenty-five presentations grouped under the following topics: Keynote Addresses; Ship Environment; Guidance, Controls, and Displays; Flight Test and Simulation Techniques; Launch, Recovery, and Handling Systems Development; and Operational Views and Future Developments.

NPS/DKL Location: GENERAL T57.97 .K66 1980

NPS/DKL Location: GENERAL T57.97 .K66 1999

The Papers present in the Adelphi Paper and in Adelphi Papers nos. 123 and 124 were give at the 17th Annual Conference of the IISS at Ronneby Brunn, Sweden, in September 1975.
NPS/DKL Location: GENERAL V25 .P8

NPS/DKL Location: GENERAL/INTELL K3595 .M333 2004

NPS/DKL Location: GENERAL VK388 .M47 2003

NPS/DKL Location: GENERAL V214 .M55 1984

NPS/DKL Location: GENERAL V210 .M66

NPS/DKL Location: GENERAL V214 .N38 2007
Electronic access: http://www.nap.edu/catalog/11927.html

Abstract: Environmental information is important for successful planning and execution of naval operations. To ensure that naval forces have the most up-to-date capacities, ONR has extensive environmental research program. To increase research community understanding of the operational demands placed on naval operations and to facilitate discover between these two groups, the NRC's Ocean Studies Board, working with ONR, convened five previous symposiums on tactical oceanography. The sixth and latest symposium in this series was held February 1999 in Corpus Christi, Texas.

Electronic access: http://www.nap.edu/openbook.php?isbn=0309067987
Electronic access: http://handle.dtic.mil/100.2/ADA374586
NPS/DKL Location: GENERAL V856 .O23 2000

NPS/DKL Location: GENERAL TL684.1 .O45 1987

NPS/DKL Location: GENERAL V214 .O84 2007

Contents: Beginnings: 1912 to 1918. -- The Years Between: 1919 to August 1939. -- The long, hard road: September 1939 to June 1941. -- The Conflict widens: July 1941 to June 1942. -- The crow begins to peck: June 1942 to January 1943. -- Blow for blow: February to April 1943. -- The Wolves’ fangs are drawn: May to August 1943. -- Climax in the Bay: May to August 1943. -- Slipway no. 5 at Danzig: September 1943 to May 1944. -- Final Battles of the European War: May 1944 to May 1945. -- Battles elsewhere: December 1941 to August 1945.
NPS/DKL Location: GENERAL V214 .P685 2004

German translation of “Aircraft Versus Submarine.”

NPS/DKL Location: GENERAL V214 .S74 1987

NPS/DKL Location: MICROFORM AD0713794

Tsipis, Kosta. **Tactical and Strategic Antisubmarine Warfare.** Cambridge, MA: MIT

ANTISUBMARINE WARFARE (ASW)

WWI

18
Abstract: This thesis investigates the employment of British aircraft Against German submarines during the final years of the First World War, an issue that appears only marginally in other studies because it does not clearly fall into naval or air power history. A focused study is needed to assess the effectiveness of the effort and the veracity of the secondary literature. The Royal Naval Air Service invested heavily in aircraft of all types in order to counter the U-Boat. Under the Royal Air Force, the air campaign against U-Boats continued uninterrupted. Aircraft bombed German U-Boat bases in Flanders, conducted area and hunting patrols around the coasts of Britain, and escorted merchant convoys to safety. Despite the fact that aircraft acting alone destroyed only one U-Boat during the War, their overall contribution to foiling U-Boat attacks was significant. Only five merchant vessels succumbed to submarine attack when convoyed by a combined air and surface escort during World War I. This thesis is organised thematically. Early chapters examine the aircraft and weapons technology, aircrew training, and aircraft production issues that shaped this campaign. Then, a close examination of anti-submarine operations that is, bombing, patrols, and escort yields a significantly different judgment from existing interpretations of these operations. A chapter on the British official assessments, which provided a basis for much of the secondary literature, demonstrates that this campaign was often misrepresented because it was either used to promote specific agendas or it was inappropriately employed as evidence in unrelated historical arguments. The next chapter examines the German view of aircraft effectiveness, through German
actions, prisoner interrogations, official histories, and memoirs, to provide a comparative judgment. The conclusion closes with a brief narrative of post-War air anti-submarine developments and a summary of findings.

Electronic access: http://handle.dtic.mil/100.2/ADA425512

NPS/DKL Location: GENERAL VG93 .A86823 2004

NPS/DKL Location: BUCKLEY/GENERAL D581 .B2 1919

NPS/DKL Location: INTELL DA89 .B8 1931

“Thanks to the balloon bases in Gibraltar and Malta, the Mediterranean was virtually free from U-Boats, whereas in the treacherous Atlantic waters they remained an ever-present threat.” p. 132.
NPS/DKL Location: GENERAL TL616 .C47 2004

Contents: Revelations; Cables and cable-cutting; Divers and searchers; Codes, Ciphers and call signs; 1914-1916; 1917; 1918; U-Cruisers to the south; U-Cruisers to the west; Information and Action; Revised list of German submarines sunk or interned.
NPS/DKL Location: GENERAL D593 .G685 2003

NPS/DKL Location: GENERAL VB230 .G7

Synopsis: This landmark book shows how the Intelligence Division of the Admiralty played a key role in the defeat of the U-Boats in World War One. With the assistance of the Naval Historical Branch of the Ministry of Defence and the Director of Naval History in Washington, Professor Grant has been able to piece together the crucial role played by naval intelligence in the victory at sea 1914-1918. Intelligence came from many sources including prisoner interrogations, signals interception and the investigation and salvage of wrecks. By analysing this information, naval intelligence was able thwart attempts to land spies in North Africa, deal the U-Boat minelaying campaign in British coastal waters a fatal blow and ensure that the U-Boats would not have the opportunity to attack the Grand Fleet in 1918.

NPS/DKL Location: GENERAL D581 .G7

Synopsis: World War One saw the submarine develop into a potent weapon of War. The German
submarine campaign almost defeated Britain during the Spring of 1917. By striking at the shipping that supplied her, it has been estimated that Britain came within six weeks of starvation. Salvation came in two ways. Firstly, the allies adopted the convoy system, forcing the U-Boats into encounters with escorting Warships, whilst protecting precious cargoes. Secondly, technological innovations, such as the hydrophone, depth charge and mine barrage were added to the arsenal of anti-submarine weaponry. Slowly the tide turned and the U-Boat menace was contained.

NPS/DKL Location: GENERAL V214.H33 1984

Contents: Herbert Taylor and the Experimental Mining School at HMS Vernon. -- Breakthrough! The invention of the depth charge. -- Depth charges, throwers and pistols. -- Mines and their complexities. -- Underwater weapons in other Navies. -- Interest from across the Pond. -- Between the Wars. -- Prima donnas, crackpots and misfits. -- Ahead-throwing weapons. -- X--craft and their charges. -- Conclusion. -- Appendix: Herbert Taylor's inventions.
NPS/DKL Location: GENERAL VF57 .H46 2005

French translation of “40 O.B.; or, How the War was won.”

The raids on Zeebrugge and Ostend remain the most exciting small Actions, not just of the First World War but in British history. The purpose was to counter the U-Boat menace. Submarine attacks on Allied shipping caused great difficult and hardship. Surprise and daring were essential. Despite over 600 casualties, the attacks were a great boost to civilian morale in Britain. Eleven Victoria Crosses were awarded, eight of them for the Zeebrugge raid alone. --

NPS/DKL Location: GENERAL D590 .M47 2001

Mowthorpe, Ces. Battlebags: British Airships of the First World War: An

NPS/ DKL Location: BUCKLEY D589.U6 R7

ANTISUBMARINE WARFARE (ASW)

WWII

Czech translation of “Very Special Intelligence: The Story of the Admiralty’s Operational Intelligence Centre, 1939-1945.”
Russian translation of "Very Special Intelligence: The Story of the Admiralty's Operational Intelligence Centre, 1939-1945."

German translation of "Very Special Intelligence: The Story of the Admiralty's Operational Intelligence Centre, 1939-1945."

NPS/DKL Location: INTELL D810.C88 B43 1978

Browning, Robert M. U.S. Merchant Vessel War Casualties of World War II. Annapolis, MD: Naval Institute Press, 1996. 575p. Notes: Lists only those ships flying under the American flag that the Coast Guard and Navy documented as receiving damage or were lost. NPS/DKL Location: REFERENCE D810.T8 B76 1996

Abstract: The Battle of the St. Lawrence is one of the least discussed engagements in Canadian naval history. The vast majority of those who have dealt with it write off the battle as simply a defeat for the Canadian War effort. On closer examination, however, it becomes clear that the Battle of the St. Lawrence and its aftermath, the closure of the St. Lawrence to shipping, are much more complex. The RCN and the RCAF accomplished much in coastal defence with very little resources, and though no U-Boats were killed in the engagement, Canadian naval and air units working in combination gave the appearance of coordinated ASW to German submarine commanders. U-Boats did not return to Canadian coastal waters in the following shipping season. Furthermore, Canadian defence planners took valuable lessons from the setbacks in the Gulf in 1942 and devised more aggressive doctrines for escort work and air patrols. The most important contribution of this work is the analysis of the decision to close the St. Lawrence. Whereas most historians contend that the Canadian government closed down a vital maritime artery in a panicked response to losses in the St. Lawrence, it is shown that the decision was the culmination of a carefully drafted policy which had been considered for several years. The policy incorporated the preferences of both Canadian defence planners and the British Ministry of War Transport. The decision to close the St. Lawrence did not have its intended effect, since shipping resumed in the Gulf of St. Lawrence with some restrictions in early 1943. The impact of the Battle of the St. Lawrence on the War effort, conversely to what other historians have argued, was in fact negligible.

NPS/DKL Location: GENERAL D790 .C37 2004

NPS/DKL Location: GENERAL D786 .C38 2004

“Let’s not forget, however, that the US Navy -- the main user of airships for convoy escort and anti-submarine patrols during the Second World War -- continued to make training on both free and captive balloons mandatory for its airship Personnel.” p.132.
NPS/DKL Location: GENERAL TL616 .C47 2004

Tom Dudley-Gordon, pseud. of Dudley Barker, Gordon Campbell and …
Also published: Garden City, NY: Doubleday, Doran & Co, as “I seek my prey in the waters.”

Greenfield, Nathan M. **The Battle of the St. Lawrence: The Second World War in

Henry, Chris. *Depth Charge: Royal Naval Mines, Depth Charges and Underwater Weapons 1914-1945.* Barnsley, South Yorkshire: Pen & Sword, 2005. 224p. Summary: The history of weapons and Warfare is usually written from the point of view of the battles fought and the tactics used. In naval Warfare, in particular, the story of how these weapons were invented, designed and supplied is seldom told. Chris Henry, in this pioneering study, sets the record straight. He describes how, to counter the extraordinary threat posed by the U-Boats in the World Wars, the Royal Navy responded with weapons that kept open the vital supply routes of the Atlantic Ocean. He also celebrates the achievements of the engineers and inventors whose inspired work was essential to Britain's Survival - men like Herbert Taylor and Alban Gwynne. --BOOK JACKET. NPS/DKL Location: GENERAL VF57 .H46 2005

Contents: A fighting ship is born. -- Too late for War. -- A ship and crew prepare for War. -- Ward goes to sea. -- First shot of the War. -- Assaulit from the sky. -- A Difficult December. -- Liberty. -- First Year at War. -- Ward becomes an APD. -- In the South Pacific at Last. -- Amphibious Operations begin. -- New Britain and New Guinea. -- Leyte. -- Destiny's date repeated. -- Epilogue.

NPS/DKL Location: GENERAL D774.W24 K66 2006

NPS/DKL Location: GENERAL D784 .G7 L64 2006

(Monograph (World Ship Society) no.6). 84p.

Author recounts duty aboard USS Pillsbury, flagship of Escort Division 4, Task Force 22.3, in Action April - May 7, 1945.
NPS/DKL Location: GENERAL D770 .P43 2006

NPS/DKL Location: GENERAL D783 .P68 2003

NPS/DKL Location: GENERAL D810 .N4 P9

Story of the Royal Navy Tactical School which was chosen by Churchill to defeat the U-Boat Strategy.

Originally published: London: Evans Bros, 1956 as "Walker R.N."
German translation of “Walker, R.N.”

HMS Seraph / "USS Seraph" During Operation Kingpin.
NPS/DKL Location: BUCKLEY D772.S4 R6

NPS/DKL Location: GENERAL D771.R6

Publisher’s synopsis: HMS Faulknor was an F Class destroyer, built as a 'leader' or command ship, of a flotilla of 8 destroyers. Launched in 1934, she was to survive World War II and see action in many of the Royal Navy's most famous operations. The book gives a detailed account of the ship's history from its conception to its end in the scrap yard.

Originally published Annapolis, MD: Naval Institute, c1988.
NPS/DKL Location: GENERAL D773.S78 2003

NPS/DKL Location: GENERAL V394.A4 T52 1984

NPS/DKL Location: GENERAL D783 .T74 2000

NPS/DKL Location: BUCKLEY D771 .T9

History of Royal Navy Rendering Mines Safe Section.

Other Titles: Victoria Crosses of the Second World War.
Partial contents: 39. First VC Attack On U-Boat Lloyd Trigg
Trigg was an experienced pilot attached to 200 Squadron RAF, operating with Coastal Command. On 11 August 1943 he engaged the German submarine U-468, under the command of Klemens Schamong. His aircraft received several catastrophic hits from the anti-aircraft guns during his approach to drop depth charges and was on fire as Trigg made his final attack. It then crashed, killing Trigg and his crew, so the only witnesses to his high courage were the U-Boat crew members. The U-Boat sank but the seven survivors were rescued by a Royal Navy vessel and the captain reported the incident, recommending Trigg be decorated for his bravery. The Victoria Cross was awarded posthumously. --
http://en.wikipedia.org/wiki/Lloyd_Allan_Trigg

52. Coastal Command Epic David Hornell
On 24 June 1944 on sea patrol near the Faroes in the North Atlantic, Flight Lieutenant Hornell's twin-engined amphibian aircraft was attacked and badly damaged by an enemy German U-Boat; nevertheless he succeeded in sinking it and then with superhuman effort managed to bring his aircraft down on the heavy swell, blazing furiously. There was only one serviceable dinghy which could not hold all the crew so they took it in turns in the water. By the time the survivors were rescued after 21 hours, Flight Lieutenant Hornell was blinded and weak from exposure and cold. He died shortly after being picked up. --

Waddington, C. H. **O.R. in World War 2: Operational Research Against the U-Boat.**
NPS/DKL Location: GENERAL V214 .W23

Warnock, A. Timothy. **The U.S. Army Air Forces in World War II: Air Power Versus U-Boats: Confronting Hitler’s Submarine Menace in the European Theater.**
NPS/DKL Location: FEDDOCS D 301.82:SU 1

Warnock, A. Timothy. **The U.S. Army Air Forces in World War II: The Battle Against the U-Boat in the American Theater: December 7, 1941- September 2, 1945.**
Abstract: In 1942, the Allied powers faced the most serious challenge to their control of the seas encountered in the Second World War: The menace of the U-boat. Fast, well-armed, and long-ranged, Hitler’s submarines attacked shipping zones throughout the North Atlantic, often within sight of America’s coastal towns and cities. Eventually, the combination of intelligence, land, and sea-based air power, and surface vessel operations from both North American and British bases ended this threat, making possible the Allied Build-up for the invasion of Europe in 1944. This booklet, by A. Timothy Warnock of the Air Force Historical Research Agency, is one of a series tracing selected Army Air Forces activities in the Second World War. It describes the Army Air Forces’ contribution to the Battle of the Atlantic from the American Theater. A Subsequent booklet will examine the campaign in the eastern Atlantic and the Mediterranean. Flying radar-equipped, long-range patrol planes, Army Air Force airmen demonstrated the value of land-based air power against naval threats. This success has been reaffirmed consistently since the Second World War, from Vietnam and crises such as the Mayaguez incident to operations in Desert Shield and Desert Storm. The Harpoon-armed B-52s of our present-day global Air Force are the heirs of a sea-control tradition dating to the Army Air Force’s A-29s and B-24s of the Second World War.
NPS/DKL Location: GENERAL D790 .W343 1993

Originally published: London: Kimber, 1955 as "Walker’s groups in the Western Approaches".
NPS/DKL Location: GENERAL D770 .W46 2003

NPS/DKL Location: GENERAL D781 .W47 2005

NPS/DKL Location: GENERAL D784.G7 W45 1986B

Whitaker, Herman. **Hunting the German Shark; the American Navy in the Underseas War.** New York, The Century co., 1918. 310p.

NPS/DKL Location: GENERAL/INTEL TK6565.D5 W55 1996

Contents: Armament. -- Radar -- Colour schemes and camouflage. -- Ship's names. -- Organisation. -- Type 34 Lebrecht Maas Class. -- Type 34A Paul Jacobi class. -- Type 36 Diether von Roeder class. -- Type 36A Z23 class. -- Type 36A (MOB) Z31 class. -- Type 36B (MOB) Z35 class. -- Wartime service. -- Foreign destroyers.

ANTISUBMARINE WARFARE (ASW)

KOREAN WAR

The author recounts his part as a cryptographer on a team of U.S. Army, Navy, Air Force, and CIA
operatives who posed as the captured crew of a B-29 bomber in January 1952 and who carried out highly dangerous spy operations to assess Chinese Communist troop strengths, weaponry, and intentions. The author lost all of his comrades before being rescued by a U.S. Air Force helicopter, and maintained his 50-year sworn secrecy before preparing this revealing account of how what the mission found stopped Truman from escalating the Korean War.

ANTISUBMARINE WARFARE (ASW)

NPS THESES & REPORTS

Adams, Brian S. Analysis of the Effects of Energy Spreading Loss and Transmission Loss on Low Frequency Active Sonar Operations in Shallow Water. Monterey, CA: Naval Postgraduate School, 1997. (ADA341298). 74p. Thesis (M.S. in Physical Oceanography) -- Naval Postgraduate School, September 1997. Abstract: Energy Spreading Loss (ESL) is qualitatively defined as the reduction in peak power level due to energy spreading of a transmitted acoustic pulse in tune. An analysis of the impact of bathymetric geometry and sediment type on ESL and TL associated with the Low Frequency Active/Compact Low Frequency Active (LFA /CLFA) sonar operations was conducted utilizing the FEPE, FEPE SYN and EXT TD programs to model the time spreading of the acoustic pulse due to multipath propagation in shallow water. Both a Blackman windowed pulse and a Continuous Wave (CW) pulse were used in this analysis. The Blackman pulse had a center frequency of 244 Hz with a bandwidth of 24 Hz. The CW pulse had a center frequency of 244 Hz with a bandwidth of 0.0625 Hz. Model inputs were a geoacoustic description of the Tanner Bank region off the coast of San Diego and a typical late summer sound speed profile taken from the MOODS database. ESL and TL’s impact on low frequency active sonar operations was determined as a function of bathymetry, sediment type, sound speed profile, and pulse length. The results showed that ESL is inversely related to pulse duration and at low frequencies is relatively uninfluenced by sediment type. When pulse lengths were reduced to less than 1 second, ESL became appreciable (> 6 dB one way) and was an important segment of the active sonar equation. TL was found to be the dominating factor in LFA/CLFA operations for pulse lengths greater than 1 second and was greatly influenced by sediment type and sound speed profile. NPS/DKL Location: THESIS A2246 Electronic access: http://handle.dtic.mil/100.2/ADA341298

Adler, Vance Erick. Digital Processing of Acoustic Signals with Application to an ASW Signal Processor. Monterey, CA: Naval Postgraduate School, 1973. (AD07750383). 102p. Thesis (M.S. in Acoustical Engineering) -- Naval Postgraduate School, 1973. Abstract: There is a growing need within the Navy for methods for detecting discrete narrowband signals in a non-stationary background. This paper concerns itself with the application of digital processing and spectral analysis techniques toward that goal. The use of the fast Fourier Transform in estimating the power spectrum of a signal is described. The method involves sectioning the time record, making ‘raw’ estimates of the spectrum from these sections, and averaging these ‘raw’ estimates. It is shown that more stable estimates are available if the segments are overlapped and an optimum amount of overlap for the case of the Hanning window is found. It is shown that the stability of these spectral
estimates can be interpreted as processing gain in the case of a discrete narrowband signal in additive noise. and finally, a brief description of signal detection theory applied to a human observer is presented to emphasize the flexibility that a human operator can bring to a signal detection system.

Joint authors: Lance Cawley, Matthew Martinez, Christopher Cossey, Chad Newberry, Mike Galvan, Jose Raymond, Eldridge Giang, Alan Rykala, John Hanchinamani, Joseph Watts, Jason Ikeda, Jeffrey Wood, Micheal Kenney, John.

"Prepared for: Chairman of the Systems Engineering Department in partial fulfillment of the requirements for the degree of Master of Science in Systems Engineering"--Cover.

Abstract: The Hybrid Airship Multi-Role (HAMR) Anti-Submarine Warfare (ASW) Mission Module project applies established systems engineering principles and processes to the design of an ASW payload module that examines the capability of the HAMR to perform persistent ASW mission support. Critical system functions and objectives are identified and are assigned appropriate quantitative metrics. Additionally, three alternative architectures are generated and evaluated using the appropriate metrics based on results from modeling using Naval Systems Simulation (NSS). Manning is considered as a key stakeholder parameter and is included as an evaluation concern. The alternatives are also compared through the examination of life cycle costs. The recommendation to the stakeholders based on the research and results is an unmanned ASW sensor platform that uses other ASW assets for prosecution.

NPS/DKL Location: FEDDOCS: D 208.14/2:NPS-SE-08-003

Electronic access: http://edocs.nps.edu/npspubs/scholarly/TR/2008/NPS-SE-08-003.pdf

Electronic access: http://handle.dtic.mil/100.2/ADA483334

Abstract: The Anti-Submarine Warfare screen design simulation is a program that provides a model for operations in Anti-Submarine Warfare (ASW). The purpose of the program is to aid ASW commanders, allowing them to configure an ASW screen, including the sonar policy, convoy speed, and the number of ships, to gain insight into how these and other factors beyond their control, such as water conditions, impact ASW effectiveness. It is also designed to be used as a training tool for ASW officers. The program is implemented in Java programming language, using the Multi Agent System (MAS) technique. The simulation interface is a Horizontal Display Center (HDC) which is very similar to a MEKQ200 class Frigate Combat Information Center's (CIC) HDC. The program uses Extensible Markup Language (XML) files for reading data for program scenarios; parameters are initialized before each run time begins. The simulation also provides all the output data at the end of run time for analysis purposes. The program user's goal, and the purpose of the program, is to decrease the number of successful attacks against surface vessels by changing the configuration parameters of the ASW screen, to reflect sonar policy, convoy speed or number of ships in the simulation. Ongoing use of the program can provide data needed to anticipate required operational needs in future ASW situations.

Electronic access: http://handle.dtic.mil/100.2/ADA422144

Abstract: The Advanced Air Deployable Array (AdDA), which is a modern air-dropped fiber optic ASW device, provides an opportunity for the rapid enclosure of a hostile submarine in shallow waters. This thesis explores the effect of the deployment depth, and effect of using longer or shorter AdDA array segments, on the performance of eighth proposed AdDA deployment tactics which employ single or dual aircraft. It is shown that when the AdDA sinking rate is considered, several of the proposed tactics become infeasible for certain depth and submarine speed combinations. Still, today fiber optics offer unique capabilities for solving some of the U.S. Navy's and the Turkish Navy's problems in the future.

Electronic access: http://handle.dtic.mil/100.2/ADA257589

Abstract: The experiences of submarine warfare from WWI and WWII have generally dictated maximum speed when designing conventional submarines. Technological development of submarine and antisubmarine weapons, however, requires examination of submarine warfare and tactics. This thesis focuses on a coastal conventional submarine's ability to survive, as a function of its maximum speed, when attacked by a light antisubmarine warfare (ASW) torpedo. It also evaluates the maximum speed with which the submarine should be equipped to ensure a specified probability of survival. The measure of effectiveness (MOE) is the probability that the submarine, operating up to maximum speed and launching only one set of countermeasures, is not caught by the torpedo. The investigation builds on a discrete event simulation model. The systems simulated are a submarine, a light ASW torpedo, and a countermeasure system consisting of one decoy and four jammers. The results show that maximum speed of a submarine does affect the submarine's evasive performance between 12 and 18 knots. The simulated model reached a maximum probability of survival at 18 knots. That result should be regarded as a minimum since a real life system might require a higher maximum speed to reach its greatest probability of survival.

Electronic access: http://edocs.nps.edu/npspubs/scholarly/theses/2000/Jun/00Jun_Armo.pdf

Abstract: This thesis sought to determine if the requirements for operation of the acoustic processing equipment now installed aboard P-3C aircraft is too complex for the acoustic operators, given their current amount of training. This was accomplished by using a test scenario designed to test for all of the skills and knowledge required by acoustic operator in the performance of his duties during the passive portion of the prosecution of a target. The results seem to suggest that the students that successfully complete the P-3C 'Antisubmarine Warfare Operator' rating training pipeline are acquiring an acceptable level of operator capability. In addition, this study seems to suggest that fleet operators who are recognized in fleet squadrons as master journeyman, are operating their ASW acoustic processing equipment to its fullest capability and without apparent operator deficiencies.

Electronic access: http://handle.dtic.mil/100.2/ADA382255

Abstract: Ship defense in convoy operations against Anti-Surface Missiles (ASM) has been an important aspect of Naval Warfare for the last two decades. Countries in a state of conflict often conduct threatening operations in their own territories in order to slow or stop the enemy merchant ship traffic through the straits or littoral waters. Such littoral scenarios, the quantity and capability of ASM's in non-NATO countries pose a significant threat to the safe operation of the NATO forces in the waters off of potentially hostile shores. In these operations the goals of the tactical commander are to design an optimal reaction platform (formation) and to determine an optimal strategy that will help him in multi-threat encounters. The scope and design in most anti-air Warfare studies have been limited to evaluating the effectiveness of detecting sensors and weapon systems in a regular screen formation. The proposed model's (Disposition Mission Model - DMM) characterization, however, is based on how to perform an effective, defensive disposition from a task force. In DMM we focus on usage of a graphical user interface and provide a user-friendly environment for analyzing new tactics in screen formations. The model, with its user interface, allows the user to build and run a convoy simulation, and see the results comparatively on the same interface. The analysis using this model has yielded significant insights towards the defense of a convoy by way of regression methods. It has been seen that positioning the escort ships within the threat sector reduces the damage on the HVU and also balances the defensive load of each defense ship for the incoming missiles. The model, with its graphical interface and simulation components, provides an initial approach for future analysts, not only in anti-air Warfare defense of screen formations, but also in the areas of anti-surface and anti-submarine warfare.

NPS/DKL Location: THESIS A99423

Electronic access: http://edocs.nps.edu/npspubs/scholarly/theses/2000/Mar/00Mar_Aydin.pdf

Electronic access: http://handle.dtic.mil/100.2/ADA377605

Abstract: In the current version of NPSNET there are two problems that prevent users or this virtual environment from achieving a realistic training experience. First, the motion of the vehicles is not built around realistic, physically based models. In particular, the motion of computer-generated sea-going vehicles is not based on the hydrodynamic models that reflect the motion of actual ships moving through water. Second, vehicles in NPSNET are currently controlled by a single individual; they lack the capability to be controlled by a team. This misrepresents the many actual military vehicles-submarines, tanks, helicopters, and others-that must be controlled by several people working together. The approach taken was to update the submersible vehicle class in NPSNET in two ways. A physically-based hydrodynamic model was used to control the vehicle’s motion through the virtual world. In addition, a network communications protocol was implemented to enable several remote individuals to control the same vehicle simultaneously. The result of this work is the creation of a computer-generated submersible vehicle whose motion is determined by a real-time hydrodynamic model so it moves through the virtual world according to physically based models. This submersible is also capable of being controlled by several remote individuals-effectively the same team members who would perform the job in the actual vehicle. This ultimately results in a more realistic user experience as well as a more effective training tool.

Thesis (M.S. in Operations Research) -- Naval Postgraduate School, March 2008.

Abstract: The LCS will be a small combatant designed to address many of the challenges facing the Navy in the 2002 Defense Planning Guidance (DPG). It will rely on newly developing mission modular technology that will allow the core component of LCS, the seaframe, to change out Warfare mission packages to adapt it for different warfighting scenarios. Unlike the current combatants of the Navy, LCS will be a single-mission focused ship that will rely on still developing technology to conduct operations in one of three main areas: Anti-Submarine Warfare (ASW), Mine Warfare (MIW) and Surface Warfare (SUW). Through models developed in Microsoft Excel this thesis evaluates how speed and different fuel reserve levels impact Littoral Combat Ship fuel consumption and endurance of the two approved versions of LCS, analyzes the implication of these findings and other possible mission limiting factors on Littoral Combat Ship logistics and analyzes how the current CLF force structure in the Pacific will affect overall mission capability of LCS.

Thesis (M. S. In Systems Technology) -- Naval Postgraduate School, March 1975.

Also issued as Naval Postgraduate School Technical Report (NPS-71BE75031) in conjunction with Alan B. Coppens and Don E. Harrison.

Abstract: PEAPS (Passive Environmental ASW Prediction System) is a relatively unsophisticated model which accepts input source and receiver parameters and then predicts sound propagation characteristics in an ocean environment, the corresponding transmission loss, and the probability of detection. The program was written for a programmable desk-top calculator for immediate deployment and operational testing aboard small ASW platforms. The program is also available in a form suitable for larger computers.

Electronic access: http://handle.dtic.mil/100.2/ADA479828

Thesis (M.S. in Operations Research) -- Naval Postgraduate School, March 1990.

Abstract: The goal of this thesis is to examine the methodology used in the Antisubmarine Warfare Tactical Decision Aid (ASWTDA) in development by Sonalysts, Incorporated of Waterford, Connecticut under Navy contract. ASWTDA is a Computer Assisted Search (CAS) program which is designed as a tool to assist platform, unit or force commanders afloat and ashore in making tactical ASW decisions. First, a Classical Computer Assisted Search program is described as a basis of comparison for the methodology employed in ASWTDA. Then, the operations as performed in ASWTDA are described, followed by a probabilistic analysis. In the analysis sections, probabilistic support for the applied methodology is provided where applicable, and conceptual problems and possible solutions are cited where appropriate. Keywords: Target motion, Probabilistic analysis. (kr)

Electronic access: http://handle.dtic.mil/100.2/ADA479828

Abstract: TASDA, acronym for Tactical Airborne Sonar Decision Aid, is a computer simulation designed to select optimum sonobuoy pattern spacings given environmental parameters and submarine mode of operation. The program was designed to operate in a Tactical Support Center for briefing of flight crew personnel. Analytical methods and statistical models are used to investigate the TASDA program with a view towards modifying it for future aircraft inflight utilization. Some improvements are made to the TASDA model which reduce program run time and core storage requirements. A modified version of the TASDA program is developed as an initial step toward an inflight model.

NPS/DKL Location: THESIS B564

Abstract: A quantitative analysis was carried out on the performance of turboprop aircraft within a microburst windshear. The objective of the analysis was to provide specific flight procedures for optimal navigation through the windshear. The microburst windshear model used in the analysis embodied the severe characteristics of the microburst encountered by Delta Flight 191 during an approach to landing at Dallas/Ft. Worth, 2 August 1985. Different escape strategies were tested using the flight performance characteristics of the U.S. Navy's P-3 'Orion' and T-44 'Pegasus' aircraft. The three flight phases investigated were approach to landing, takeoff, and the low altitude ASW mission. Results from the analysis were coupled with the pilot's viewpoint from which conclusions were drawn. The results of the analysis supported a constant-pitch-angle escape procedure. The same procedural steps can be used for both aircraft in any configuration or situation with the difference being the degree of pitch to employ. The conclusions are in a format for integrating specific microburst escape procedures within the NATOPS programs for the P-3 and T-44.

NPS/DKL Location: THESIS B5886

Abstract: The advent of the missile firing submarine has added yet another dimension to the problem of defending convoys and task groups during ocean transit. The specific situation wherein the submarine must surface to fire a relatively short range missile against a convoy of ships is considered. The model developed considers several different problem parameters. It enables the calculation of probability of detection of the submarine, probability of killing the submarine before a particular missile is fired, and the expected number of missiles that the submarine will fire. Selected results from randomly selected parameter values are also presented.

NPS/DKL Location: THESIS B643

Abstract: This thesis investigated the number of In-Flight-Technicians assigned to a Navy P3C squadron, their contributions to the squadron's ASW capability in their dual roles as in-flight and ground repairmen, and the adequacy of the In-Flight-Maintenance-Kit. Tradeoffs between the number of In-Flight Technicians and ground avionics workers were evaluated as were various methods of the In-Flight
Technician’s ground and airborne utilization. Potential benefits associated with In-Flight Technician assignment to Intermediate and Depot Level maintenance activities were also examined. The In-Flight Technician’s contributions to the squadron's ASW capability were measured in Equivalent Aircraft Units which were a function of how many repairs were corrected and the impact on ASW capability of the systems repaired.

NPS/DKL Location: THESIS B6785

Abstract: This report reviews the naval planner's basic menu of operational Anti Submarine Warfare (ASW) strategical choices. Basic ASW strategies, discussed from a historical perspective, are: (1) destruction of the submarine (2) containment of the submarine, and (3) limiting the submarine’s efficiency. The report has been prepared for inclusion in the International Military and Defense Encyclopedia (IMADE), scheduled for publication by Pergamon-Brassey's in 1991-92.

NPS/DKL Location: FEDDOCS D 208.14/2:NPS-56-88-01

Abstract: This thesis presents an analysis and comparison of manpower costs of three options for the United States Navy Helicopter force structure through the year 2020. The First option, the basic plan, leaves the force structure as it is today. The second option assumes the mission to support the Military Sealift Command (MSC) is outsourced and combines the Helicopter Combat Support (HC) and Helicopter Anti submarine Warfare (HS) communities into a community referred to as HSC. The third option realigns the force along missions performed by the SH-60Bs and CH-60 under a Helicopter Air Wing Commander (HAWC). All three options support the requirements set forth in the Helo Master Plan (HMP) and are based on the acquisition of the CH-60 helicopter along with the upgrade of all SH-60Bs and SH-60Fs to SH-60Rs. The analysis involved developing manning levels, by pay grade, for the three options and determining the differences in those manning levels. Manpower costs were allocated to the total personnel requirements, and differences in costs among the options were calculated.

NPS/DKL Location: THESIS B803415
Electronic access: http://handle.dtic.mil/100.2/ADA343363

Abstract: In airborne antisubmarine warfare there is a need to more accurately determine the positions of sonobuoys on the surface of the water. This report develops two algorithms which employ extended Kalman filters to determine estimated position. The bearing from the aircraft to the sonobuoy is the primary measurement. Range information is not available. The first algorithm is a six-state filter which was reduced from the 13-state system developed by the Orincon Corporation. Its states include relative position, relative velocity, and inertial misalignments. The second algorithm includes two cascaded Kalman filters. The primary two-state filters estimates sonobuoy position. A secondary filter estimates drift from information obtained from the primary filter. Both algorithms successfully estimated sonobuoy position for simulated aircraft data. The effect of aircraft-to-sonobuoy range, the frequency of measurement, and changes in altitude are also analyzed.

NPS/DKL Location: THESIS B8243

232

Abstract: In response to recent significant improvements in Soviet Submarine Technologies, the Navy developed the Weapon System Improvement Program for the S-3A Viking. This program is an example of the dynamic nature of the environment within which the program manager operates. It provides the program manager with little control over certain events and the effects they have on their programs. An effective program manager will realize these limitations exist and attempt to strategically and flexibly manage the resources available to him as effectively and efficiently as his/her political environment will allow. However, this sometime happens at the expense of contractor inefficiencies and at a higher cost to the Government. In the DOD/DON world of scarce resources a thorough analysis of the competitive environment may provide useful insight into the S-3 Program Office and their efforts to complete the S-3 WSIP.

NPS/DKL Location: THESIS B82435

Abstract: This paper examines the evolution of the U.S. Navy’s SH-60B, LAMPS Mk III aircraft and squadron methodology. It analyzes current HSL organization design and introduces alternative organization structures to support this new helicopter community when it is introduced in the fleet in 1983-84. It begins with a statement of the issue which includes a concise historical overview of the LAMPS program and discusses its tactical and support missions. It next examines the conventional naval air squadron organization methodology from which LAMPS squadrons are designed and manned. A statistical analysis of operational fleet HSL squadrons is presented which concludes that conventional squadron design methodology does not support the unique LAMPS community. Four general alternative organization models are proposed followed by a discussion of the possible utilization of the Naval Flight Officer in the LAMPS System. The paper concludes with a summary of the proposals from which organization redesign may result and offers recommendations to that process.

NPS/DKL Location: THESIS B9218

Thesis (M.S. in Management) -- Naval Postgraduate School, June 1995

Abstract: This thesis develops multivariate models to estimate the effects of undergraduate academic performance and fully-funded graduate education on promotion to the ranks of Commander (0-5) and Captain (0-6) in the U.S. Navy. Using data extracted from the Officer Promotion History Files, two sample populations were selected for analysis: Officers who appeared before the Commander promotion boards between fiscal years 1981 and 1994, and those who appeared before the Captain promotion boards during this same period. These data sets were further categorized into five Warfare communities and two separate time periods; the period between 1981-1989 (the pre-drawdown), and the period between 1990-1994 (the drawdown). Ordinary least squares (OLS) and maximum likelihood logit regression models were employed to estimate the probability of being promoted to these two ranks. The findings reveal that graduate education and academic performance have positive effects on promotion probability for some, but not all, of the communities over the various time periods. Recommendations for further study are included.

Calvano, Charles N., Robert C. Harney, David Wickersham, Ioannis Farsaris, Philip

Abstract: A systems engineering approach to the design of a ship conversion to satisfy the requirements for a Surface Warfare Test Ship (SWTS) to be employed by the Port Hueneme Division of the Naval Surface Warfare Center is presented. The ship described would meet test needs for future weapons and sensor systems and provide limited test capability for future hull, mechanical and electrical systems. The current Self Defense Test Ship is over 45 years old, approaching the end of its useful life. A conversion of a decommissioned SPRUANCE (DD 963) class ship is the basis for the replacement Surface Warfare Test Ship. The study proceeds from mission needs and operational requirements through a functional analysis and study of threat weapons to be employed against the SWTS. After summarizing the characteristics of a SPRUANCE Class ship, the study reports an analysis of four alternative conversion schemes. The alternatives are described, with the rationale for choosing that considered best. The chosen alternative is then described and analyzed in several important areas of concern including combat systems functionality, signature characteristics, engineering plant and habitability for test personnel. The fitness of the proposed design for several special evolutions is also described, and alternatives for further enhancing performance are presented.

NPS/DKL Location: FEDDOCS D 208.14/2:NPS-ME-00-001
Electronic access: http://handle.dtic.mil/100.2/ADA374332

Abstract: The primary purpose of this thesis is to demonstrate some principles of combat modeling using programs for the Radio Shack TRS-80 Model 100 computer. In addition to the combat modeling, the thesis includes several utility programs for the M100 of interest to students of operations analysis. The combat modeling programs include an Antisubmarine Warfare (ASW) detection simulation, a Kalman filter, and a Lanchester differential equation simulation. The utility programs include a matrix algebra program, a numerical double integration program for zero degree of difficulty problems. The integration program is also written as a subroutine that can be included in other programs. The matrix algebra includes a simultaneous linear equation solving subroutine which can be used in other programs. All programs are written in M100 BASIC. Documentation includes an explanation of the input required, the output produced, and the components of each program, and sample problems. The chapter on geometric programming includes a tutorial on the mathematical basis for that technique.

NPS/DKL Location: THESIS C27436

Abstract: Vertical plane response of submersible vehicles in the proximity of a free surface in deep water is evaluated using a potential flow, strip theory solver. Two criteria, that are periscope submergence, and sail broaching are used to quantify the response. These criteria combined with the vehicle's response amplitude operators in regular sinusoidal waves along with a statistical description of the seaway lead to an assessment of an overall operability index for the vehicle. This thesis presents a systematic parametric study of the effects of body geometry on near surface response. Two cases, namely limited diameter and limited length are considered. The total volume of the vehicle is kept constant, and certain shape factors are changed, while either the overall diameter or the overall length remains the same. The operability index is calculated for each case within a given range for sea states and sea directions and for various shape factors, vehicle speeds and operating depths. The results indicate that certain changes of shape factors can improve vehicle operations in various depth and speed combinations.

Abstract: The Antisubmarine Warfare System Evaluation Tool (ASSET) is a generic high-level Antisubmarine Warfare (ASW) modeling tool, designed to aid ASW personnel in the development and refinement of ASW top-level Warfare requirements and the ASW Master Plan. The primary objective of this thesis is to analyze and implement the improvements suggested in previous evaluations of various sub-areas of ASSET. The glimpse rate model for submarine detection used in ASSET has been substituted with compound Lambda-Sigma jump model. There is a different target radiated frequency in each environmental region. Each target will have its own detection rate to reflect the differences in its operating characteristics. Multiple engagements between platforms are used to eliminate the limitations of interaction between opponent platforms. The glimpse rate model is used to determine detection opportunities of maritime patrol aircraft (MPA) and to approximate a continuous-looking sensor pattern. A different criterion of selecting search probability area (SPA) and MPA pairs using the ratio of MPA's time on-station over the SPA size was implemented. The feasibility of converting current ASSET code to CLOS was investigated. In addition, part of the code was converted to CLOS.

Abstract: This paper discusses specific accomplishments and problems regarding naval models in the RAND Strategy Assessment System (RSAS), and makes recommendations for priorities desired by the Naval Postgraduate School in the RAND program for FY 89. Emphasis is on the improvements needed to conduct research on the inter-relationship between warfare at sea and the War ashore.

Partial Contents: Naval Warfare Priorities - Carrier Battle Group Improvements; Nuclear Forces; Antisubmarine Warfare; Strategic Lift - Sea; Ocean Surveillance; Amphibious Warfare; Mine Warfare; Logistics. (kr)

Abstract: This thesis examines a two-person zero sum game where a submarine, after revealing his position by causing a flaming datum, is hunted by a helicopter which arrives on the scene after a time delay. Various helicopter and submarine strategies are explored and simulation runs are used to determine the detection probability (payoffs) for each combination of helicopter and submarine strategy. The value of the game (detection probability) with the related optimal strategies is then obtained using linear programming. A modified random search equation is also derived using probabilities of detection obtained from different combinations of parameters used in the game. Similar and related games are also discussed with emphasis on the differences in assumptions made and approaches taken in order to solve the problem. (sdw)

Thesis (M.S. in Oceanography) -- Naval Postgraduate School, 1966.
Abstract: Mazeika's method for forecasting mixed-layer (thermocline) depth of the upper ocean layers is discussed along with a newer version of this method developed by James. Using Mazeika's method primarily, a verification for the Northeast Pacific Ocean was completed with data from Ocean Weather Stations PAPA (50N, 145W) and NOVEMBER (30N, 140W) and a point named MIDPOINT (40N, 140W). The results indicate Mazeika's method is successful at Station PAPA more than seventy five percent of the time during the heating season followed by a rapid decline as the cooling season begins. The method should be useful in the entire Central Subarctic Domain as described by John P. Tully. The method fails at NOVEMBER and MIDPOINT producing less than thirty percent success in prediction. James' version did not improve the results obtained at Station NOVEMBER. This failure appears to be due to the controlling parameters for processes in the Subtropic or Transitional oceanographic regions (which include NOVEMBER and MIDPOINT); these differ from parameters controlling oceanic processes in the Pacific Subarctic region (Station PAPA), which resemble those involved in the Atlantic region for which Mazeika's method was developed. Climatology data which can be used to obtain surface and 400-foot level temperature are also tested. The results indicate these data are very useful and accurate in determining the stability index required of Mazeika's method.

NPS/DKL Location: THESIS C4788

Abstract: Simulation generated probabilities for an Anti-Submarine Barrier composed of submarines are examined from a statistical viewpoint. A probabilistic model which is not generally considered to be applicable to this case is demonstrated to be statistically supported. The applicability of the model is justified probabilistically. A statistical estimating relationship is then developed to estimate the sole input parameter from submarine FIGURE-OF-MERIT.
NPS/DKL Location: THESIS C5346

Abstract: Concepts commonly found in ASW search are used to model the flow and detect mobile launchers for short range ballistic missiles. Emphasis is on detection and destruction of the launcher before launch. The benefit of prehostility intelligence and pre-missile-launch prosecution, the backbone of successful ASW, is revealed through the analysis of a circulation model which reflects the standard operations of a third world mobile missile launcher during hostilities. A decision model is constructed and analyzed to give insight into the development of pre-hostility intelligence policies.
NPS/DKL Location: FEDDOCS D 208.14/2:NPS-OR-93-009
Electronic access: http://handle.dtic.mil/100.2/ADA261056

Abstract: This thesis analyzes the operational environment and task variables of the Tactical Coordinator in the S-3A for possible application of color coding in the display symbology in the multi-Purpose display. Beginning with the ASW threat to the carrier force under the CV concept, the missions of the S-3A are presented. The roles, tasks and functions of the Tactical Coordinator are identified and form the basis for an analysis of the need of color in airborne displays. Current display design requirements and discrepancies in the S-3A are discussed as a basis for areas of color application. Color research recently conducted is reviewed with the results directed toward the symbology currently used in airborne displays.
NPS/DKL Location: THESIS C7154

Abstract: This report provides an introduction to the SONAR equations for those interested in underwater sound as applied to ASW but lacking either the mathematical background or the time for a more rigorous presentation. Earlier versions of these notes were developed for Continuing Education courses presented at Moffett Field, California, and Naval Torpedo Station, Washington. Additionally, these notes have been in demand for certain courses at the Naval Postgraduate School. While this is the text for these courses and should be supplemented by lectures, we have attempted to design the material so that it is reasonably self-explanatory, communicating many of the essential concepts without requiring extensive verbal amplification. The unusual format has been deliberately chosen to facilitate these goals, and our experiences in presenting these materials have seemed to justify this choice. It is assumed that the reader has some familiarity with trigonometric functions and either has or will develop with the aid of the appendix the facility of handling scientific notation and logarithmic operations.

NPS/DKL Location: GENERAL VK388 .C7

Revision of Rept. no. NPS-61SD-76-071, ADA030034.

Abstract: This report provides an introduction to the Sonar equations for those interested in underwater sound as applied to ASW but lacking either the mathematical background or the time for a more rigorous presentation. While this material should be supplemented by lectures or a study guide, we have attempted to design the material so that it is reasonably self-explanatory, communicating many of the essentials concepts without requiring extensive verbal amplification. The unusual format has been deliberately chosen to facilitate these goals, and our experiences in presenting these materials have seemed to justify this choice. It is assumed that the reader has some familiarity with trigonometric functions and either has or will develop will the aid of the appendix the facility of handling scientific notation and logarithmic operations.

NPS/DKL Location: GENERAL VK388 .C71

Also issued as Naval Postgraduate School Technical Report NPS68-82-005.

Abstract: Predicting the thermal structure of the oceans is of importance to the Naval tactician, logistician, or search and rescue coordinator. Understanding the structure of the oceans provides valuable insights to those who must utilize the oceanic environment effectively in their day to day operations. Today, recent information about an area is limited to point observations of single bathythermographs. Few models produce an accurate picture of the ocean environment that can be used for updating tactics to conform to a changing situation. Producing a reliable prediction of conditions for a large area, while using limited resources, is the basic objective of this paper. Satellite infrared imaging of the ocean surface has been used effectively to map sea surface temperature patterns. Such sea surface temperature patterns can be used, along with climatology, to identify Subsurface thermal structure in an ocean area according to results of this study. More accurate inputs can be made to range dependent acoustic prediction models, thus improving the antisubmarine warfare environmental predictions available to fleet users.

NPS/DKL Location: THESIS C75956

Coyle, Gary Leonard. **An Antisubmarine Warfare Training War Game.** Monterey,
Abstract: The employment of manual tactical gaming in a training environment is discussed, outlining
the advantages and disadvantages of this method of training in the context of shipboard requirements. A
two-sided, manual tactical War game is described and rules provided for play of the game. The utility of
the game in assisting Commanding Officers and Training Officers in training junior officers using the
Personnel Qualification Standard (PQS) System is described, with recommendations for further use of the
game as a possible tactical training tool.
NPS/DKL Location: THESIS C777

Craigie, Kyle M. Assessment of Atmospheric Influence on Surveillance Radar
(ADA273045). 87p.
Thesis (M.S. in Systems Engineering (Electronic Warfare)) -- Naval Postgraduate
School, September 1993.
Abstract: Acoustic sensors, traditionally thought of as the mainstay of modern ASW's means of
detection and localization, are rapidly becoming secondary in the littoral zones to active sensors such as
radar. The coastal region has a dynamic meteorological environment dominated by surface and near-
surface ducts which influence sea clutter. Accurate, timely description of the effects this changing
environment has on sensor performance is mandatory for the ASW tactician to utilize his sensors. The
Radio Physics Optics (RPO) program and the Engineer's Refractive Effects Prediction System (EPEPS)
are used to evaluate influence of a measured environment. Both prediction systems are then applied to a
Gulf of Oman winter environmental profile with five generic radars operating parameters. EREPS is used
to evaluate factors affecting Wallops Flight Facility Space and Ranging Radar (SPANDAR) detected sea
clutter in the littoral zone off the United States East Coast.
NPS/DKL Location: THESIS C7829
Electronic acces: http://handle.dtic.mil/100.2/ADA273045

Crawford, Bruce W. Analysis of the Effectiveness Evaluation Process for VP
Antisubmarine Warfare Fleet Replacement Squadron Aircrew Training. Monterey,
Abstract: During January 1979 VP-31, the West Cost P-3 Fleet Replacement Squadron, implemented
an Instructional System Development based training program. Due to monetary, manpower, and time
constraints, the evaluation phase of the new training program was not completely developed or
implemented. This thesis examines the current status of the external evaluation portion of the new
training program in an attempt to determine the feasibility of its completion and implementation. The
external evaluation plan is related to the Interservice Procedures for Instructional System Development
Model. From this analysis, a better understanding of the plan is gained and recommendations for an
improved external evaluation program and training system are presented.
NPS/DKL Location: THESIS C813

Crawford, Frederick Roberts. Submarine Radiated Noise Far-Field Beam Patterns
for Discrete Frequencies from Near-Field Measurements. Monterey, CA: Naval
Abstract: A theoretical model was developed which can predict discrete frequency far-field radiation
patterns of submerged submarines from near-field measurements. The model developed uses the
Helmholtz integral equation and the assumptions of the DRL method of near-field measurements. The
DRL working formula is further modified by using a plane surface of integration and restricting the far-field
points of interest to a horizontal plane containing the source. These assumptions and restrictions lead to
a mathematical solution of the Helmholtz equation which is in the form of a Fourier transform. Near-field measurements on a horn speaker in an anechoic chamber were taken and the far-field beam pattern predicted by the model developed, using a simple computer program containing a Fourier transform routine. Computed beam patterns were in satisfactory agreement with measured far-field beam patterns, errors being concentrated in the outer side lobes from the acoustic axis. Problems which would be encountered in applying this model to at sea acoustic measurements are discussed.

NPS/DKL Location: THESIS C815

Abstract: This thesis looks at the Antisubmarine Warfare Systems Evaluation Tool (ASSET), written by Metron, Incorporated for OP-71, and how it relates to a current threat environment. ASSET is a campaign level ASW Monte-Carlo simulation intended for developing ASW Master Plans, top-level War fighting requirements (TLWRS), appraisals, and assessments. ASSET, delivered in 1990, was written from a U.S.-Soviet conflict perspective, and needs some restructuring to be able to provide conflict Measures of Effectiveness using platforms that are expected in a regional War. Included as suggested improvements are: A conventional submarine addition with major emphasis on power plant abilities and limitations, improvements to the surface group-submarine interaction; and improvements and additions to the methods of detection available to the objects in simulation.

NPS/DKL Location: THESIS C8732

Abstract: The report modifies an existing sonar range prediction model for the AN/SQS-23 in such a manner as to attain detection range data in consonance with exercises from which the original data was extracted. It also shows personnel a method for incorporating more than one ship in the model. This model will assist users in ascertaining the number of units required to perform a given antisubmarine task.

NPS/DKL Location: THESIS C949

Abstract: The problem of Anti-Submarine Warfare early in the next century is examined. Nonacoustic detection methods including magnetic anomaly detection, laser radar, and hydrodynamic detection are examined. A simple analysis of their relative effectiveness is made.

NPS/DKL Location: THESIS D14395

Electronic access: http://handle.dtic.mil/100.2/ADA257625

Abstract: This thesis critically reviews Twenty-two articles from the Soviet Naval Digest, Morskoy Sbornik, dealing with a wide spectrum of measures of effectiveness such as individual time efficiency, ASW search effectiveness, command decision efficiency, effectiveness of A SW training, measures of
force control, and others. These Soviet measures of effectiveness are categorized by level of combat action. Although there is some question about the specific Soviet meaning of the translations, this thesis uses the translator's rendering of the basic units of Soviet Naval organization; individual, subunit (podrazdeleniye), unit (chast'), and force (soyedineniye). The levels of combat action above force (generally agreed to be named front (front), and TVD (Teatr Voyennykho Deystviy), are not included in this study. The articles illustrate the Soviet tendency to organize their operations research along the same lines as the units of naval organization and indicate that the most basic measure of naval ship utility is combat effectiveness.

NPS/DKL Location: THESIS D16177

Abstract: Signal Processing for Antisubmarine Warfare is a short course in electrical signal processing fundamentals and their applications in the field of Antisubmarine Warfare. It contains an introduction to Fourier transforms and their properties, sampling and quantization, filters and bandwidth requirements, random signals and noise, and an introduction to four types of processing equipment; the DELTIC, energy detectors, correlation detectors, and beamformers. Course objectives are given in terms of specific questions which a person completing the course should be able to answer. The course text and illustrative material is contained in the appendix to the thesis. The course is designed to be presented in the Fleet to the personnel involved with the operation and employment of detection equipment to provide them a better understanding of the operations accomplished by their equipment and to develop in them a better appreciation of the problems and limitations associated with signal detection in the antisubmarine warfare environment.

NPS/DKL Location: THESIS D174832

Abstract: An application of the statistical decision process to the problem of ASW tactical decision is investigated. The Bayesian decision process is utilized. The basic ASW decision problem with emphasis on the uncertainty aspect of a possible submarine contact is analyzed. A mechanism is developed to formally connect the general problem areas.

NPS/DKL Location: THESIS D235

Abstract: Since the all volunteer force came into being, retention of military personnel beyond their first enlistment has become an increasingly important problem, especially for the U.S. Navy. Yearly retention conferences have been held for the purpose of developing plans to reduce turnover. The results of the latest conference brought the focus of attention to better leadership and management training of U.S. Navy personnel. Among the techniques that deals with the problems of absenteeism and turnover is job enrichment. The main thrust of job enrichment is to increase retention by increasing work satisfaction. Job enrichment as a management technique focuses on the basics of employee motivation and work behaviors. It aids the managers in identifying the components which comprise a job, and enables them to determine satisfying components that can be enhanced and dissatisfying components that can be diminished or eliminated.

NPS/DKL Location: THESIS D27
Abstract: The SEATAG EXTENSION will revise and suggest optional and alternative rules for the game SEATAG: A Sea Control Tactical Analysis Game. Alternative rules are proposed for damage assessment, detection, classification, targeting, weapon's effectiveness, and ASMD close in weapon systems. Air-to-air combat tables have been revised to include the latest additions to both the United States and Soviet naval aircraft inventories. Optional rules will incorporate electronic Warfare, battle damage repairs, miniature ship model combat, and use of the Tomahawk cruise missile.
NPS/DKL Location: THESIS D4588

Abstract: The Advanced Air Deployable Array (AdDA) is an air-dropped undersea Warfare device for detection of an enemy submarine in the shallow waters region. Previous studies have introduced six tactical deployment methods by C-130 aircraft. This thesis addresses one of the methods, called Bound the Expanding Farthest-On Circle. Changes in deployment rules are suggested, and feasibility conditions identified. A model is developed showing how the isolation area where the submarine is to be contained, and the number of needed array segments, can be reduced. Also, as the main work of this study, the effective deployment angles for successive AdDA cable are determined for C-130 pilots. Today these cables, because of their advantages and great utility, can give unique solutions in shallow water tactical operations.
NPS/DKL Location: THESIS D4818
Electronic access: http://handle.dtic.mil/100.2/ADA280484

Abstract: A method is developed to analyze and compare the effectiveness of ASW vehicles. The measure of effectiveness is the probability that the vehicle, after detecting a submarine with passive sensors, can transit to the contact area and re-establish contact with the submarine. A computer simulation is developed and an example using three hypothetical ASW vehicles is illustrated.
NPS/DKL Location: THESIS D69

Abstract: There is currently little data available for trend analyses of tilt-rotor aircraft performance. This study analyzed the sensitivity of predicted tilt-rotor performance to variations in six design parameters: Disk loading, tip speed, solidity, download, wing loading, and wing thickness ratio. Two mission profiles were analyzed: A combat search-and-rescue mission and an antisubmarine warfare mission. A tilt-rotor preliminary design code was used to perform computer simulations; and data available from independent tests completed by NASA and the military were encoded in the input data decks. Results were presented as graphs of performance aspects plotted against the parameters varied. Because the study was a trend analysis, no specific conclusions were drawn but a summary was made of the more significant results. It
is hoped that the results of this project can serve as a guide to preliminary selection of design parameters for tilt-rotor configurations that would be suitable for a broad range of military and civil applications.

NPS/DKL Location: THESIS D7935

Abstract: The purpose of this technical report is twofold: 1) to critically examine the ITDA ASW barrier and area search models for mathematic accuracy and modelling reasonableness, and 2) to report on the use of ITDA programs on USS CARL VINSON (CVN 70) during a 16 day period of high intensity, exercise operations.

NPS/DKL Location: FEDDOCS D 208.14/2:NPS-55-86-026

Abstract: Airborne Anti-Submarine Warfare operations require a means of precise tactical navigation relative to an air-dropped sonobuoy pattern. Advantages and disadvantages of navigational techniques which could be used to solve this problem are discussed. An analysis is made of a previously proposed method to solve this problem by sonobuoy ranging concepts. The design of a prototype sonobuoy ranging system is described, and a preliminary evaluation is made of the accuracy of the prototype system.

NPS/DKL Location: THESIS E397

Abstract: This joint thesis analyzes the carrier-based Tactical Support Center (CV-TSC) design from a human factors engineering viewpoint. Beginning with the ASW threat to the carrier force under the CV concept, a definition of the mission of the CV/TSC is presented. System functions are identified and developed into man-machine relationships of the CV/TSC. A comprehensive, albeit general, description of TSC components is included as part of the system analysis. Man's role, functions and tasks in the CV/TSC are identified and form the basis for alternatives to the current TSC display/control console.

NPS/DKL Location: THESIS F234

Abstract: To enhance insight into a War at sea, a general, aggregated and highly flexible model of the ASW campaign is offered. This thesis provides a simple and usable circulation model template. The generality and simplicity of the model allows for 'jointization' of an ASW campaign by allowing the user to utilize other resources to define the force mix. The model is designed, first and foremost, to examine the change in the marginal effectiveness of friendly ASW forces due to changes in force level, mix, effectiveness, and employment strategies. The model is keyed to the interaction of a threat submarine with friendly ASW forces and merchant or military shipping. Specific features of the model provide for four unique attack regimes. The in port and operational regimes control friendly attacks on a daily basis while the outbound and inbound regimes control barriers by events. The campaign model is a deliverable product programmed using Borland (registered) Delphi for use in Microsoft Windows.

Abstract: This study is the first reported analysis of coupled mixed layer-acoustic model systems. This analysis emphasizes the performance of the combined systems rather than the acoustic or ocean models separately. Acoustic variability of the coupled model systems was studied in terms of the median detection range (MDR). Synoptic time variations of MDR as a function of figure of merit, frequency and receiver depth were analyzed during the month of May 1980 at OWS 'Papa' in order to provide a better insight into the operational capabilities of model systems to accurately represent the actual oceanic variability. The results of this limited analysis revealed that the model systems displayed more day-to-day acoustic (MDR) variability than did direct environmental input (BT). The capability to accurately model the thermal structure was reviewed with the following results. No significant correlation was observed between the EOTS model and the actual BT mixed layer depths while there appeared to be a strong positive correlation between the ODT model (driven by atmospheric forcing) and the BT mixed layer depths. Moreover, a possible lag of two days was observed in the EOTS model mixed layer depth relative to the observed mixed layer depth time series.

Revision of report dated Dec 82, ADA129194.

Abstract: The report discusses two motion strategies that reduce the localization information provided by a surveillance system. In the revision, an expression in Appendix 6 has been changed and a new reference has been cited. Also, several typographical errors have been corrected.

Abstract: This report describes an empirical analysis of a motion model that has been used to generate random submarine tracks for an antisubmarine warfare tactical decision aid. The model describes a submarine’s motion as a series of transitions between the square cells of a grid that covers a defined operating region. A 3 x 3 transition matrix is associated with each cell of the grid which determines the submarine’s transitions from a cell. The set of transition matrices define a Markov process. Despite its discrete nature, this Markov track generating process has been called a diffusion process in antisubmarine warfare tactical decision aid literature. The transition matrices are determined by tracks generated by an auxiliary stochastic process that is presumed to be of higher fidelity but more costly to implement than the Markov process.

Thesis (M.S. in Engineering Acoustics) -- Naval Postgraduate School, September 1990.
Abstract: A study was conducted in an area off the Hellenic west coast to examine the spatial and time variability of various oceanic parameters, with special emphasis on those effecting ASW operations. Propagation loss runs were conducted using PE and RAYMODE models. The reactions of both models to different bottom morphology and sound speed profiles (seasons) were examined. Between the two models, the PE model was found to be closer to reality than RAYMODE. Results suggest that the application of these models can improve the understanding of sound propagation in the Hellenic seas. The bottom modeling program, BLUG, appears to need improvement.
NPS/DKL Location: THESIS F663525

Abstract: The objective of this study is to investigate the utility of acoustic tomography for performance assessment of a generic low frequency active sonar system. The performance of the sonar is simulated using tomography-derived sound speed data versus a range independent ocean model. The ocean environment used in the simulation is 159 tomographic snapshots of the Barents Sea Polar Front, taken every 5 minutes in August 1992. The modeled sonar system consists of a 1000 Hz source with a source level of 205.5 dB and a towed horizontal array of hydrophones. The system is derived from unclassified parameters of ATAS (Active Towed Array Sonar), built by Thomson Sintra ASM and British Aerospace SEMA, and the experimental ALF sonar, designed by FEL-TNO (the Netherlands) and built by Thomson Sintra ASM. The tomographic images over a range of 26 km provide a realistic ocean in which system performance is assessed. This study used a broadband, coupled normal mode, propagation model and assumed a noise-limited condition. The probability of detection calculated as a function of time for 13 hours is compared with that estimated using a range- and time-independent assumption. The utility of coastal acoustic tomography for tactical applications is discussed. (AN).
NPS/DKL Location: THESIS F782313
Electronic access: http://handle.dtic.mil/100.2/ADA290219

Thesis (M.S. in Operations Research) -- Naval Postgraduate School, 1970
Abstract: In airborne anti-submarine warfare operations there is a critical requirement for maintaining an accurate relative plot of the sonobuoys with respect to the aircraft. This study proposed a method for locating sonobuoys in a pattern using aircraft-to-buoy slant range information. The method did not use triangulation procedures and attempted to minimize the restrictions placed on the aircraft. The study showed the feasibility of the proposed methodology and the approximate errors to be encountered.
NPS/DKL Location: THESIS F86

Thesis (M.S. in Operations Research) -- Naval Postgraduate School, 1980
Abstract: To enhance insight into a War at sea, a large-scale, aggregated, and highly flexible model of the ASW campaign is offered. The model was designed, first and foremost, to examine the change in the marginal effectiveness of friendly ASW forces due to changes of force level, force mix, and force employment strategies. The model is keyed to the interaction of the threat submarine force with friendly ASW forces and merchant or military shipping. Specific features of the model provide for threat deployment options, allocation of friendly forces, attrition to threat and friendly forces, aggregation of friendly ASW force performance, sensitivity to force levels, deployment of submarines within 'wolfpacks' and coordinated barrier stations, and parametric treatment of other Warfare area effectiveness. The campaign model has been programmed in the APL/360 language for use on an IBM 360-67 computer.
Abstract: Advances in nuclear and diesel-electric submarine technology have reduced the effectiveness of passive means of detection. The United States is faced with a multipolar threat in part due to the proliferation to Third World nations of advanced diesel-electric submarines. The use of active sonar must be explored to gain back the detection advantage the United States submarine force has enjoyed in the past. The use of bistatic sonar reduces the counter-detection threat resulting from active sonar.

Abstract: A methodology is developed to assist in the evaluation of competing proposals for HS/HSL consolidation. Six criteria are developed to allow a quantitative measure of critical personnel, cost, and operational issues. The criteria are incorporated into a spreadsheet model that can evaluate five options simultaneously. Decision maker participation is required to derive a set of weights that represent the relative importance attributed to each criteria. Five options currently under consideration as candidates for consolidation are examined. Analysis is conducted to determine the effect different weight values have on the optimal solution. A sample run of the model is conducted to demonstrate its use. (KAR)p. 2.

Distribution Limitation now Removed.
Abstract: The relative distance between various Antisubmarine Warfare vehicles is an important parameter for the evaluation of sensor equipment. This thesis presents a computer model, utilizing a time dependent error navigation system, Omega, for the determination of this relative distance parameter. A methodology for predetermining a relative distance error distribution for a specific area by simulating various Antisubmarine Warfare vehicle tracks from known navigational errors has been established. Attempts to smooth estimated tracks of Antisubmarine Warfare vehicles which receive the same time dependent navigational information simultaneously was found not to be advisable as this disturbs the correlation of navigation error between the vehicles.

Abstract: The purpose of this thesis is to determine whether the Armed Services Vocational Aptitude Battery (ASVAB) scores, specifically the composite of ASVAB subtests (AR + 2MK + GS) used to predict eligibility for formal training in the Aviation Antisubmarine Warfare Operator (AW) rating, can actually
predict the success or failure of enlisted personnel attempting the P-3 fleet readiness squadron (FRS) Acoustic Operator syllabus. This was accomplished by computing a Pearson Product - Moment Correlation Coefficient, corrected for restriction in range, to determine the correlation between ASVAB subtest and composite scores and success or failure in the FRS syllabus. The results indicate that ASVAB scores are only slightly predictive of performance.

NPS/DKL Location: THESIS G5477

Abstract: The subject of this thesis is an investigation of the effect of using the Lambda-Sigma jump process in the acoustic detection component of APAIR. A computer simulation was developed which is similar to the sonobuoy field versus submarine engagement model found in apair, the Navy's general ASW model. This simulation was then modified to incorporate the Lambda-Sigma jump process and the effect of this modification is discussed. In order to check the structural validity of the simulation models, Results that were obtained by using them are compared to results that were obtained by using an analytical model called the random search model.

NPS/DKL Location: THESIS G566

Abstract: The Naval Tactical Game (NAVTAG) Training Systems are to become the standard War gaming computers in fleet use to train Surface Warfare Officers in tactical operations. As modern weapons platforms are developed, they need to be modeled into NAVTAG in order that they might be included in applicable atsea engagements. In support of this objective, the SH-60B (SEAHAWK) Anti-Submarine Warfare Helicopter, which is currently not supported by NAVTAG, is incorporated into the NAVTAG system. The SH-60B is incorporated into the NAVTAG System with the full range of functions that are enjoyed by other aircraft modeled in NAVTAG. Using NAVTAG the SH-60B is tested in an Antisubmarine Warfare (ASW) scenario developed to test its capabilities against a Soviet submarine. For comparison and testing purposes the SH-60B is also compared to the SH-2F helicopter previously modeled in NAVTAG. Both helicopters have comparable mission objectives and tactics. This is a research project to determine if NAVTAG can be modified in a research environment and with what degree of difficulty this may be accomplished. This in no way is meant to modify the Standard NAVTAG Systems that have been distributed to fleet units without the consent of the Program Manager. Orinigorator supplied keywords include: Wargaming, NAVTAG, SH-60B helicopter.

NPS/DKL Location: THESIS G5725

Abstract: The expertise required by Tactical Action Officers in a modern Anti-Submarine Warfare environment of complex weaponry, minimal reaction time and arduous conditions at sea necessitate training and experience that is both exhaustive and progressive. For these officers to be effective in making accurate and timely decisions so as to effect the most appropriate responses, they must have ready access to current tactical doctrine and system performance statistics. In time of War there is no time to allow a junior Tactical Action Officer to progress to a level of competency: He must be a reliable, capable, fully functional Warfare team member at the outset of his tour. This thesis presents a prototype Artificial Intelligence model of the TAO ASW decision making process using an expert system development tool run on a microcomputer, to train fledgling TAO's with an outlook to the potential
development and capability of an operational expert system.
NPS/DKL Location: THESIS G585

Abstract: Five synoptic space sections along 158W longitude between Hawaii and the Aleutian Islands were developed from data collected by airborne expendable bathythermographs during experiment PARKA, a research project sponsored by the U. S. Navy in 1968. The sections are examined for spacial and temporal variation in thermal structure and geostrophic surface velocity. Two recently developed analysis techniques are employed. Denner's T-S gradient method, wherein thermal and haline contributions to total geostrophic velocity are distinguishable, expedites calculations and results in velocity fields comparable to those developed by the dynamic method. Thermocline parameters are developed using Boston's objective definition of the thermocline, a statistical curve-fitting technique which develops the notion of a Gaussian thermocline. Gross features of thermal structure remain fairly consistent during the heating season; however, thermal fronts are observed to vary in time and space. The distribution of isothermal lines with latitude suggests the possibility of a Taylor-column effect slightly north of Hawaii.
NPS/DKL Location: THESIS G618

Abstract: The ability to locate and determine the position of an ASW sonobuoy is an essential part of airborne anti-submarine operations. Present methods restrict the parent aircraft's operational capability and yield only marginal data. State-of-the-art frequency control makes it possible to range sonobuoys accurately with radio signals. Sonobuoy position can then be determined by combining this range data with other available information. A system is proposed to both free the parent aircraft from present restrictions and to increase the accuracy of the position information.
NPS/DKL Location: THESIS G6578

Abstract: A model presented in this thesis is a computer simulation model of ASW interactions between a formation of high value group ships, protected by some screening ships, and some penetrating submarines. The model is designed for use as an aid in improving the ability of a proposed screening tactic in the detection of a penetrating submarine. A systematic procedure to improve a screen's effectiveness against a known submarine threat is demonstrated, and an example problem is worked using this procedure.
NPS/DKL Location: THESIS G768

Abstract: As part of the development of the capabilities of the Command, Control and Communications (C3) Laboratory at the Naval Postgraduate School, there was a need for an in-house computer assisted tactical war game. The objective of this thesis was to satisfy that need. An Anti-submarine warfare board game, 'Up Scope', which was designed, developed and produced by Simulations Productions, Inc. of New
York, was used as the model. This thesis provides an interactive computer assisted anti-submarine warfare War game called 'Up Scope' which is written in FORTRAN. This thesis also develops a framework for any future computer adaptation of a tactical board game, details a players manual and gives full documentation of the computer programming. Program listings, a sample game and several tactical scenarios are also included.

NPS/DKL Location: THESIS G83225

Abstract: In June 1987 the Canadian government announced plans to procure 10 to 12 nuclear attack submarines (SSNs). The evidence suggests that, for some Canadians, a primary purpose for this submarine program may not be to enhance the security of NATO, but instead to assert Canada's sovereignty, principally against the United States, in the Arctic region. The thesis discuss this decision and its possible implications for the security of North America and NATO. It is argued that the United States must continue to have unimpeded access to the Arctic region to counter the ever increasing threat posed by Soviet nuclear ballistic missile submarines (SSBNs). Finally the thesis suggests a possible solution to the current sovereignty debate and a potential strategy for employing these SNN to enhance the security of North America and NATO as a whole.

NPS/DKL Location: THESIS G86344

Abstract: The thesis discusses the solution of concave-convex games. An algorithm is developed, a computer program written and applied to an anti-submarine warfare force allocation problem as an illustration. Techniques for handling concave-convex problems in high dimensions are included.

NPS/DKL Location: THESIS G8647

Abstract: The helicopter contact area search problem is studied. The analysis used to derive current search plans is presented, and an error in this analysis is demonstrated. As a result of this examination a new model is constructed for investigating the problem. Game theory techniques are applied to the model and the methodology required to derive optimal strategies is illustrated. Although no complete optimal strategies are derived, it is possible to derive such strategies by applying computer techniques to the results of this study. Such strategies could then be applied in the fleet.

NPS/DKL Location: THESIS H147

Abstract: A procedural approach to the design and implementation of a computer simulation model is presented, with a simulation model description and computer code. The discussion and example are intended as reference material for the computer science and computer War gaming courses offered at the United States Naval Postgraduate School. The sample computer simulation was designed for the
statistical analysis of the comparative effectiveness of different ASW helicopter search tactics in a variety of tactical and physical environments. This simulation has available a wide range of input parameters and is applicable to all ASW helicopters and any search plan employing ten helicopters or less. The accompanying FORTRAN computer code was written for the CDC 1604 computer, and is adaptable to the IBM 7090-94 by the inclusion of the appropriate control cards and random number generator.

NPS/DKL Location: THESIS H175

Abstract: The thesis explores the phenomena unique to echo-ranging with a source widely separated from the receiver. In an asset-austere era of antisubmarine warfare, this technique serves as a tactical advantage, particularly in the passive tracking of a submarine. Particular emphasis is placed on the terms of the sonar equation most affected by the bistatic geometry: Reverberation level and target strength. The research is particularly applicable to ongoing NATO and Naval Laboratory work involving the bistatic concept in array design and for use with surface escorts in conjunction with friendly submarines.
NPS/DKL Location: THESIS H296285

Abstract: An acoustic model for low frequency (100-2400 HZ) propagation loss within a surface duct is examined. An analysis of the sensitivity of this model as a function of the governing environmental parameters is performed. The results of this analysis show that the frequency and mixed layer depth are influential over a wide range of environmental conditions and that the below layer thermal gradient becomes important at low frequencies when the layer depth is relatively shallow. Under certain conditions, a change in below layer thermal gradient of 2F/100 FT has the same resultant effect as a 25 FT change in the mixed layer depth. (Author Modified Abstract)
NPS/DKL Location: THESIS H29629

Abstract: In order to evaluate the relative effectiveness of different active non-directional sonobuoys, a computer war game is developed. One submarine, employing one evasion tactic, is opposed by one helicopter, using five prosecution tactics. The tactic of the helicopter prior to the initial detection of the submarine is seen to be critical, and this simulation aids in determining an optimum tactic. A cost-effectiveness model to use data from this simulation is developed. An example, using hypothetical but realistic data, is presented to illustrate methods of determining the cost-effectiveness of each sonobuoy type when used with its optimum tactic.
NPS/DKL Location: THESIS H29634

Abstract: A simulation model for the open ocean submarine versus submarine search and detection problem is presented. The objective of the simulation is to estimate the probability with which a nuclear powered attack submarine will achieve sonar detection of a nuclear powered transiting submarine using a
search plan based on external intelligence. A detailed description of the model and its use are included along with a typical analysis.

NPS/DKL Location: THESIS H298515

Abstract: The evaluation of a proposed submarine detection system by computer war gaming techniques is illustrated by a hypothetical example. A scenario is chosen, tactics and policies established, and the tactical simulation conducted. From the results of the simulation, minimum specifications for the system to attain a given level of effectiveness are drawn. Finally, a scale is made for comparison of this system with similar systems in terms of cost per day per mile of barrier.

NPS/DKL Location: THESIS H353

Abstract: This thesis will focus on the sea-based legs of the American and Soviet triads, examining a series of confidence-building measures (CBMs) that may be considered during the Strategic Arms Reduction Talks (START) that are underway in Geneva. Some proponents have argued that these CBMs, if implemented, would strengthen each side's belief in the invulnerability of nuclear-powered, ballistic missile launching submarines (SSBNs), thereby increasing strategic stability. These proposals seek to increase confidence in SSBN survivability by managing both the employment of anti-submarine warfare (ASW) forces and the development of technology that could be specifically directed against SSBNs. This thesis will consider the possible effects that five different CBMs could have on U.S. perceptions of SSBN survivability. These changes in perception will be measured against the costs that might be exacted in other areas (e.g., tactical anti-submarine warfare) by agreeing to the CBMs.

NPS/DKL Location: THESIS H403

Abstract: NANCEE is a computer simulation program which uses convolution (or meeting) probabilities to determine which barrier type of sonobuoy pattern has the highest probability of detection for a transiting nuclear submarine. The program assumes that the optimum barrier is a straight-line one, two, or three row sonobuoy pattern containing not more than 48 sonobuoys. The barrier is centered on the submarine's expected line of transit, oriented perpendicular to the submarine's course, and placed far enough ahead of the submarine's position that all pattern sonobuoys are in the water and being monitored before the submarine enters the detection range of the sonobuoy pattern. If more than one barrier is found to have the highest probability of detection, the one with the least number of sonobuoys is selected as optimum. (Modified author abstract)

NPS/DKL Location: THESIS H534

Abstract: The development of new decision support systems for Antisubmarine Warfare will entail the installation of propagation loss models on ASW aircraft. The decision to put either a range dependent or range independent model in the system will affect the predicted ranges, the overall probability of detection, and the computation time. Comparisons of the range dependent ASTRAL and range
independent RAYMODE propagation loss models were made in the Eastern Mediterranean, the Gulf of Oman and the South China Sea for eight source/receiver/frequency combinations. Computation time differences between the two models were not significant at either of the source frequencies (50 Hz or 400 Hz). RAYMODE showed much better correlation with the split step PE model which was used as a standard. The ASTRAL model often predicted lower transmission losses than either RAYMODE or PE. For the short detection ranges normally encountered in air ASW the more complex range dependent models are not necessary. The RAYMODE model or a comparable range independent model will provide adequate propagation loss predictions. ASTRAL, RAYMODE, Propagation loss models.

Abstract: The contribution of a patrol squadron to the total ASW readiness is dependent in part upon the effectiveness with which allocated or assigned personnel are utilized. In the hope of increasing that effectiveness, organizationally induced problems encountered in the allocation and utilization of flight crew personnel were investigated. A possible solution is offered which involves minor organizational changes, establishment of a flight crew rate, and a functional application of manning level constraints.

Abstract: Many avenues have been explored to allow recognition of underwater objects by a sensing system on an Autonomous Underwater Vehicle (AUV). In particular, this research analyzes the precision with which a Tritech ST1000 high resolution imaging sonar system allows the extraction of linear features from its perceived environment. The linear extraction algorithm, as well as acceptance criteria for individual sonar returns are developed. Test results showing the actual sonar data and the sonar's perceived environment are presented. Additionally, position of the sonar relative to the perceived image is determined based on the identification of key points in the scene.

Abstract: An Implicit Finite-Difference (IFD) computer program that incorporates exact interface conditions has been developed for solving the parabolic equation. The model preserves continuity of pressure and continuity of the normal component of particle velocity at the interface between media having different sound speeds and densities. Interface conditions are preserved for horizontal and sloping interfaces along a user-specified bottom profile. Test cases are included to demonstrate the use of the model.

Jenkins, Alan K. *Modeling Convergence Zone Gain on MS-DOS Based Personal*
Abstract: The models for determining convergence zone Gain (G) were developed using a linearized Sound Speed Profile (SSP) and applying ray tracing theory. The SSP was divided into three cases; bilinear, bilinear with isospeed layer, and bilinear with mixed layer. Two analytical solutions were developed using Taylor series and binomial series expansions to determine G, one for the bilinear and bilinear with isospeed layer, and the other for the bilinear with a mixed layer. The solutions for G are exclusively a function of the SSP gradients. Each solution was compared to the solutions from ray tracing and the solutions from the Integrated Carrier Antisubmarine Warfare Prediction System (ICAPS) (which runs on mainframe computers and requires more data in addition to the SSP). When the SSP's were not too unusual, the solutions for G were fairly close when compared to ray tracing and ICAPS.
NPS/DKL Location: THESIS J452

Abstract: In a wedge shaped ocean, the method of images is used to develop an analytical approximation of the acoustic pressure field. Contemporary work develops acoustic doublets from a combination of the source and surface reflection image using simple dipole theory. The method of images is then used to sum the dipole images. This thesis matches dipole pairs to achieve a quadruplet expansion. A computer program using the derived quadruplet equation is then created to verify the results by comparing them with the URTEXT program. Method of images, Quadruplet expansion.
NPS/DKL Location: THESIS J8465
Electronic access: http://handle.dtic.mil/100.2/ADA275121

Abstract: A model based on Kitaigorodsky's application of similarity theory and modified by McDonnell to forecast the mixed-layer depth was studied. The model applies during the Warming season and is based on the theory of similarity. The parameters involved in the model were determined from bathythermograph data recorded at Ocean Weather Stations November (latitude 30N, longitude 140W) and Bravo (latitude 56 30N, longitude 51W). Parameters were evaluated daily and grouped by months. Both seasonal and transitional MLD situations were treated. From these parameters, the form of the dimensionless function P(N), claimed by Kitaigorodsky to be universal, was determined by least squares fit to be best approximated by a second order polynomial. Forecasting equations involving P(N) were developed for each month and tested with data from the following years for both OWS ships. There is general agreement between the observed MLD and that found from the prediction equation based on the last year's P(N) for the same month and location. Month-to-month and spatial differences in P(N) cast considerable doubt on its universality, at least as determined by the parameters as currently defined.
NPS/DKL Location: THESIS K272

Thesis (M.S. in Computer Science) -- Naval Postgraduate School, June 1990.
Abstract: ARGOS is a multimedia database prototype system currently being developed by the Computer Science department of the Naval Postgraduate School in Monterey. Its primary purpose is to provide a prototype system that could be used as a Battle Group Commander's assessment tool and a shipboard data management tool, in addition to providing increased efficiency and productivity to the
Navy ships. This implementation demonstrates the contribution such a system would make to the efforts of the Anti-Submarine Warfare (ASW) community.

NPS/DKL Location: THESIS K3872

Thesis (Master of Computer Science) -- Naval Postgraduate School, September 1994

Abstract: The U.S. Navy's new multiprocessor, the AN/UYŞ-2 Enhanced Modular Signal Processor (EMSP) utilizes a First-Come-First-Serve (FCFS) algorithm to transfer data. This algorithm is simple to implement but provides no mechanism to control execution of a specific application on the AN/UYŞ-2 which prevents performance predictions. A Large Grain Data Flow (LGDF) representation of a specific application is utilized to predict performance, with the introduction of trigger queues (dependency arcs) into the graphs to control execution. I utilized the EMSP Common Operational Software (ECOS) Workstation to execute graph representations of specific applications used by the U.S. Navy in the Anti-Submarine Warfare (ASW) arena. A complete description of the ECOS workstation, and the process of transforming specific applications into graph representations to be executed on the ECOS Workstation is demonstrated. Specifically, the Correlator Graph which represents a real-time ASW process is examined. To control and improve performance, the technique of implementing trigger queues using the ECOS Workstation is demonstrated. A basic graph is executed and referenced as a benchmark, with two reconstructed graphs executed demonstrating how trigger queues effect graph execution. The node execution times statistics indicate trigger queues control execution and will provide a mechanism to predict node performance.

NPS/DKL Location: THESIS K3962212

Electronic access: http://handle.dtic.mil/100.2/ADA289632

Thesis (M.S. in Operations Research) -- Naval Postgraduate School, 1967.

Abstract: The problem of allocation of ASW forces assigned to an oceanic convoy in a submarine warfare environment is postulated as a two-person game with the payoff function being based on the 'formula of random search.' The opponents in the game are a convoy system and a submarine system. A submarine is given the option of attacking the convoy system either from afar with surface-launched missiles or near with torpedoes. The convoy system is defended by units capable of destroying submarines exercising either of their options. The optimal allocation of forces for both sides is shown to be a set of pure strategies which are dependent on the parameters of the model.

NPS/DKL Location: THESIS K399

Thesis (M.S. in Operations Research) -- Naval Postgraduate School, 1973.

Abstract: A basic approach to the problem of evaluating or predicting a crew's performance for the VP community is presented. The method uses an application of multiple regression analysis techniques to a model which has training parameters as its variables. The results would allow the squadron or wing commanding officer to predict a crew's performance before the actual flight and to determine how to allocate training time for the squadron.

NPS/DKL Location: THESIS K427

Abstract: This thesis examines a method to determine the depth of a point source in and isospeed ocean environment. Using the Fourier Transform on the acoustic pressure field in the range domain results in the attainment of the acoustic pressure spectrum in the wave-number domain and a characteristic nodal spacing unique to the source-receiver depths. Quantitative examination of a magnitude plot of the spectrum and use of simple mathematical formulae yield the source depth. The debilitative effects of narrowband noise and surface roughness on the pressure spectrum is recognizable in noise after the pressure field in the range domain has been lost in the noise field. The effect of surface gravity waves on the pressure spectrum is similar to that on the pressure field in the range domain: The characteristic nodal spacing is suppressed as the height of the surface waves increases. Keywords include: Lloyds mirror; Underwater acoustics; Fast fourier transform; Wavenumber Technique; Pressure spectrum; Source depth determination; Acoustic propagation; Isospeed environment; Antisubmarine Warfare.
NPS/DKL Location: THESIS K4492

Abstract: The Center for Naval Analyses Computer War Game, SEALIFT, is a Monte-Carlo simulation designed to help study sealift capabilities in an ASW environment. A mathematical model of the SEALIFT game is posited to obtain expected value results approximating those of the SEALIFT game. The model is cast in the Fortran terminology of SEALIFT and an effort is made to accurately reflect the SEALIFT flow chart logic in its development. Comparisons with SEALIFT results to determine the model's reliability and accuracy are not made.
NPS/DKL Location: THESIS K519

Abstract: A conceptual design of a stand-off weapon to be launched from maritime patrol aircraft for use against hostile surface combatants was performed at the request of the Naval Air Test Center. The purpose of this thesis was to study the feasibility of developing a low-cost, anti-ship missile for air ASW platforms. A mission threat analysis was conducted to determine the lethality of probable targets and to determine required missile performance characteristics. Current design methods and techniques were used to calculate the necessary missile geometry to meet the derived performance characteristics. An evaluation of navigation laws was conducted to determine the most appropriate flight profile for the missile. The control system was tailored to meet the specifications of the selected navigation law. An investigation of passive and active homing devices was conducted. A low cost seeker to adequately locate and track targets of interest was examined. A target engagement model was used to verify the missile's maneuverability. This model demonstrated that the missile could intercept highly maneuvering craft when launched from a desirable stand-off distance.
NPS/DKL Location: THESIS K728

Abstract: This thesis describes and analyzes a possible deployment posture for the Soviet ballistic missile submarine force. It examines the proposition that the Soviet Navy will establish a point defense,
labeled Close Aboard Bastions (CABs), for its ballistic missile submarine fleet within the Soviet claimed 12 nautical mile territorial sea. This is a logical derivation of the currently widely held view that the Soviet will establish derivation of currently widely held view that the Soviets will establish a bastion defense for the strategic portion of their seagoing forces. The thesis concludes that the postulated CAB strategy is a viable option for the Soviet Union during a war that begins conventionally.
NPS/DKL Location: THESIS K85451

NPS/DKL Location: THESIS K8786
Electronic access: http://handle.dtic.mil/100.2/ADA328621

Landa Borges, José Manuel. Radar Search and Detection with the CASA 212 S43 Aircraft. Monterey, CA: Naval Postgraduate School, 2004. (ADA429893). 75p. Thesis (M.S. in Operations Research) -- Naval Postgraduate School, December 2004. Abstract: This research develops a detection rate model to analyze the effectiveness of the RDR 1500B search radar installed in the CASA 212 S43 aircraft belonging to Venezuelan Naval Aviation. The model is based on a search and detection mission to find a diesel submarine executing an incursion inside the Venezuelan Caribbean Sea area, assumed to be intermittently operating with periscopes or masts exposed above the sea surface. The analysis obtains cumulative probability of detection vs. time based on the radar manufacturer’s performance data, user inputs for aircraft search area size, search speed, and search altitude, and submarine periscope or mast exposure profile. The model can use given periscope radar cross section data, or roughly calculate radar cross section given assumptions about exposed periscope height above the sea-surface and sea-state conditions. Submarine evasion due to radar counterdetection is also modeled.
Electronic access: http://handle.dtic.mil/100.2/ADA429893

Lanman, George Maurice. An Adaptation of a Markov Chain Model for Antisubmarine Warfare Carrier Aircraft. Monterey, CA: Naval Postgraduate School, 1988. (AD0489085). 63p. Thesis (M.S. in Operations Research) -- Naval Postgraduate School, 1966. Abstract: It is the purpose of this paper to develop a useful mathematical model of ASW aircraft availability. The increasing emphasis of systems studies dictates the use of accurate and representative models of the ASW systems. At present, many studies are using essentially the same models developed during World War II. This paper is an attempt to make use of advanced theory in a more powerful and flexible model and to make the use of the model practical and verifiable. The writer adapted the time homogeneous bivariate model as developed by F. C. Collins. This is a discrete time Markov process with a stochastic matrix of transition probabilities wherein the maintenance process is modeled as a pulsed input multiple server queue. The model was programmed in FORTRAN 63 on the CDC 1604 and then modified to allow for variability in the input parameters. Other modifications include an increase in the size of the model to accommodate a 16-aircraft squadron, the largest ASW squadron at present, and an explicit form solution to the maintenance queueing equations.
NPS/DKL Location: THESIS L265
Lassman, Abraham Joel. **Career Development for an Antisubmarine Warfare Officer Specialist.** Monterey, CA: Naval Postgraduate School, 1978. (ADA056382). 40p. Thesis (M.S. in Systems Technology) -- Naval Postgraduate School, 1978. Abstract: Antisubmarine Warfare technology has made significant advances since World War II. However, this thesis is based on the assumption that training for ASW Surface Officers has not kept pace with this rapid technological growth. This thesis proposes that the career pattern for surface officers desiring in-depth ASW training be modified to improve this situation while allowing surface officers to maintain a viable career pattern in the Surface Warfare community. Such a career pattern seems to be feasible.

NPS/DKL Location: THESIS L27494

Lee, Yuh-jeng. **Improving the ASW System Evaluation Tool.** Monterey, CA: Naval Postgraduate School, 1992. (NPSCS-92-015, ADA258798). 18p. Report: Abstract: This report summarizes the work on the evaluation, design, and reimplemenation of part of the ASW System Eval Tool (ASSET), performed in the Computer Science Department, Naval Postgraduate School, under the sponsorship of the Antisubmarine Warfare Division (OP-71), Office of Chief of Naval Operations. We analyzed and implemented the improvements suggested in previous evaluations of various sub-areas of ASSET. In addition, we have designed and implemented a prototype user interface shell for ASSET on a Sun Sparcstation running X windows.

NPS/DKL Location: FEDDOCS D 208.14/2:NPS-CS-92-015 Electronic access: http://handle.dtic.mil/100.2/ADA258798

Lentz, Frederick Charles. **Integration of ASW Helicopter Operations and Environment into NPSNET.** Monterey, CA: Naval Postgraduate School, 1995. (ADA304302). 124p. Abstract: Despite the increasing emphasis by the military on joint force operations, existing modelling and simulation programs, including NPSNET, fail to address joint operations and crew coordination. The problem is that previous work on NPSNET, the virtual environment and visual simulation platform developed by the Computer Science Department at the Naval Postgraduate School in Monterey, California, has focused primarily on individual ground force elements with little emphasis on naval forces or crew concepts. This restricts the practical use of the system to ground force training while ignoring joint force training with sea and air components and between crew members. One solution to is expand the capability of NPSNET by incorporating a variety of vehicles from different components of the military with the added capability of multiple workstation control of a single vehicle. The approach taken is to expand NPSNET to simulate helicopter Anti-Submarine Warfare. This work focuses on realistic helicopter flight control, multiple workstation control of a single vehicle, and interface design between workstations controlling one vehicle. NPSNET has become a more useful training tool for today's military forces by implementing more realistic helicopter flight controls and adding joint mission capabilities. The significance of this work is that a broad range of forces can receive valuable joint training and crew coordination training conducted in a virtual environment.

NPS/DKL Location: THESIS L525 Electronic access: http://handle.dtic.mil/100.2/ADA304302

Llanos, Humberto M. **An Investigation of the Problem of Optimizing a Search Tactic for a Searchlight Type Sonar.** Monterey, CA: Naval Postgraduate School, 1972. (AD0754352). 42p. Thesis (M.S. in Operations Research) -- Naval Postgraduate School, 1972. Abstract: A searchlight type sonar is one of the systems that small navies use to counteract the danger which submarines present to their lines of supply and transport. In the paper, a standard search pattern for this type of sonar is compared with search patterns which are based on a consideration of the tactical
value of detecting a submarine as a function of the relative location of the submarine. The results of the comparison suggest that is possible to increase the effectiveness of a searchlight type sonar by using a search pattern in which the sweep time allocated to a search sector is based on the sectors tactical importance.

NPS/DKL Location: THESIS L757

Abstract: Military intelligence has considered various coastal scenarios in which the submarine is the only platform available to engage waterborne infiltration forces. Torpedoes are meant for large ships, and cruise missiles are strategic weapons not to be wasted on small craft. Therefore, the submarine does not have a weapons capability to engage and destroy high-speed marine craft (HSMC) that would be used for coastal infiltration. The most practical scenario would utilize a torpedo stow for a weapon system that would be tube launched, thus ensuring the maximum cruise missile capability of the submarine with a minimal sacrifice to anti-surface and anti-submarine warfare capabilities. The maintaining of the submarine’s stealth will be paramount, therefore, an off-hull launcher is desired. The weapon needs to be highly discriminative due to high shipping traffic in coastal waters. In all, the major factors associated with the design and employment of a sub-launched weapon system for engaging HSMC are the threat, the missile, the launcher and the deployment method. In a hostile coastal environment, there are numerous targets ranging from surface threats to air threats. Missile design is dependent on the threat and can be varied for different scenarios. However, the launcher and deployment of a tube launched weapon system are only restricted by the dimensions of the torpedo tube and the buoyancy and stability of the designed system. These parameters can be quantified and modeled. This thesis focused on designing a weapon system, SEABAT, to meet the basic buoyancy and stability requirements. The results of the SEABAT design prove its feasibility as a torpedo tube launched weapon system.

NPS/DKL Location: THESIS L86675
Electronic access: http://handle.dtic.mil/100.2/ADA374340

Abstract: The purpose of this thesis is to assess the benefit of assimilating satellite altimeter data into the Modular Ocean Data Assimilation System (MODAS). To accomplish this, two different MODAS fields were used by the Weapon Acoustic Preset Program (WAPP) to determine suggested presets for a Mk 48 variant torpedo. The MODAS fields differ in that one uses altimeter data assimilated from three satellites while the other uses no altimeter data. The metric used to compare the two sets of outputs is the relative difference in acoustic coverage area generated by WAPP. Output presets are created for five different scenarios: two Anti-Surface Warfare scenarios and three Anti-Submarine Warfare scenarios, in each of three regions: The East China Sea, the Sea of Japan, and an area south of Japan that includes the Kuroshio current. Analysis of the output reveals that, in some situations, WAPP output is very sensitive to the inclusion of the altimeter data because of the resulting differences in the Subsurface predictions. The change in weapon presets could be so much that the effectiveness of the weapon might be affected.

Electronic access: http://handle.dtic.mil/100.2/ADA427237

Thesis (M.S. in Applied Science (Operations Research)) -- Naval Postgraduate School,

Abstract: LosCon, the software program developed for the author's thesis and tested at sea, is designed to help the ASW commander regain tactical control in a loss of submarine contact situation. Persistent detection and cueing in the battlespace depend on utilizing contact reports from a network of combatant platform and offboard sensors. LosCon, an extended Kalman filter-based program modeled after MTST (Maneuvering Target Statistical Tracker), can integrate the sensor network very efficiently. Kalman filtering is a method of recursively updating the position of an evading target and accuracy of that position using imperfect measurements. Lines of bearing to the contact with associated standard deviation bearing errors and positions with their standard deviation range errors are the measurements LosCon uses to generate an ellipse of the submarine’s likely position or AOU (Area Of Uncertainty). LosCon will also generate an expanded AOU for any future time, allowing commanders to correctly estimate the size of the search area. The effectiveness of the sea shield concept depends on the ability of organic forces to deny the enemy tactical control of the battlespace area. Incorporating the information generated by LosCon would assist ASW commanders in maintaining undersea superiority.

NPS/DKL Location: THESIS
Electronic access: http://handle.dtic.mil/100.2/ADA424696

Abstract: A simulation model was specified. It examines United States Navy Antisubmarine Warfare Screen alternative dispositions for Carrier Battlegroups. The scenario posed is open ocean transit under the threat of an attack from foreign submarine hulls built in the 1990's. The investigation raises the issue of the appropriateness of current Navy practices and suggests that new tactics be developed. The author's thoughts are that in the 1990's there will be ever newer, more lethal, unpredictable threats to United State's maritime independence than current doctrine addresses. The full implementation of the simulation program has not been accomplished. A segment of verification output is shown for expository purposes only. A discussion is given on the adequacy of the model's abstractions along with their possible impact on potential results of experiments.

NPS/DKL Location: THESIS M35725
Electronic access: http://handle.dtic.mil/100.2/ADA257699

Abstract: The Antisubmarine Warfare (ASW) capability of the air arms of western navies depends upon their ability to employ air-dropable sonobuoys for the detection and localization of enemy submarines. The systems which process the acoustic information from these sonobuoys are sophisticated spectrum analyzers. A constant effort to improve performance has led to frequent updates to existing systems and the periodic development of completely new processors. Assessing the significance of these improvements in the operational environment is the function of an operational evaluation. The operational evaluation of an acoustic processing system is complicated by the impact of the constantly changing acoustic propagation conditions encountered in ocean operating areas. This, along with the inherent variability in the other factors affecting passive sonar performance, makes it difficult to compare the ranges achieved from one trial to the next. However, it is imperative that the evaluation agencies report findings that are applicable over the wide variety of operating conditions which are likely to be encountered in the operational employment of the airborne acoustic processor.

NPS/DKL Location: THESIS M1767

259

Abstract: The thermal structure of the ocean, especially the uppermost mixed layer, greatly affects sonar ranges. In this paper, similarity theory is applied to the problem of forecasting the depth of the mixed layer during the warm season, assuming the controlling processes are secular, non-advective, and non divergent. The resulting forecast method consists mainly of two equations. Parameters used are wind, coriolis effect, the coefficient of thermal expansion and a measure of the excess heat within the mixed layer. The constants in the equations were determined using data from OWS Papa (50N, 145W). The forecast method treats both seasonal and transitional thermoclines. The method was tested with data from OWS Papa and OWS November (30N, 140W). The tests apparently indicate wide applicability of this forecast method and thus tend to corroborate the proposal by Kitaigorodsky that the mixed-layer depth is a function of a universal coefficient.

NPS/DKL Location: THESIS M1835

Abstract: A personnel and equipment design concept for a non-rigid, 100 hour endurance, Maritime Patrol Airship meeting Search and Rescue (SAR), Anti-Submarine Warfare (ASW), and Airborne Mine Countermeasures (AMCM) requirements was developed. The Maritime Patrol Airship could readily be equipped with off-the-shelf equipment. Minimal new design equipment requirements were identified. A baseline flight scenario and on station scenarios for: SAR, transoceanic ASW utilizing a passive towed array sonar, and AMCM were developed. Human factors task analyses and a time line analysis were constructed from the scenarios. Manning reductions resulted for each scenario (3 crewmembers for SAR, 10 crewmembers for transoceanic ASW, 7 crewmembers for AMCM). Further research areas are identified.

NPS/DKL Location: THESIS M188335

Abstract: A general approach is documented as a guide to aid in the formulation and implementation of on-line, real time computer simulations. A computer program, MULNUC1, is developed as an on-line, real time computer simulation of antisubmarine warfare in a multiple burst nuclear environment. The principals of the game are a submarine armed with torpedoes, and two destroyers equipped with stand-off antisubmarine weapons. The simulation is intended as a demonstration of the on-line capabilities of the United States Naval Postgraduate School computer system and as a tool for further study of the factors involved in a representative ASW operational environment.

NPS/DKL Location: THESIS M2544

Abstract: The Surface Warfare Development Group is responsible for conducting the Ship Anti-Submarine Warfare Readiness/Effectiveness Measuring program. They currently employ a standard set of measures for evaluating the performance of shipboard anti-submarine warfare sensors. This research
investigates several new performance-based measures to determine if they are more suitable than the standard measures for evaluating the conduct of anti-submarine warfare barrier searches. The investigation simulates barrier searches to determine probability of detection, calculates the proposed measures, and compares the two. The results indicate that the proposed measures can be improved. A barrier search algorithm exploiting target-relative space ideas is developed which generalizes the classical search theory results for predicting probability of detection during barrier search.

NPS/DKL Location: THESIS N24536
Electronic access: http://handle.dtic.mil/100.2/ADA378067

Abstract: This report contains 357 summaries of research projects which were carried out under funding of the Naval Postgraduate School Research Program. A list of recent publications are also included which consist of conference presentations, contributions to books, published papers, magazine articles, and technical reports. The research was conducted under the areas of Computer Science; Mathematics; Administrative Sciences; Operations Research; National security affairs; Physics; Electrical and computer Engineering; Meteorology; Aeronautics and astronautics; Oceanography; Mechanical Engineering, C3 Joint Group; Electrical Warfare Group; ASW Group; and the Space System Academic Group.

NPS/DKL Location: REFERENCE V422.M5 Z97 (FY1989)

Thesis (M.S. in Electrical Engineering) -- Naval Postgraduate School, December 1992

Abstract: Determination an of an underwater target's position using passive acoustic sensors is of considerable use for the Navy, both for Anti-Submarine Warfare (ASW) and underwater surveillance. This thesis proposes and develops localization algorithms capable of passively determining the location of a transient source given some broad constraints. In particular, this thesis investigates the effect of the source signal uncertainty on localizer performance. The localization process consists of two parts. First, a time domain propagation modeling code determines the impulse response of the environment from all possible source locations to a single hydrophone. This program predicts the signal as it would appear at the receiver from a grid of possible source locations. Second, source localization results from finding the maximum correlation between the positionally dependent, numerically modeled signals and the actual received signal. The position of the maximum cross correlation reveals an estimate of source position. Using model to model correlation, this technique successfully localized acoustic sources in both Monterey Bay and Barents Sea scenarios.

NPS/DKL Location: THESIS N4873

Electronic access: http://handle.dtic.mil/100.2/ADA260615

Thesis (M.S. in Applied Science) -- Naval Postgraduate School, September 1992

Abstract: There are currently three databases supported by three different commands that collect and output basically the same type of information: PACER, SHAREM, and AIREM. These systems contain initial detection data, tracking data, environmental data, system performance data, and weapon performance data. This thesis investigates the commonalities and differences in structure and content of the three databases, and examines the feasibility of integrating PACER, SHAREM, and AIREM into a single database. The benefits of this database integration are a more comprehensive utilization of data, reduced data collection for fleet users, and a standardization of how the data is analyzed.

NPS/DKL Location: THESIS N5934

Electronic access: http://handle.dtic.mil/100.2/ADA257581

Abstract: In many strategic shallow water areas the geoacoustic properties of the sub-bottom are largely unknown. In this thesis it is demonstrated that inverse theory and measured data from a single hydrophone can be used to accurately deduce the geoacoustic properties of the sub-bottom, even when the initial background geoacoustic model is a highly inaccurate guess. Since propagation in shallow water is very sensitive to the geoacoustic properties of the sub-bottom, the inverse technique developed in this thesis presents the Navy with a vitally important, practical, and inexpensive means to improve sonar performance prediction in a potentially hostile environment. To provide ground truth for the inverse technique, initial background geoacoustic models were constructed assuming no a priori information of the bottom. The resultant inverse solution was used to predict the geoacoustic properties at each of the sites. The final results were in excellent agreement with the measured data and the resulting inverse technique TL estimates were as good or better than the Th estimates obtained from the detailed, site-specific geoacoustic models.

NPS/DKL Location: THESIS N9485
Electronic access: http://handle.dtic.mil/100.2/ADA294674

Abstract: The primary interest concerns the use of a magnetometer for mine detection, anti-submarine Warfare, salvaging and other related naval perations. The original concept of a modified free precession magnetometer using the Overhauser Effect was formulated by A. Abragam. The objective of this thesis was to develop an improved marginal oscillator for the magnetometer.

NPS/DKL Location: THESIS O248

Abstract: Unmanned vehicle technology has matured significantly over the last two decades. This is evidenced by its widespread use in industrial and military applications ranging from deep-ocean exploration to anti-submarine Warfare. Indeed, the feasibility of short range, special-purpose vehicles (whether autonomous or remotely operated) is no longer in question. The research efforts have now begun to shift their focus on development of reliable, longer range, high-endurance and fully autonomous systems. One of the major underlying technologies required to realize this goal is Artificial Intelligence (AI). The latter offers great potential to endow vehicles with the intelligence needed for fully automated and extended range capability; this involves the increased application of AI techniques to support mission planning and execution, navigation and contingency planning. This thesis addresses two issues associated with the above goal for Autonomous Underwater Vehicles (AUV’s). Firstly, a new approach is proposed for path planning in underwater environments that is capable of dealing with uncharted obstacles and which requires significantly less planning time and computer memory. Secondly, it explores the use of expert system technology in the planning of AUV missions. (KR)

NPS/DKL Location: THESIS O5825

Abstract: This thesis analyzes the problem of accurate path keeping for marine vehicles. The reference path is generated automatically through the use of a critically damped second order model. An appropriate shift in the time axis allows a smooth path with zero overshoot regardless of the initial conditions. Control design for the physical system is achieved through the use of optimum control and linear quadratic regulator techniques. Results are presented for general maneuvering scenarios in the horizontal plane and demonstrate the validity of the models used in the research.

NPS/DKL Location: THESIS P145755
Electronic access: http://handle.dtic.mil/100.2/ADA257742

Abstract: The thesis relates the fact that, in the past, our ASW community has placed great (and justifiable) emphasis in detection and classification of submarines, while a serious lag in tactical procedures has developed. In order to alleviate this problem, it was felt that a systematic approach be taken which uses the principles of Operations Research. By examining submarine warfare from the viewpoint of the Soviet Union, a resource allocation problem was devised which compares the various submarine classes and the possible mission areas in which they may be assigned. Characteristics and available numbers of submarines were estimated, and the resulting allocation of forces was determined. (Modified author abstract)
NPS/DKL Location: THESIS P319

Abstract: The purpose of this thesis is to determine the effect that the inclusion of satellite altimeter data has on weapon preset accuracy. GDEM data and MODAS data utilizing four satellite altimeters were used by the Weapon Acoustic Preset Program to determine the suggested presets for a Mk 48 torpedo. The acoustic coverage area generated by the program will be used as the metric to compare the two sets of outputs. The assumption is that the MODAS initialized presets will be more accurate, and, therefore, the difference between the two sets of presets can be attributed to inaccuracy on the part of the GDEM presets. Output presets were created for two different scenarios, an Anti-Surface Warfare (ASUW) scenario and an Anti-Submarine Warfare (ASW) scenario, and three different depth bands, shallow, mid, and deep. After analyzing the output, it became clear that the GDEM data predicted a weapon effectiveness that was far higher than the effectiveness predicted by the MODAS data. Also, while GDEM predicted a wide range of coverage percentages MODAS predicted a narrow range of coverage percentages.
NPS/DKL Location: THESIS P3442
Electronic access: http://handle.dtic.mil/100.2/ADA417625

Abstract: This thesis contains an analysis of the last five years of Antisubmarine Warfare (ASW) Weapon System Accuracy Trial (WSAT) data from both the Atlantic and Pacific Fleet. The analysis is conducted in an effort to provide recommendations to be applied toward future evolution of the ASW Test Program for surface ships. A statistical chi-square test is conducted on Fleet and Navy wide data to determine which ASW combat system material categories are most prone to degradation. Additionally, a critical examination of the existing WSAT data base is provided with an aim toward promoting future
statistical analysis. Results of this thesis indicate that degradation to weapons delivery systems like torpedo tubes and ASROC launchers are statistically significant with respect to other material categories. The analysis also shows how the existing WSAT data base can easily be modified and adapted for further use to document inspections on existing ships as well as new construction ships with future material systems.

NPS/DKL Location: THESIS P4654
Electronic access: http://handle.dtic.mil/100.2/ADA257573

Abstract: Vertical temperature profiles observed in the eastern North Pacific were used to examine the feasibility of extrapolating an observation from one location to another. The technique, referred to as simple enhancement, is a special case of the Gandin (1963) optimum interpolation methodology. Application to Navy ASW (Antisubmarine Warfare) operations is considered. The technique requires the use of a trial value and a local observation. Trial values are obtained from a climatology and a synoptic analysis/forecast system provided by the Fleet Numerical Oceanography Center. An enhanced temperature profile is calculated by adding an observed anomaly (i.e., observation minus trial value) to the trial value at the desired location. Calculations of mean and RMS errors indicate that simple enhancement can provide a closer estimate to actual conditions than unenhanced climatology. The mixed layer depth cannot be extrapolated accurately to new locations presumably due to mesoscale eddies, fronts, internal waves and small scale fluctuations at the base of the mixed layer. Experiments at different locations and seasons would be required for a complete assessment of the application to ASW operations.
NPS/DKL Location: THESIS P686

Abstract: This thesis develops, implements and tests a Tactical Decision Aid for a Reactive Target ASW Active Search. The mode uses a Bayesian Filtering Process to fuse information from a real world search conducted by several assets with information from a Monte Carlo Simulation that encompasses five hundred equally likely different possible initial positions and behaviors of the real target. A Reactive Target Model resembles the behavior of a target that is always aware and reacts because of the presence and activity of the searchers. An initial ‘prior’, or best estimate of the location of the target is updated using the movement of the simulated targets, the negative information conveyed in an unsuccessful search over a period of time and the positive information implied in a contact report. The search effort is measured using a Fixed Scan Stochastic Model that solves the Sonar Equation limited by noise and reverberation. As a result of updating the prior, a ‘posterior’ distribution is obtained. The Law of Total Probabilities is used to render a probability map of the location of the Target by mapping color intensities to probabilities. A recursive expression for evaluating a contact report is also developed.
NPS/DKL Location: THESIS R2576
Electronic access: http://handle.dtic.mil/100.2/ADA322381

Abstract: Statistical analysis provides a powerful tool for modern decision makers. Unfortunately, this
tool can be a two-edged sword. Improper or erroneous analysis can result in incorrect and costly decisions. Many analysis errors can be traced to the misapplication of statistical methods. When examining experimental data, it is first necessary to determine the true nature of that data, specifically, the structure from which the data is drawn. This determination will then be a primary factor in the choice of statistical tests. This thesis examines an analysis performed by Surface Warfare Development Group (SWDG). The SWDG analysis is shown to be incorrect due to the misapplication of testing methods. A corrected analysis is presented and recommendations suggested for changes to the testing procedures used by SWDG. Additionally, a computer program to perform basic Analysis of Variance (ANOVA) tests is provided to be appended to the current SWDG statistical software.

NPS/DKL Location: THESIS R4516
Electronic access: http://handle.dtic.mil/100.2/ADA267166

Abstract: False Sonar targets present a serious unpredicted problem to U. S. Navy ASW units. It is believed that planning and operations could be enhanced by a forecasting capability for whale distribution. As a possible solution to this problem, a modified form of the 'Transect Method of population estimation' is applied to whaling data to calculate probable numbers of false targets per 1000 nautical miles of steaming with a 1000 yard sonar range. Japanese and Russian whale fishery data are analyzed by the 'q' and Expected Catch methods of population dynamics to obtain two independent estimates of the populations of fin, sei and sperm whales. The mean of the two estimates is applied to the equation along with a term for assumed ideal sonar conditions.
NPS/DKL Location: THESIS R557

Abstract: This thesis represents a study of the decision-making process of an Anti-Submarine Warfare Commander (ASWC). Several real world operational issues are analyzed and discussed as to how they can influence his thought process when making decisions. One approach to model this individual's thought process was accomplished by ALPHATECH, INC. By utilizing an ASW scenario, it evaluates how an ASWC makes his tactical decisions to track submarines based upon pieces of received acoustical information. In order to improve this model's representation of a realistic operational environment, a conceptual ASWC decision-making model is provided here.
NPS/DKL Location: THESIS R5912

Abstract: This study examines the advantages and disadvantages associated with the consolidation of the Helicopter Antisubmarine (HS) and Helicopter Anti-submarine (Light) (HSL) communities. The primary source material is generated from personal interviews of the Commanding Officers of these communities. The helicopter and mission developments of each community are researched to determine the goals, environments and technology that shape the squadron operational structures. The operational design of the current squadrons are then examined to see how they are structured to respond to these organizational constraints. This paper analyzes both sides of the consolidation issue and proposes four combined community organizations. Additionally, the advantages and disadvantages of each new structure are reviewed to make recommendations on consolidating the HS and HSL communities. This study also recommends a Project Action Team be formed to continue analyzing the consolidation of these communities.
communities and outline the steps required to implement a consolidation plan. Anti-Submarine Warfare (ASW), Fleet Replacement Squadron (FRS), Helicopter Anti-submarine (HS) Helicopter Anti-Submarines (Light) (HSL).

NPS/DKL Location: THESIS R68947
Electronic access: http://handle.dtic.mil/100.2/ADA280069

Abstract: The purpose of the Littoral Combat Ship (LCS) is to provide the Navy with an affordable, small, multi-mission ship capable of independent, interdependent, and integrated operations inside the littorals. The LCS will be designed to replace high-value Naval assets when conducting high-end missions such as littoral Anti-Submarine Warfare (ASW), Mine Warfare (MIW), and Anti-Surface Warfare (ASuW) as well as low-end missions such as Humanitarian Assistance (HA), Non-combatant Evacuation Operations (NEO), and Maritime Intercept Operations (MIO). To accomplish these missions and successfully counter the enemy's littoral denial strategy, the Navy has stated that the LCS must incorporate endurance, speed, payload capacity, sea-keeping, shallow-draft, and mission reconfigurability into a small ship design. Constraints in current ship design technology make this desired combination of design characteristics in small ships difficult to realize at any cost. This thesis analyzes the relationship between speed, endurance, and payload to determine the expected displacement of the LCS; determines the impact of speed, displacement, and significant wave height on LCS fuel consumption and endurance; and analyzes the implications of findings on LCS logistics. The Joint Venture high-speed, wave-piercing catamaran is utilized in this thesis as the LCS seaframe to demonstrate the logistical implications of the speed, endurance, and payload tradeoffs with respect to the modular design of the ship. The weight and space requirement of each onboard and modular system is determined and added to that of the Joint Venture seaframe. Factors considered for full displacement calculations include the base seaframe, installed weapons systems, command and control systems and sensors, personnel and supply load levels, fuel storage capacity, ordnance load levels, and modular systems (embarked manned and unmanned air and sea vehicles). (30 tables, 13 figures, 37 refs.)
NPS/DKL Location: THESIS R8346
Electronic access: http://handle.dtic.mil/100.2/ADA415144
Electronic access: http://edocs.nps.edu/npspubs/scholarly/theses/2003/Mar/03Mar_Rudko.pdf

Abstract: The study presents the results of an experiment in objective analysis of oceanographic data for a limited area. The objective analysis is designed to provide a reliable operational system for tactical use in coastal waters. It is shown that this approach makes it possible to obtain a very detailed analysis with good vertical consistency and that only a relatively small amount of highly accurate data is required. The procedure requires only a small computer and little computer time. This method will provide a basis for short-time forecasts of oceanographic parameters using only small computer centers or even time sharing systems.
NPS/DKL Location: THESIS S1579

Abstract: The purpose of this study is to discover if the Navy's system of assigning personnel to the
Aviation Antisubmarine Warfare Technician (AX) and the Aviation Antisubmarine Warfare Operator (AW) ratings can be improved. A multivariable model is developed using success and failure as criterion variables. Biographical and aptitude data available at the time of enlistment are used as predictor variables. Two independent models were created using data available on personnel entering the Navy in 1976, 1977 and 1978. The models were then validated on a new sample. These models predict the future fleet performance of AX and AW personnel as measured by length of service, paygrade achieved, and recommendation for reenlistment. Other results and recommendations regarding implementation and future research are discussed.

NPS/DKL Location: THESIS S15796

Abstract: A discrete-time discrete-space search model is considered in which an observer employing an idealized detection device is searching for a uniformly distributed stationary target. The model is formulated as a discrete-time counting process, called the search process, which under weak additional conditions is uniquely determined by a sequence of probabilities. Formulas for the time-to-detection and the detection rate of a search are derived in terms of the parameters of the search process, and are applied to two special types of searches, the systematic search and the random search. Using these search types as boundary cases a purposeful search is defined, and sufficient conditions on the sequence of probabilities are established for the purposeful search. Possible extensions of the search process to less restricted models are indicated.

NPS/DKL Location: THESIS S214

Abstract: The United States Navy uses a number of different systems to predict underwater acoustic transmission loss for operational forces. Historically, these systems have used different acoustic models and supporting databases, resulting in significantly different predictions. Major efforts to bring all acoustic models and databases under configuration control in the Oceanographic and Atmospheric Master Library (OAML) have reduced, but not eliminated, differences in acoustic predictions. Comparisons of 1600 transmission loss runs from the Antisubmarine Warfare Tactical Decision Aid (ASWTDA) and the Tactical Environmental Support System (TESS) were made in the Mediterranean and Sea of Japan for the months of January and July. All inputs to the acoustic models were provided by the respective system databases. Significant differences between ASWTDA and TESS in the areas investigated are evident in regions of complex bathymetry, and these differences become more acute with higher frequency.... TESS, ASWTDA, RAYMODE, ASTRAL, PE, Transmisssion Loss.

NPS/DKL Location: THESIS S2207

Electronic acccess: http://handle.dtic.mil/100.2/ADA264005

Abstract: The Computer Science Department at Naval Postgraduate School in Monterey, California has developed a low-cost battlespace simulation system, known as NPSNET, to work on commercially available Silicon Graphics IRIS workstations. Initial work on NPSNET has concentrated primarily on
ground-based forces with only limited work focusing on naval or maritime air forces. With the present movement of the military towards totally integrated joint force operations, there exists a need to expand existing modeling and simulation programs to include all aspects of military operations. This thesis takes a step in that direction by incorporating naval maritime air units into NPSNET, expanding its capability to include naval and Antisubmarine Warfare (ASW) units. This work focuses on several areas of research, including modeling of the P-3 aircraft, aircraft motion control, aircraft ordnance ballistics modeling, interstation networking using the Distributed Interactive Simulation (DIS) protocol and development of an expert system to autonomously control aircraft behavior. Graphics, P-3, Expert Systems, Torpedo ballistics, Sonobuoy ballistics, CLIPS.

NPS/DKL Location: THESIS S33717

Abstract: The study concludes that the primary reason for present programs of enlisted training and education in oceanography is to support ASW. There is a significant lack of courses, schools, and self-study material available to enlisted personnel on the subject of oceanography. Through more than the surface ASW community in the ability to utilize ASW. ASW sonar technicians are inadequately trained in environmental effects on underwater sound propagation. To increase the oceanography knowledge of all enlisted personnel including STs and to provide enlisted ratings to better utilize training in environmental effects, several programs are proposed. These programs include an ASW sensor rating and an oceanographer rating.

NPS/DKL Location: THESIS S348

Abstract: The author develops some two-person zero-sum formulations of search and evasion problems. By employing a game theoretic approach, he allows the hider, as well as the searcher, to choose a strategy. This is in contrast to most search models which assume a stationary or passive hider. Both non-sequential and sequential search games are investigated. Some interesting aspects of the non-sequential game and an example of an antisubmarine search problem are given. The sequential games consist of a sequence of moves. When the players move, they not only determine a payoff but also the probability that the game terminates before the next move. When at most a finite number of moves is allowed, he proves that a solution may be found by solving a recursive sequence of matrix games. When the number of moves is not bounded, the game is characterized by a special type of non-linear program. The solution to this program can be approximated by successive perturbations of a related linear program. He obtains the result that a pair of strategies minimaxes the expected duration of the game if and only if these strategies also maximin the probability of termination in one step.

NPS/DKL Location: GENERAL TA7 .U62 NO.68

Abstract: In this thesis, the ocean was modeled as a waveguide with an ideal pressure - release surface, and an ideal rigid bottom. The ocean waveguide was then treated as a linear, time - invariant, space - variant (TISV) filter or communication channel. The filter is time - invariant because no motion was modeled and because the properties of the ocean were assumed to be constant. The filter is space - variant because of the presence of the two boundaries, that is, the ocean surface and ocean bottom. This thesis investigates the ocean as a linear TISV filter by evaluating 1) the complex frequency response, 2)
the impulse response, and 3) the transfer function of the ocean with respect to depth. It is shown that the TISV impulse response of the ocean contains information that can be used to help localize a target in range and whether the target is above or below the receiver. Computer simulation results were obtained by evaluating the three filter functions for several different test cases.

NPS/DKL Location: S36426
Electronic access: http://handle.dtic.mil/100.2/ADA424621

Abstract: The primary objective of this thesis is to analyze and recommend improvements to the Maritime Patrol Aircraft (MPA) detection and allocation models utilized by the ASW Systems Evaluation Tool (ASSET), version 1.0. ASSET is a generic high-level ASW modeling tool, designed to aid CNO (OP-71) in the development and refinement of ASW top-level Warfare requirements and the ASW Master Plan. ASSET's strengths lie in its C3I modeling of submarine, MPA, and overhead surveillance in large scale ASW campaigns. To reduce the processing time required by ASSET, the current version of the MPA detection model contains simplifications which can limit its ability to effectively simulate some MPA tactical ASW scenarios. This thesis proposes two new MPA detection models which utilize the coverage area of a user-defined sonobuoy pattern and address the limitations of the current ASSET model. Also proposed is an MPA allocation scheme which should provide a higher cumulative detection probability.
NPS/DKL Location: THESIS S43322
Electronic access: http://handle.dtic.mil/100.2/ADA246595

Abstract: The Soviet Union's activity in the Caribbean Basin, executed via its client-states of Cuba and Nicaragua, has created a serious threat to U.S. security in the region. This threat to U.S. security takes two forms. The first is the reality of a heavily militarized Cuba posing a significant anti-SLOC potential against Caribbean sea lanes in the event of general War. Such a scenario would tie down NATO Antisubmarine Warfare (ASW) assets in the Caribbean, detracting from NATO's ability to wage the ASW campaign in more critical areas such as the Central and North Atlantic. The second threat is Nicaraguan and Cuban active support of leftist insurgencies in the Basin. These efforts, at the direction of the Soviet Union, pose, not a potential, but a present-day and ongoing security concern for the United States. This thesis briefly examines the historical context of Soviet involvement in the region, and then proceeds to catalog the above mentioned threats to U.S. security, and discusses their implications.
NPS/DKL Location: THESIS S43323

Abstract: This report provides a procedure for estimating a contact's course, speed and position based on bearings-only data from two moving sensors. This report also contains a program for the HP-67 /97 calculator to implement the procedure.
NPS/DKL Location: GENERAL V214 .S56
Thesis (M.S. in Engineering Acoustics) -- Naval Postgraduate School, December 2003.
Abstract: The work described in the present thesis is intended to establish a procedure for analyzing directional transducers for future underwater wireless networks, as well as to carry out the performance evaluation of a multimode transducer prototype with respect to its main operational requirements. Measurement techniques were designed for application in the presence of physical limitations of the available facilities and the prototype development stage of the test unit.
NPS/DKL Location: THESIS S5373
Electronic access: http://handle.dtic.mil/100.2/ADA420449

Thesis (M.S. in Systems Technology) -- Naval Postgraduate School, 1975.
Abstract: A basic course with applications of probability to ASW, the course consists of six lesson plans and a 'Study Guide.' The lesson plans are designed to give the/an instructor guidance in what to teach, the depth required and objectives the student should be able to accomplish. The 'Study Guide' provided is for the use of both the instructor and the student, and it should serve as a basic text for the course.
Current ASW tactical publications were examined by the authors while developing the course, and as many of the probability applications and as much associated probability terminology from these sources as practicable (and when this could be accomplished at the 'unclassified' level) are incorporated in the course.
NPS/DKL Location: THESIS S5737

Thesis (M.S. in Operations Research) -- Naval Postgraduate School, 1973.
Abstract: The thesis investigates the effectiveness of a search plan developed by B. O. Koopman in a submarine versus submarine search situation. Two computer simulation models allow probability of target detection as a function of sonar range to be used as a measure of effectiveness. The Koopman search plan is analyzed and a family of alternate search plans are developed. The choice of a particular alternate search plan is dependent on the parameters of the problem. These parameters are target speed, searcher speed, time late to the search area and total time available to conduct the search. By use of the computer programs a search plan can be chosen so as to maximize the probability of target detection at a particular sonar range for each combination of input parameters.
NPS/DKL Location: THESIS S6054

Thesis (M.S. in Operations Research)-- Naval Postgraduate School, Dec. 1998.
Abstract: U.S. Navy Submarine Approach Officers (AO) use tactical skills acquired from years at sea and a seemingly natural panache to accurately determine an enemy submarine's bearing range, course, and speed. This thesis investigates the effects of AO demographic differences and combat system employment methodologies on the ability to develop a timely and accurate firing solution. Employing a low-resolution submarine combat simulator, approximately 10 percent of the total pool of AO's were taken through two of four pre-scripted initial contact scenarios. The AO's were instructed to execute each scenario until they perceive that an accurate solution is obtained on the enemy submarine. The
demographic differences of geographic location, ship type, and duty type are the top three traits that distinguish between success and failure. Further data analysis reveals differences in the information utilization of the simulator between successful and unsuccessful operators. Additionally, utilizing a survey administered to the subjects and basic display design principles, a notional command workstation for the next generation of submarine is developed. The conclusions of this research provide insight into the cognitive modeling, training, and selection of AO's, as well as adding to the growing body of work in the design of military decision support systems.

NPS/DKL Location: THESIS S66398
Electronic access: http://handle.dtic.mil/100.2/ADA358437

Abstract: In 1960 R. E. Kalman introduced a least square concept that gives optimal estimates for the state of some dynamic systems. Included is a brief historical introduction leading to his work, a summary of his work, and the application of the theory to the sonobuoy reference system used on the S3A aircraft. Also, a tutorial development of certain quantities used in the filter is presented.

NPS/DKL Location: THESIS S6715

Abstract: The thesis traces the history of the practice of and organization for operations research in the United States Navy. The author points out that operations research was being conducted in the U. S. Navy before operations research became identified as a separate science. From that point its growth, major accomplishments and organizational changes are described. The final part of the thesis outlines the organization through which the Navy conducts its operations research and systems analysis at the present.

NPS/DKL Location: THESIS S767

Abstract: The United States Navy Submarine Hydrodynamic/Hydroacoustic community is a decentralized, multiorganizational, geographically distributed enterprise. Strategic planning and management, whether formal or ad hoc, is necessary for effective functioning of any organization. However, formal strategic planning is particularly difficult in multi-organizational, geographically diverse enterprises. Enterprise-wide performance measurement and a shared understanding of enterprise performance is necessary to devise compelling and effective strategies. During the Cold War, the U.S. Navy submarine force had a clear mission and compelling goals, with resulting clarity on performance metrics. The Submarine Hydrodynamic/Hydroacoustic workforce was focused on helping the submarine force achieve these goals. In the post-Cold War era, the submarine force mission in the integrated battle space is less defined. The percentage of the military budget that can be spent on discretionary spending is decreasing. The Submarine Hydodynamics/Hydroacoustic community has been directly impacted by the recent lack of focus and budget reductions. The purpose of this thesis is to research the past processes used to perform strategic planning for the Submarine Hydrodynamic/Hydroacoustic community, identify current strategic issues for the community, and document strategic lessons learned.
that can be identified through the evaluation of product successes and failures.

NPS/DKL Location: THESIS S78235
Electronic access: http://handle.dtic.mil/100.2/ADA429872

Thesis (M.S. in Operations Research) -- Naval Postgraduate School, 1975
Abstract: The effects of detection equipment integration time on the optimal evasive trajectory of an isotropic acoustic radiator are studied. The boundary cases of infinite and zero integration time are examined. The infinite integration time case is formulated as a control problem and a maximum principle solution is obtained. The results consist of advice as to the choice of control vectors. The zero integration time problem is formulated in ordinary differential equations and the results consist of control vector advice. The relative movement plots and control vectors of the two bounding cases are compared.

NPS/DKL Location: THESIS S85715

Abstract: A FORTRAN IV computer program was employed to conduct a statistical analysis of data collected during fleet antisubmarine warfare exercises. The object of the investigation was the identification of those variables which had greatest influence on a destroyer's ability to detect a submarine under certain conditions. The variables were treated as a random vector arising from one of two multivariate normal populations with common covariance matrix. An artificial regression relation was formulated to facilitate development of a linear discriminant function in a Subset of those variables found to be of dominant importance. This latter Subset was identified by examination of multiple correlation coefficients. The discriminant function was found to be seventy five per cent effective in classifying the experimental data correctly.

NPS/DKL Location: THESIS S8584

Abstract: The Naval Postgraduate School must, by default, make use of teaching cases in information technology case studies oriented or based upon corporations. It has been difficult for the school to obtain such studies oriented to the military, much less the United States Navy. This thesis provides the Naval Postgraduate School with three teaching cases concerning automated information systems serving the administrative and operational needs of unit-level command organizations.

NPS/DKL Location: THESIS T3634
Electronic access: http://handle.dtic.mil/100.2/ADA238310

Abstract: This research was aimed at improving the genetic algorithm used in an earlier anti-submarine warfare simulator. The problem with the earlier work was that it focused on the development of the environmental model, and did not optimize the genetic algorithm which drives the submarine. The improvements to the algorithm centered on finding the optimal combination of mutation rate, inversion rate, crossover rate, number of generations per turn, population size, and grading criteria. The earlier
The genetic algorithm was tested by the execution of several thousand runs of the simulation, varying the parameters to determine the optimal solution. Once the best combination was found, it was further tested by having officers with anti-submarine warfare experience run the simulation in various scenarios to test its performance. The optimum parameters were found to be: Population size of eight, five generations per turn, mutation rate of 0.001, inversion rate of 0.25, crossover rate of 0.65, grading criteria of sum of the fitness values of all alleles while building the strings, and checking the performance against the last five environments for the final string selection. The use of these parameters provided for the best overall performance of the submarine in a variety of tactical situations. The submarine was able to close the target and execute an attack in 73.1% of the two hundred tests of the final configuration of the genetic algorithm.

Abstract: The goal of this thesis is to investigate the initial search planning phase of the Search and Localization Tactical Decision Aid (SALT) developed by METRON, Incorporated of McLean, VA. SALT is a Computer Assisted Search (CAS) program intended for use by P3 UPDATE IV crews to assist them in optimal deployment of a sonobuoy field to prosecute a submarine threat. The initial search planning phase of SALT takes as user inputs environmental data, an initial elliptical Search Probability Area, an assumed target motion model, and the duration of the search. Outputs include a recommended sonobuoy pattern and the probability of detection of this pattern. The investigation of this phase of the algorithm is conducted in two parts. First, a series of simulation routines is used to ensure that the probability of detection of the sonobuoy patterns generated by SALT is mathematically correct. Second, these same computerized simulation routines are used to determine if there are alternate sonobuoy patterns that result in higher probabilities of detection.

Abstract: This user's guide examines the passive sonar model used by the Naval Warfare Interactive Simulation System (NWISS). The processes by which passive sonar detections are made are discussed. The thesis includes an explanation of how to affect those processes in order to control the interaction and results of an NWISS ASW scenario. A method for determining a sonar system's figure of merit and estimating ranges of detection is presented for the benefit of the operator who prepares the scenario, as well as for the user. This method is primarily intended for use with NWISS in its tactical training role.

Abstract: The purpose of this report is to briefly update the state of the art of detection of ocean fronts and eddies by satellite sensed sea surface temperature and to consider oceanographic color characteristics which may be used to detect their presence when the sea surface temperature pattern is absent.
Abstract: A theory is presented for computing the far field beam patterns from distributed random noise sources. The theoretical model uses the Green's Function for the wave equation and the space-time autocorrelation function for determining the radiation from a randomly vibrating area. The actual far field beam pattern of a horn speaker in an anechoic chamber was obtained, and also near field measurements were taken to obtain the correlation distance and the mean square of the particle velocity using the autocorrelation function. Finally a computer program was written to evaluate the integral wave equation by numerical methods. It was found that the critical parameters in the mathematical model were the correlation distance and the frequency limits of integration. Small variations in the correlation distance modified greatly the width of the predicted beam pattern, while changes in the limits of integration had a moderate effect. The Frequency Spectrum was obtained in the anechoic chamber and it was used to determine the limits of integration of the integral solution for the intensity field.

NPS/DKL Location: **THEESIS T794**

Abstract: Analysis of three major areas for naval arms control proposals: Restrictions on strategic antisubmarine warfare, naval operations, and strategic antisubmarine warfare technology. Author reviews the goals of arms control and finds none of these three areas in need of regulation. Author concludes with a number of innovative areas for naval arms control in areas of doctrine, strategy, operations, and exercises with concrete recommendations and acceptable (to USN) fallback positions. (SDW)

NPS/DKL Location: **FEDDOCS D 208.14/2:NPS-56-89-015**

Abstract: Author makes case that due to recent events, initiatives in areas of naval arms control are extremely poorly timed. These events include political changes in USSR, the changing international security environment, the new Soviet military doctrine and strategy, ongoing arms control negotiations, unarticulated U.S. and NATO goals, and changes in Soviet and U.S. planning assumptions and scenarios. Author then analyses three major areas for naval arms control proposals: (1) restrictions on strategic antisubmarine warfare, (2) naval operations, and (3) strategic antisubmarine warfare technology and fanks them on technical grounds. Author reviews the goals of arms control and finds none of these three areas in need of formal regulation. Author concludes with a number of innovative areas for naval arms control in areas of doctrine, strategy, operations, and exercises with concrete recommendations and acceptable (to USN) fallback positions.

NPS/DKL Location: **FEDDOCS D 208.14/2:NPS-56-90-012**

Abstract: This document examines the role of strategic missile - carrying submarines in deterrence and mission of attacking these forces during the conventional phase of a War. Strategies considered include Wars originating in varying regions. Included is a discussion of varying locations for submarine deployments impacting on potential Antisubmarine Warfare campaign. Escalation considerations include vertical, horizontal, and time. It concludes with analysis of possible arms control regulations. (KR)
Abstract: This report examines the role of strategic missile carrying submarines in deterrence and the mission of attacking these forces during the conventional phase of a War. It includes discussion of varying locations for submarine deployments impacting on potential antisubmarine warfare campaigns, and also analyzes possible arms control regulation of ASW.

Abstract: The computer War game is emerging as a vital tool for finding near-optimal solutions to current military problems. A computer War game designed to permit parametric analysis of a submarine barrier is developed. Simulation techniques both mathematical and computer, are discussed. The effects of assumptions inherent in the computer War game are described. Illustrative analyses conducted through use of this computer War game are exhibited. Potential uses and methods for improvement of the developed War game are discussed.

Abstract: The role of the Maneuvering Target Statistical Tracker (MTST), a Kalman filter tracking algorithm based on the Integrated Ornstein-Uhlenbeck (IOU) motion process, in the Antisubmarine Warfare System Evaluation Tool (ASSET) is examined and its operation described. ASSET is a campaign simulation which models open-ocean ASW scenarios featuring prosecution of hostile submarines by friendly submarines and aircraft based on cues provided by data fusion centers. The heart of each data fusion center is an MTST which integrates new contact information into tracks. Comparing the level of sophistication of the tracking algorithm to that of the contact data provided to it, a number of simplifications are proposed. These include using reduced complexity IOU prediction and Kalman filter equations; the use of preprocessed variance data together with the true position of targets to estimate, rather than explicitly calculate, updated track states; and limiting contact processing based on information content. Results indicate a good simulation of tracker output is produced using a greatly simplified algorithm. This technique can be generalized to other types of simulations involving target tracking.

Abstract: No abstract available.

Abstract: A computer War game is developed to measure the effect of false contacts on the probability of detecting a submarine. The variables are the probability of correctly classifying a non-submarine contact, the probability of correctly classifying a submarine contact, and the false contact density. A scenario is developed to focus on the false contact problem while holding other ASW variables constant. It is concluded from the output of the game that the effect of false contacts is deeply embedded in the interrelationships between units.

NPS/DKL Location: THESIS W22284

Abstract: This is a brief, technical review of the Anti-Submarine Warfare (ASW) part of ITEM, a widely used theater combat model. Several apparent deficiencies are pointed out. The recommendation is that ITEM's documentation be improved, and that a more extensive verification be carried out.
NPS/DKL Location: FEDDOCS D 208.14/2:NPS-OR-05-004-PR
Electronic access: http://handle.dtic.mil/100.2/ADA429765

Abstract: Theater Ballistic Missile launching systems are vulnerable just after a missile is launched because the missile's track can be extrapolated backwards to the location of the launcher. The situation is similar to one where a submarine torpedoes a ship, thus creating a flaming datum near which ASW forces may concentrate a search for the submarine. This report describes how some simple analytic methods adapted from ASW can be applied to the task of locating the TBM launcher. TBM, Scud, Search.
NPS/DKL Location: FEDDOCS D 208.14/2:NPS-OR-93-015
Electronic access: http://handle.dtic.mil/100.2/ADA273215

Abstract: The study into the knowledge and experience required for optimum performance by officers assigned to operational, R+D, and managerial duties in Anti-submarine Warfare concludes that oceanography should receive the major emphasis in an interdisciplinary graduate level program of the contributing disciplines in ASW. In planning education and training for officers in ASW and other oceanography-related duties the total Service experience should be considered. Oceanography graduate curricula are recommended which will provide knowledge for developing careers of three categories of officers who respectively will: 'specialize' in ASW; become special duty 'environmentalists'; and serve in technical management assignments. Billets are identified for each of these categories.
NPS/DKL Location: THESIS W22997

Abstract: This thesis provides a preliminary software design for an Antisubmarine Warfare Tactical Flight Simulator. The simulation uses AN/ASN-123 Tactical Navigation Set (TACNAV) display symbology and selectable graphic functions to track and localize a single fully-evasive submarine. The primary design objectives are flexibility, utility, and understandability. A composite design methodology including
levels of abstraction, information hiding, coupling, and cohesion as modularization criteria is used to effect a top-down modular decomposition of the simulation. A hierarchical structure is developed and modular packaging is discussed. Some aspects of physical implementation are also discussed and appropriate recommendations made.

NPS/DKL Location: THESIS W48429

Abstract: Utilization of neural network techniques to recognize and classify acoustic signals has long been pursued and shows great promise as a robust application of neural network technology. Traditional techniques have proven effective but in some cases are quite computationally intensive, as the sampling rates necessary to capture the transient result in large input vectors and thus large neural networks. This thesis presents an alternative transient classification scheme which considerably reduces neural network size and thus computation time. Parameterization of the acoustic transient to a set of distinct characteristics (e.g. frequency, power spectral density) which capture the structure of the input signal is the key to this new approach. Testing methods and results are presented on networks for which computation time is a fraction of the necessary with traditional methods, yet classification reliability is maintained. Neural network acoustic classification systems utilizing the above techniques are compared to classic time domain classification networks. Last, a case study is presented which looks at these techniques applied to the acoustic intercept problem.

NPS/DKL Location: THESIS W5725
Electronic access: http://handle.dtic.mil/100.2/ADA263437

Abstract: This thesis analyzes the environmental compatibility and the potential performance capabilities of two proposed types of vertical flight capable aircraft in an aircraft carrier Anti-Submarine role. The aircraft compared are the CV Helicopter(SH-60F) and an ASW variant of the Joint Services Advanced Vertical Lift (JVX) tilt-rotor aircraft. This thesis compares their adaptability and relative expected mission effectiveness by analyzing their physical dimensions and characteristics and their projected flight performance parameters. Their expected performance in a specific scenario, an ASW pouncer mission employing active dipping sonar, is analyzed using a simulation model. Keywords: Time On-Station; Search and rescue; Flight deck; Detection probability; Helicopter in-flight refueling; Tilt-rotor; and Dipping sonar.

NPS/DKL Location: THESIS W58526

Abstract: Japan's economy, the third largest in the world, is totally dependent on the sea lines of communication for the importation of 90 percent of its energy requirements and strategic metals and for over 70 percent of its food. Despite the importance of the sealanes to Japanese security, the Japanese Maritime Self Defense Force (JMSDF) remains incapable of protecting those sealanes against interdiction. Although the JMSDF is currently the seventh largest navy in the world, future expansion has been stymied by Japan's steadfast refusal to increase defense spending above one percent of the GNP. Long-range procurement plans focus on qualitative improvements with a primary emphasis on anti-
submarine warfare, a strategy which could foreshadow a building program to enable the JMSDF to control the vital sea lanes. On the other hand, political and domestic constraints on a strong military indicate a continuing reliance on the United States for Japan's security. This study examines the factors affecting military decision-making in Japan, looks into the problems and realities of sealane defense and analyzes the future prospects for the JMSDF.

NPS/DKL Location: THESIS W5877

Abstract: This report describes how the philosophy that influenced Anti-Submarine Warfare operations can be used to guide counterforce attacks against mobile missiles. It explains why an ASW approach to counterforce is superior to just attacking an opponent's missile infrastructure. It also explains why this type of counterforce strategy can be based on preemption not preventive War. The impact of ASW counterforce operations are also evaluated in terms of the stability-instability paradox, crisis stability, alliance relations and deterrence. TBM, Scud, Search, Crisis-stability, Counterforce, Alliances.
NPS/DKL Location: FEDDOCS D 208.14/2:NPS-OR-94-007
Electronic access: http://handle.dtic.mil/100.2/ADA282801

Abstract: This thesis analyzes the relationship between pre-commissioning academic background and submarine officer performance. Four measures of officer performance are used: (1) probability of completing the nuclear training pipeline; (2) probability of receiving an early promotion recommendation on greater than 75 percent of LT fitness reports; (3) probability of remaining in the Navy for 10 years of commissioned service (until the O4 board); and (4) probability of promoting to LCDR. Navy Promotion History files, Officer Data Cards, Fitness Report files, and Loss files are used to statistically analyze the impacts of college grades and major, college quality, and commissioning source on submariner performance and retention. Non-linear maximum likelihood techniques are used to estimate the four performance models. The findings reveal that good grades and engineering majors have a significant positive impact on all four performance measures including retention. There are exceptions among OCS graduates. Grades have an insignificant effect on the probability of completing the training pipeline and of remaining in the Navy until the O4 board. Also, non-technical majors are more likely to remain in the Navy than engineering majors. USNA graduates fare best on all performance measures with the exception of completing the training pipeline. ROTC graduates generally fare better than OCS graduates. Among ROTC and OCS graduates, greater college selectivity leads to higher performance but lower retention rates for OCS graduates. There is no difference in retention rates for ROTC graduates with respect to college selectivity.
NPS/DKL Location: THESIS W6863
Electronic access: http://handle.dtic.mil/100.2/ADA343427

Abstract: An experimental investigation was made of the scattering properties of a bubble cloud in a sound field in a fresh water medium. The size of the bubbles was on the order of 0.125 cm radius, and was far above resonant size for the ensonifying sound field. It was determined that the bubbles scattered coherently in the forescatter direction, and incoherently in the backscatter direction. Based upon the
scattering properties of the bubble cloud, it appears feasible to develop a device that could have tactical applications in the prosecution of long-range submarine contacts held by active sonars. Such a device would utilize the principle of resonant bubbles, and would require approximately 2.5 cubic feet of air (corrected to STP) to maintain a +20dB target strength for five minutes of continuous operation.

NPS/DKL Location: THESIS W914

ANTISUBMARINE WARFARE (ASW)

OTHER THESES & REPORTS

NPS/DKL Location: MICROFORM ADA129795

NPS/DKL Location: MICROFORM ADA129797

NPS/DKL Location: MICROFORM ADA129797
Act (ESA). The training program must also comply with the National Environmental Policy Act (NEPA), and in some cases the Coastal Zone Management Act (CZMA). Each of these laws has provisions where a federal action may be exempted from compliance. The Navy has invoked all of the exemptions to continue its sonar training exercises.

Abstract: This report describes the design and implementation of a detection performance prediction model that has been developed for a generic Anti-Submarine Warfare mode of a maritime surveillance radar system. The model provides a map of the predicted average probabilities of detection as a function of range and look direction compared to the wind/swell direction for a user defined target in user defined operational and environmental conditions.
Electronic access: http://handle.dtic.mil/100.2/ADA389153

Abstract: A feasibility study as to the possible use of offshore oil platforms as operating bases for Anti-Submarine Warfare (ASW) helicopters and/or as sensor stations in a sea lines of communication/sea surveillance mission. The capability of existing platforms is investigated as to their physical properties to support such operations, their locations, and possible political and legal problems that may impact the military use. The platforms are found to be capable of supporting an ASW/sea surveillance mission but legal constraints and the location of existing platforms could limit such use to U.S. coastal waters. Examination of the feasibility of the mission for and compatibility with the operation of Naval Air Reserve ASW Helicopter Squadrons indicates that these squadrons could conduct detachment size operations from the offshore platforms, during peacetime for training and wartime mobilization to provide ASW/sea surveillance missions for protection of U.S. coastal waters.
NPS/DKL Location: MICROFORM ADA075840

281

Backes, D. A. **Impact of CST on Navy Programs. The CST Process for Technology Transition and Programmatic Change.** Washington, DC: Space and Naval Warfare Systems Command, 1996. (ADA318891; CST/LLFA-WPUSW27, SPAWAR). 26p. Abstract: Since 1985 the Navy has conducted focused Advanced Technology Demonstration (ATD) programs to introduce Low Frequency Active Acoustics (LFAA) technology into the Fleet to improve Anti-submarine Warfare (ASW) capability against the quiet submarine threat. The Critical Sea Test (CST) Project tested LFAA and related technologies at sea in CST-Magellan tests, both independently and in combination with tests sponsored by the Surveillance Towed Array Sensor System (SURTASS) Low Frequency Active (LFA) Program, the Submarine Security Program, the Air Defense initiative (ADI) Low Low Frequency Active (LLFA) project, and Fleet Ship ASW Readiness/Effectiveness Measuring (SHAREM) Program and Air ASW Readiness/Effectiveness Measuring (AIREM) Program exercises, among others. These tests were often conducted jointly with several of our Allies. Complementary environmental measurements were conducted with each test to ensure the technology transition process was complete, successful and timely. Electronic access: http://handle.dtic.mil/100.2/ADA318891

Berkhouse, L., S. E. Davis, F. R. Gladeck, J. H. Hallowell and C.B. Jones. **Operation DOMINIC I-1962.** Santa Barbara, CA: Kaman Tempo, 1983. (ADA136820; KT-82-018(R); DNA6040F; XD6040F). 432p. Abstract: DOMINIC I was an atmospheric nuclear weapons test series conducted in the Pacific Ocean area in 1962. It included 5 high-altitude shots at Johnston Island, 29 airdrop airburst events near Johnston and Christmas Islands, one Polaris-launched airburst in the Christmas Island area, and one underwater test in the Pacific Ocean off the United States West Coast. This is a report on DOD personnel with an emphasis on operations and radiological safety. Electronic access: http://handle.dtic.mil/100.2/ADA136820

Bermingham, William and Robert Wolfe. **MIL-STD-1553B Protocol Specification for P-3 Modernization.** Warminster, PA: Naval Air Development Center Software and Computer Directorate, 1982. (ADA111679; NADC-81089-50). 84p. Abstract: This report describes a protocol developed for the P-3C Modernization Program utilizing the MIL-STD-1553B Data Bus. The protocol described in this report is intended as a menu of tools to be utilized, as the interfacing requirements govern, by the I/O and applications programmers. The work formats specified are a layer below that of the application software except where specifically mentioned. This protocol is intended to satisfy all currently envisioned P-3C interfacing requirements which fall into the realm of the restrictions and capabilities imposed by MIL-STD-1553B. NPS/DKL Location: MICROFORM ADA111679

Presented at RTO information Systems Technology Panel (IST), Istanbul, Turkey 9-11 October 2000. This article is from ADA391919, New Information Processing Techniques for Military Systems (les Nouvelles techniques de traitement de l'information pour les Systemes militaires) p.16-1/16-9.

Abstract: Emerging concepts for Anti-Submarine Warfare (ASW) and Rapid Environmental Assessment (REA) increasingly rely on communication technology in order to implement distributed information networks and to exchange information between naval units and military commands ashore. The necessary communication links could be accomplished using a variety of solutions: Our main focus is on radio frequency (RF) links which offer easy deployment and flexible operations. This document illustrates how spread-spectrum techniques can be adopted to substitute and enhance existing communications systems to permit the deployment of distributed scalable networks of ships and sensors characterized by reliable performance (resistance to hostile jamming and environmental interference) and low probability of interception. An overview of real applications in ASW and REA is presented.

Electronic access: http://handle.dtic.mil/100.2/ADA391919

Abstract: The high order transfer functions representing the lateral directional responses to pilot control inputs were matched with low order equivalent forms in the frequency domain for five Navy tactical aircraft: The A-6, A-7, S-3, F-14, and F-18. The candidate low order equivalent forms investigated were: 1) the complete three degree of freedom representation of roll and sideslip angle responses, and 2) the single degree of freedom roll mode and Dutch roll approximations. Acceptable models were generally obtained for both forms. Simultaneous matching of sideslip and roll angle responses and/or apriori information for the roots was required to match the full three degree of freedom forms. The equivalent system models are discussed in terms of their match statistics. The equivalent system modal parameters, when compared against the requirements of the military flying qualities specification, demonstrate level 1 flying qualities for the conditions analyzed with the exception of roll angle time delay for the A-7 and F-18 airplanes. The A-7's lateral command augmentation structure results in Level 2-3 equivalent time delays, while the F-18's control force inputs produce Level 2 equivalent time delays.

NPS/DKL Location: MICROFORM ADA141672

Abstract: Joint and naval doctrine published in the wake of the Goldwater- Nichols Act of 1986 does not sufficiently address Anti-Submarine Warfare (ASW). ASW must assume an integral role in the Joint Vision 2010 precepts of operational force protection and battlespace dominance. The global proliferation of diesel submarines capable of conducting sea denial operations in the littoral, and the continued production and employment of Russian nuclear submarines, have generated renewed interest in anti-submarine warfare. To sustain and swiftly project joint forces into and across the littoral will require that U. S. joint force commanders be prepared to quickly neutralize the submarine threat. ASW must, therefore, be fully integrateable into the joint force that will simultaneously conduct the operational protection missions of missile defense, air defense and mine warfare. The Navy, as the ASW core competency leader, needs to develop an ASW vision statement and corresponding naval and joint doctrine. Such doctrine will serve to guide joint ASW force procurement, training and employment in accordance with the tenants outlined in Joint Vision 2010.

Electronic access: http://handle.dtic.mil/100.2/ADA328244

Abstract: This project was conducted to obtain measurements of the electromagnetic (EM) signals from nuclear detonations at large distances from the detonation point, above and beneath the sea surface. The planned use of the data is that of determining the feasibility of an Indirect Bomb Damage Assessment (IBDA) system based on the nuclear EM signature. The specific tests were conducted from two ships. The EM signatures recorded both above and below the water surface for the various nuclear events are unique, recognizable, and predictable to a useful degree. It appears entirely feasible to utilize this nuclear EM signal as a method of IBDA. The significance of the data presented herein lies primarily in the demonstrated ability to detect an above-water EM signal with an underwater antenna system. Signal characteristics are changed in magnitude and phase but are very easily recognizable with but a minimum of measuring equipment. (Author)

Extracted version of report dated Sep 62, AD0337496.

Abstract: This project was conducted to obtain measurements of the electromagnetic (EM) signals from nuclear detonations at large distances from the detonation point, above and beneath the sea surface. The planned use of the data is that of determining the feasibility of an Indirect Bomb Damage Assessment (IBDA) system based on the nuclear EM signature. The specific tests were conducted from two ships. The EM signatures recorded both above and below the water surface for the various nuclear events are unique, recognizable, and predictable to a useful degree. It appears entirely feasible to utilize this nuclear EM signal as a method of IBDA. The significance of the data presented herein lies primarily in the demonstrated ability to detect an above-water EM signal with an underwater antenna system. Signal characteristics are changed in magnitude and phase but are very easily recognizable with but a minimum of measuring equipment. (Author)

Abstract: Present high costs of nuclear attack submarines have led to reduced procurement rates and will lead to significantly reduced force levels in the 1990's. The paper examines the impact of these reduced levels in order to suggest possible steps to mitigate their severity. An analysis is first made of possible roles for submarines under a variety of wartime scenarios; submarine employment is determined to depend more on invariable Soviet naval missions than on the precise nature of a future war. The interaction of U. S. submarine capabilities and Soviet Navy missions suggests the most important use of submarines is in anti-submarine warfare, both for sea control and for protection of carrier power projection forces. Dealing with the projected decrease in submarine force levels by reducing missions, improving effectiveness of existing forces and building more submarines are each examined; the examination suggests that no totally satisfactory solution exists given the probability of continued austere shipbuilding budgets. The analysis concludes that a mixed approach including procurement of less expensive (and less capable) nuclear submarines after 1985, extension of service life of some existing submarines, and various other steps is required to maintain submarine warfare capabilities.

Abstract: This study was conducted to determine personnel requirements and optimum equipment design and arrangement for ASW airships. The problem was to increase airship effectiveness in anti-submarine combat by improving the efficiency of human performance. Information with respect to airship types, operations, and tactics was obtained by interviews with LTA personnel. The basic data of this investigation consist of observer samplings, sound recordings, and motion pictures of the activities of airship crewmen during simulated anti-submarine missions. The critical characteristics of airship performance were determined by analytical evaluations. These findings were used to specify personnel requirements and to improve the particular man-man and man-machine linkages crucial to combat success. Finally, human engineering researches and principles of work simplification were examined to derive recommendations.

NPS/DKL Location: MICROFORM AD0643118

Abstract: The Southern California Acoustic Range (SOAR) is designed to provide a 100 square mile Anti Submarine Warfare training range in 4000 feet of sea water west of San Clemente Island, California. SAR will provide accurate tracking of air, surface and submerged targets. This plan is a working document that details the mobilization, execution and demobilization of the underwater portion of the SOAR project. The overall scenario of the project is to accomplish the following: (a) Prefabrication and assemble project materials at NOSC, San Diego; (b) Conduct training near Coronado beach; (c) Mobilize the OCP SEACON and UCT-2 personnel and equipment at West Cove, San Clemente Island; (d) Land the SSL cable and deploy the SSL system at sea; (e) Land the WQC cable and deploy the WQC transducer at sea; (f) Conduct a complete as-built survey (g) Demobilize SEACON and return all equipments and (h) Prepare a detail completion report.

NPS/DKL Location: MICROFORM ADA168632

NPS/DKL Location: GENERAL V214 .C67 2003

Abstract: This study examines the impact of catastrophic and degradative equipment failures on systems effectiveness, using the P-3C aircraft as an example. The methods are generally applicable to systems having many independent sensors and weapons where the loss of any particular equipment does not necessarily reduce system effectiveness to zero. The major problem in assessing the impact of equipment failure results from the fact that an ASW mission has a complex time history. detection, localization and attack may occur at virtually any time throughout the mission. Therefore the timing of equipment failures is important, since an early failure of a critical sensor causes a much greater reduction in effectiveness than a late one. A series of simplified models are developed to illustrate the time-dependent effects of failure. Using these models with actual failure data for the P-3C, results suggest that current reliability experience reduces potential system effectiveness on the order of 25% or less. A new
approach to the problem of estimating failure effects is attempted. The fractional cost concept yields a precise measure of the importance of each equipment to mission success.

NPS/DKL Location: MICROFORM AD0894745

Abstract: This paper addresses the role of submarine warfare in today's national strategy. Analysis of submarine coastal operations during the Pacific War, specifically during the final campaign to invade mainland Japan, provides insight into submarine littoral warfare today. Following the decline of the Soviet Union, U.S. forces have focused on the application of maneuver Warfare against emerging regional threats. Undoubtedly, this means control of the littoral regions of the world, where joint forces, including submarines, can influence events ashore. Included within the text is a historical perspective and future vision of submarine littoral warfare as it relates to operational maneuver from the sea.

Electronic access: http://handle.dtic.mil/100.2/ADA293706

Dobecck, Gerald Joseph. **System Identification and Application to Undersea Vehicles.** Tampa, FL: USF, 1976. 164 l.

NPS/DKL Location: GENERAL QA402 D63

Abstract: Recently in force employment studies several high level campaign models have been developed. These models mainly describe the interactions between Soviet submarines and NATO reinforcement and resupply shipping. Values of input parameters are required, which could either be determined by submodelling or simply be given. The choice highly depends on the sensitivity of the results to these input parameters and to the available information for developing submodels. This memorandum describes submodels for two input parameters to higher models: The encounter rate between transitting NATO ships and a submarine on patrol, and the average time a submarine will spend inside the convoy defences when attempting to attack a convoy.

NPS/DKL Location: MICROFORM ADA095111

This article is from the Proceedings of the Flight Mechanics Panel Symposium Held in Lisbon, Portugal on 2-5 April 84, ADA147625, p. 14-1 - 14-13.

Abstract: The Nimrod MR Mk 2 represents a large step forward in antisubmarine warfare (ASW) technology. Therefore aircraft operators need to know not only how accurately the new systems and sensors work, but also the best ways in which to use the overall system as a fighting machine. A&EE Boscombe Down and the RAF Central Tactics and Trials Organisation joined forces to assess the ASW performance of the Nimrod in as near an operational environment as possible. The paper shows how the potential accuracy of the Nimrod’s ASW system had to be matched by the precision of trials data collection, in the air and both on and below the sea surface. To gain such precision, the aircraft were extensively instrumented and the majority of the trials were conducted at the AUTEC Range in the Bahamas. The paper continues by explaining how the trials analysis technique had to match the variety of combinations of the data which were needed to make a statement on overall system performance.

Electronic access: http://handle.dtic.mil/100.2/ADA147625

Ford, Robert D. The Excedrin Headache of ASW: From U-Boats to the New Boats. Newport, RI: Naval War College, 1997. (ADA328139). 21p. Abstract: US forces today are under-trained in antisubmarine warfare, at a time when the world conventionally powered submarine base is at an all-time high. The conventional submarine poses a unique and potent threat to US forces, particularly in the littoral regions where ASW is the most difficult. The lessons of World War II, in which German U-Boats inflicted great damage and caused a disproportionate diversion of Allied ASW assets, and the inability of British forces to detect the single Argentine submarine San Luis in the Falklands War underscore the relevance of proper planning to deal with the submarine threat in today's joint littoral warfare arena. The approach taken by JTF and Maritime Component staffs in countering the conventional submarine is critical in the success of the maritime forces achieving dominance as an enabling force in the joint littorals. Electronic access: http://handle.dtic.mil/100.2/ADA328139

Friedman, M.J., L.J. Cowles and R.C. Carson, Jr. Application of Flight Performance Advisory Systems to U.S. Navy Aircraft. Warminster PA: Naval Air Development Center, 1986. (ADA182150). 14p. This article is from 'Efficient Conduct of Individual Flights and Air Traffic or Optimum Utilization of Modern Technology for the Overall Benefit of Civil and Military Airspace Users; Conference Proceedings of the Symposium of the Guidance and Control Panel (42nd) Held in Brussels, Belgium on 10-13 June 1986,' ADA182150, p. 62-1-62-14. Abstract: The U.S. Navy, is currently investigating methods for improving the fuel efficiency of Navy aircraft. Fuel saving concepts include an aircraft integrated flight performance advisory system, a pre-flight mission planning program using a desk type computer and an aircraft performance advisory system using an HP-41 DV hand-held calculator. The integrated flight performance advisory system for the F/A-18, the A-7E, and the S-3 are described in detail by reviewing the displayed outputs to the pilots and describing the required inputs and their sources. Features of each aircraft system are described in accordance with the development status of the program. The preflight mission planning program using an HP-9845 desktop computer is described for the P-3C aircraft. The approach to weather, takeoff and cruise are described by specifying input and output data. Sample displays are also shown. The hand-held HP-41 CV calculator used for flight performance predictions is described for takeoff and cruise flight modes of this aircraft. NPS/DKL Location: MICROFORM ADA182150

Abstract: Training simulators often require the participation of several people to play the role of supporting players in the simulated operation. Use of intelligent software agents to play the role of these personnel has the potential to reduce support staff and increase an instructor's control of training. This report evaluates a simulator prototype developed for the CP140 Aurora maritime patrol aircraft that incorporated intelligent software agents to play the roles of the Tactical Navigator and an Acoustic Sensor Operator. Human crews, intelligent agent crews, and mixed human-agent crews performed a simulated antisubmarine mission. Mission performance and crew communications were recorded and rated to determine whether the intelligent software agents could perform individual crewmember functions and whether they could provide the interaction necessary for crew coordination training. The results indicate that: (1) agents can perform individual crewmembers' functions; (2) agent interaction with humans is sufficient to allow humans to perform their own tasks; and (3) the agents did not interact in a way suitable for crew coordination training. It is concluded that the prototype is suitable for supporting individual training, but the agents' knowledge base must explicitly address team dynamics if crew coordination training is to be supported.

Electronic access: http://handle.dtic.mil/100.2/ADA400717

Abstract: This report contains a survey by Curtin University on decision modelling which covers: (1) Our current understanding of how we make decisions, and points out our qualities, our weaknesses and the types of aids that could help us. Of note is the theory that people commit to options even though alternatives exist once a situation has been recognised. (2) Techniques useful for eliciting and representing knowledge about how experts make decisions. (3) What is situation assessment, and how others have tried to capture the process and use the captured information. (4) The different technologies that could be employed to represent the process of situation assessment. This report represents the first step of a larger project to represent how submarine commanders assess situations.

Electronic access: http://handle.dtic.mil/100.2/ADA405860

Abstract: The Boeing Company participated in the Future Strategic Tanker Aircraft program which was intended to provide aerial refueling and aerial transport capability to the United Kingdom Royal Air Force under a Private Finance Initiative. Boeing contracted NAWCAD Patuxent River, Maryland, under a commercial service agreement to determine if an area of acceptable wake turbulence existed in the proximity of a 767 aircraft in order to perform the aerial refueling mission. This was accomplished by evaluating the 767 aerodynamic and wake turbulence effects on two receiver aircraft (F/A-18C and S-3B) at locations behind the 767, which approximated potential aerial refueling engagement areas. During the period of 22 and 23 June 2000, three F/A-18 and three S-3B flights were flown totaling 5.8 F/A-18 flight-hours, 6.7 S-3B flight-hours, and 12.5 767 flight-hours. A Lear 35 cinematography aircraft was used to document test results. The test program consisted of proximity evaluations only with no aerial refueling pods installed on the 767 aircraft and no receiver-to-”tanker” engagements. All flights were conducted within the Patuxent River restricted or local Warning areas. At the positions evaluated, areas of acceptable wake turbulence existed for the F/A-18C and the S-3B in the proximity of the 767 aircraft in order to perform the aerial refueling mission. Recommend that testing continue to evaluate the 767 tanker

Abstract: A mathematical model of the Sea King Mk. 50 Anti-Submarine Warfare (ASW) helicopter and its sonar system is presented. The model represents both performance and dynamic flight behaviour over a range of conditions and incorporates the aerodynamics and kinematics of the helicopter, the control systems, pilot inputs, the cable and sonar dynamics, plus wind and sea state data. The aerodynamics and kinematics model is a three-dimensional representation covering the operating flight envelope, where rotor aerodynamics are based on blade-element and actuator-disc theory, and the control systems contain models of both the flying controls and automatic flight control system. The sonar cable and transducer model is formed by a number of attached, rigid links, where consideration of the forces acting on each link enable the three-dimensional shape and motion of the complete cable and transducer to be predicted. A description of the computer program for the mathematical model is given and sample results are included.

NPS/DKL Location: MICROFORM ADA112502

Abstract: The frequency dependence of broadband active detection/localization is examined. The analysis is based on 1200 Hz (2300-3500 Hz) LFM signals acquired during the SWAC 4 sea trial. A sub-band matched filter scheme is devised according to which a replica of the transmitted pulse is segmented into ten 120 Hz sub-bands and processed independently through a matched filter detector. Comparison of target detection and ranging results indicate comparable performance for all sub-bands. However, ping-to-ping variability of the ten correlator outputs suggest that the detection performance may be improved by employing incoherent processing schemes. Signal-to-noise ratio is proved to be controlled mainly by noise (reverberation is the predominant noise source) rather than signal variations. The signal intensity remains proportional to the distance between source and receiver due to favorable propagation conditions. Doppler effects and sub-band detection synchronization problems which may lead to performance degradation in large time-bandwidth signal processing are addressed. A method to estimate range rate (relative velocity between source and receiver) based on single ping differential time delay between sub-band MF outputs is developed. This intra-ping technique is an alternative to the standard inter-ping method which requires multiping detection history.

Electronic access: http://handle.dtic.mil/100.2/ADA378129

Abstract: The frequency dependence of reverberation is examined using the processing method as for the frequency analysis of target detection during the same experiment. In this experiment, reverberation is induced by abrupt changes in the bottom bathymetry (a 200 m sea mount). For the analysis of the received signal a sub-band matched filter scheme is devised, according to which, a replica of the transmitted pulse (2300 Hz-3500 Hz LFM signal) is segmented into ten 120 Hz sub-bands, each of which is processed independently through a matched filter detector. Following the necessary corrections for array gain and calibration, transmitted power spectrum and propagation loss, the matched filter data are compared to reveal the frequency dependence of reverberation. Due to insufficient in situ measurements, the propagation loss estimate is based on model calculations - a challenging task for the range dependent seafloor at the experimental site. After examining a large number of pings it is concluded that the reverberation energy calculated at the correlator output is comparable for all ten sub-bands. This
leads to the conclusion that for the particular environment and experimental geometry, the frequency spectrum is not sufficiently wide to allow significant frequency variability which may indicate an optimum operational frequency.

Electronic access: http://handle.dtic.mil/100.2/ADA389996

Herrick, Robert W., Lois S. Lembo, and Mark A. Hainline.
Soviet Perceptions of U.S. Antisubmarine Warfare Capabilities. Volume I. Executive Summary.
Revision.
Revision of report dated 30 September 80.
Abstract: This study addresses four primary questions: How frequently and in what contexts do the Soviets discuss U.S. ASW capabilities? How have the frequency and nature of Soviet commentaries on the subject changed? What U.S. ASW programs are the particular focus of Soviet commentary? What is the Soviet perception of U.S. anti-submarine warfare capabilities and how has it changed over the period 1960 - 1980? Answers to these and related questions have been derived from qualitative and quantitative content analyses of Soviet open-source national security publications. The commentaries sampled in the analyses - spanning the years 1960 to 1980 - represent the views of naval, military, and party/government leaders and spokesmen.
NPS/DKL Location: MICROFORM ADA100899

Herrick, Robert W., Lois S. Lembo, and Mark A. Hainline.
Perceptions of U.S. Antisubmarine Warfare Capabilities: Volume II. Analysis and Conclusions.
Revision.
Abstract: This study addresses four primary questions: How frequently and in what contexts do the Soviets discuss U.S. ASW capabilities? How have the frequency and nature of Soviet commentaries on the subject changed? What U.S. ASW programs are the particular focus of Soviet commentary? What is the Soviet perception of U.S. anti-submarine warfare capabilities and how has it changed over the period 1960 - 1980? Answers to these and related questions have been derived from qualitative and quantitative content analyses of Soviet open-source national security publications. The commentaries sampled in the analyses - spanning the years 1960 to 1980 - represent the views of naval, military, and party/government leaders and spokesmen.
NPS/DKL Location: MICROFORM ADA101015

Herrick, Robert W., Lois S. Lembo, and Mark A. Hainline.
Perceptions of U.S. Antisubmarine Warfare Capabilities: Volume III. Appendices.
NPS/DKL Location: MICROFORM ADA101623

Holliday, Dennis.
Non-Acoustic Anti-Submarine Warfare. Volume 1.
Final rept. 1 Sep 90-31 Oct 92, See also Volume 2, ADC054672 [classified -- see classified/limited appendix].
Abstract: The work reported in this Final Report was performed under Item No. 0005 onp. 2 of ONR Contract No. N00014-90-C-0223 between the start date of September 1, 1990, and October 31, 1992.
The work was conducted in general accordance with Tasks 4 and 5 of Section 2 of the Logicon R & D Associates (LRDA) Proposal No. 9000-1006 entitled Proposed Research on Non-Acoustic Anti-Submarine Warfare, dated May 1990. These tasks are: TASK 4: As funds are available, we will perform research relating to detection algorithms, performance assessments, and countermeasure development as directed by the Sponsor. TASK 5: Perform advisory activities pertaining to radar ocean imaging and detection as directed by the Sponsor. (KAR)p. 3.

Electronic access: http://handle.dtic.mil/100.2/ADA298916

Abstract: In response to the Navy's need for a submarine warfare capability in shallow water areas of the oceans, NRL has been conducting a research program in shallow-water acoustics. The goal of the first phase of this program has been to determine if wave theory can be used to predict the acoustic field at long ranges from a submerged acoustic source. The approach used an iterative process involving trial models and at-sea measurements. The wave equation for the physical model is solved by numerical methods and implemented on a high-speed general-purpose computer. Since the acoustic field at long ranges is propagated in the discrete normal modes of the duct, special experimental methods were used to resolve individual modal fields so that their measured characteristics could be compared with predictions. This report presents a detailed description of the NRL normal-mode model in its current form and describes the experimental evaluation procedures and results. Salient features of the model include variable sound speed in the water, slowly variable water depth, statistically rough boundaries, sediment layering, and both shear-wave and compressional-wave propagation in the bottom. Although certain recognized problems remain to be solved, it has been demonstrated that the model can in most cases predict the characteristics of the signal field with sufficient accuracy to be a useful tool in system design, performance prediction, and tactics.

NPS/DKL Location: MICROFORM ADA057691

Extracted version of report dated 10 Mar 64.

NPS/DKL Location: MICROFORM ADA995124

Master's thesis.

Abstract: The threat of the Soviet Union and Communism to the United States diminished with the end of the Cold War in the early 1990s. Instead, the asymmetric threat of terrorism has spread throughout the world and become a grave danger to American citizens at home and abroad. Throughout these changes in global landscape, the US Navy has adapted and given new emphasis to a variety of missions during these times of fiscal challenge. However, one of the most dangerous weapons of the Cold War, the submarine, still exists and is being proliferated widely today. Once the primary ASW aircraft used in the prosecution of submarines, the P-3C Orion, has added new equipment to perform its added warfare missions. Thus, the central focus of the thesis: Does the US Navy have the airborne capability to defend itself from current as well as projected submarine threats? The thesis will examine the relevancy of ASW today and determine whether current and future submarines pose a threat to US, its interests as well as its military. The final analysis involves an evaluation of P-3C Orion's capability to detect adversary submarines in the contemporary as well as future operating environment.

Electronic access: http://handle.dtic.mil/100.2/ADA406874

Abstract: Described here is a computational method to design frangible nosecaps for air- and surface-launched undersea weapons (such as for ASROC, VLA, and Mk-50 torpedoes). WEST is a technique that can rapidly and accurately assess the state of stress and deformation of missile nosecaps intended to break up at water entry. WEST links the powerful geometry and FEM pre- and post-processor PATRAN, a potential-flow computer code that can calculate dynamic pressure-time histories of an arbitrary entry body, and the nonlinear FEA code ABAQUS. This code linkage has been validated through comparison with experimental work. WEST is a valuable analytical tool that reduces the design cycle time for frangible nosecaps.

NPS/DKL Location: MICROFORM ADA219641

Abstract: Duels between torpedoes and ships with counter measures for protection can be simulated with the computer model MUMS. In earlier versions of the model the simulated torpedoes are autonomous after firing. Recently passive sonars have been included which allows simulation of wire-guided torpedoes from submarines. The development described in this report comprises modeling of wire-guided torpedoes launched from surface ships and/or helicopters with active sonars.

Abstract: This paper proposes a methodology for relating investments in naval infrastructure programs to investment programs in naval structure and illustrates the utility of such a methodology in trading infrastructure for structure by applying the methodology to organic mine countermeasure and shallow water antisubmarine operations.

Electronic access: http://handle.dtic.mil/100.2/ADA394149

Abstract: An Airborne Optical Receiver (AOR) was developed and tested to investigate the propagation and reception of optical communications uplinks from a submerged laser source to an overflying fleet aircraft. The AOR was flown in a P-3C Orion aircraft for an at-sea test off the southern California coast in August, 1990. A green laser transmitter was suspended from the Research Platform FLIP at depths of 15 to 45 m. During six nights of operations, the AOR received the laser light at various test geometries and through clear and cloudy conditions. This represents the first optical uplink cloud experiment at visible wavelengths. Results show that optical pulses in clouds are significantly more forward-scattered than modeled. The results can be explained by Mie scattering theory. Measured cloud attenuation and pulse stretching agreed with an existing optical propagation model. Significant attenuation and signal spreading due to haze and fog was measured and compared with theory.

Abstract: Sonar is the sensor of choice for wide-area underwater surveillance because sonar (based on sound waves) typically provides a much larger area of coverage than radar (electromagnetic waves) or video (visible light) can provide under water. Of particular interest of late is sonar for detecting and tracking underwater intruders in harbours, to provide an element of protection for ships, harbour infrastructure, nuclear power plants, and so forth, against terrorist attacks carried out from underwater. Sonar has long been used for detection and tracking by the military, but the application against intruders is relatively new as the mandate of civilian security agencies and the military expands now to include protection against terrorist attacks and counter terrorism. This paper reports the general results of a survey of commercial sonar systems (not including system-by-system rankings or detailed matters of procurement), as well their validation in part through sea trials and modeling, and on factors relevant to their use as a component in harbour protection.

Electronic access: http://handle.dtic.mil/100.2/ADA457007

Abstract: This report was prepared at the request of the Program Executive Office for Surface Ship ASW Systems to provide high level managers with a concise overview of the history and status of sonar beamforming. The publication should also serve as an introduction to the subject for new professionals. The history of sonar beamforming is traced from World War II to the present, ending with the topic of adaptive beamforming. A minimum of mathematics is used to facilitate rapid reading, with numerous references provided for the reader who wishes to delve further into the theory.

NPS/DKL Location: MICROFORM ADA250189

Abstract: Traditional geoacoustic and ocean data collection efforts by skilled scientists will always be a cornerstone of the Naval Meteorology and Oceanography (MetOc) Program. In recent years however, other methods have been explored to further expand the scope of these data collection efforts. This effort has been driven, in part, by a declining MetOc Program Budget combined with other programmatic considerations both within and outside the Naval MetOc Program. PEO C41 and Space PMW 150, in conjunction with CNMOC, NAVOCEANO, NAVSEA, NAVAIR, and scientists from ONR, NRL, and various National Laboratories and industry, are focused on developing new methods to sense the environment, either through direct or inferred measurements, using tactical sensors. One of these efforts is focused on the development of Through-The-Sensor (TTS) technology. This effort seeks to use data from tactical sensors to characterize the battlespace environment. These data can then be used in Fleet Tactical Decision Aids (TDAs) to modify ASW and MIW tactics and enhance situational awareness at the single ship, Carrier Strike Group (CSG), Expeditionary Strike Group (ESG) and theater USW (TUSW) level. Near term efforts include the exploitation of various mine-hunting sensors such as the AOS-20 and side
scan sonar and submarine sensors such as the Precision Undersea Mapper (PUMA) and tactical towed arrays. Exploitation of sensors further on the horizon include submarine sensors such as the submarine CTD and fathometer (BON-17), the surface ship Instrumented Tow Cable (ITC), and the air community's Tactical Acoustic Measurement (TAM) Buoy.

Electronic access: http://handle.dtic.mil/100.2/ADA421907

Electronic acess: http://handle.dtic.mil/100.2/AD214252

Kotchka, Jerry Allen. On a Bayesian Methodology to the Solution of the Naval ASW Screen Placement Problem. Columbus, OK: OSU, 1970. 182 l.

Thesis (Ph. D.) -- Ohio State University, 1970.

NPS/DKL Location: THESIS K8345

Abstract: The Navy plans to have 10 Trident II submarines by the end of fiscal year 1997. Currently, it has six operational Trident II submarines and four others are under construction. Each Trident II submarine carries 24 D-5 missiles. Each D-5 missile is equipped with the MK-6 guidance system, which is comprised of an inertial measurement unit and an electronics assembly. The inertial measurement unit senses velocity and direction and relays this data to the electronics assembly, which issues flight control commands to the missile.

Electronic access: http://handle.dtic.mil/100.2/ADA283196

Abstract: Maritime minefields have been employed to achieve strategic and operational objectives in the five major American wars of the 20th Century. The United States has been both the miner and, most recently, the victim. Mining can strike at the heart of the enemy, take advantage of an Achilles' heel, or compensate for one's own weakness. The U.S. Navy maintains a modest inventory of mines which can be laid in volume by Navy and Air Force aircraft, or covertly by submarines. Today's operational commander faces an increasingly challenging task: Tackle a diverse, changing threat with fewer forces and resources without alienating the American public. Minefields can be an integral part of the plan to achieve battlespace dominance and project power. Mining can seize the initiative through surprise, enhance mass and maneuver by achieving economy of force, and expand the commander's battlespace and timeline while compressing those of the enemy. A minefield is a stealthy, persistent, and economical weapon which can deter without killing. Against a maritime foe, the operational commander should consider mining's strategic and operational potential when planning a major operation. (MM).

Electronic access: http://handle.dtic.mil/100.2/ADA293379

Lahey, George F. and Dewey Slough. Relationships Between Communication

Abstract: As investigation was made of the practicality of assessing anti-submarine warfare (ASW) team performance by means of measures of the volume of communications. A system for classifying communications was developed based on an analysis of published data on communication rates (e.g., number of evaluative messages sent per minute) of ASW helicopter crews. Next, communication rates were recorded for ship's teams during two exercises in the 14A2 ASW team trainer. Communication rates were computed for various types of messages over the ship-to-ship and ship-to-air circuits. Rates were compared against instructor grades for individuals, subteams, and teams. Communication rates on the intership circuit tended to be negatively correlated with grades, primarily because instructors gave lower grades to teams doing excessive talking. Rates on the ship to air circuit were positively correlated with performance on the later exercise where two aircraft were used rather than one and where a much greater volume of information needed to be transmitted. On the internal circuits, few significant relationships were found between communication rates and performance. Implications of the findings for development of an objective performance measurement system for team training are discussed.

NPS/DKL Location: MICROFORM ADA110117

Abstract: Canada like several other countries has limited resources to trade-in its outdated and ageing fleets for state-of-the-art weapon systems. With the CF188 and the CP140, the Canadian Forces (CF) have chosen, as with the CF116 before, to perform a structural and systems upgrade. These upgrades will allow the aircraft to meet their operational requirements until the first quarter of the next century. The choice for this course of action is based on option analysis studies. In the end, fleet modernisation has proven to be The most economical solution. This paper will present the approach taken and the assumptions made for the various scenarios studied to reach That conclusion. Avionics packages are readily available off-the-shelf and in most cases the decision is based mostly on structural limitations. Hence in-service failures and results of full scale fatigue tests obtained through collaborative agreements can be a cost effective way to determine The cost of ownership of each fleet. The paper will briefly talk about The concept taken for the CP140 but will use the CF188 as the demonstration test case.

Electronic access: http://handle.dtic.mil/100.2/ADA381871

Abstract: This paper examines the growing submarine capability in the third world and the possible impact on the U.S. Navy's ability to execute its deterrence, sea control, and power projection missions in the near future. The effect of submarines on a naval force executing sea control and power projection in World War II and the Falklands War is reviewed. The third world's capabilities in submarine warfare as they exist today and in the future are also examined. Finally, the lessons of the past and capabilities of the future are applied from the viewpoint of a Task Force Commander neutralizing a third world submarine threat.

Electronic access: http://handle.dtic.mil/100.2/ADA236879

Leidy, K. L. and H. D. Cubbage. **A Towable Electronic Communications Buoy.** Washington, DC: Naval Research Laboratory Communications Branch Radio Division,
Abstract: An experimental towable electronic communications buoy is described which provides a means for a submerged submarine to communicate with surface craft, aircraft, and other submerged submarines. A size No. 5 OROPESA type minesweeping float is used as a basic vehicle and modified to mount various antennas and their associated equipment. The buoy has been installed and tested on the USS BLENNY using HF, UHF, and IFF antennas. Satisfactory communications were established from sea to sea and sea to air, and the buoy displayed desirable hydrodynamic properties.

Electronic access: http://handle.dtic.mil/100.2/ADA456631

Abstract: Cockpit moving-map systems have provided heightened situation awareness to the fighter pilot for more than ten years, but these systems have yet to be integrated into military helicopters. The Navy now plans to install a moving-map system into its new, multi-functional MH-60S helicopter, which will perform mine countermeasures (MCM), combat search and rescue, special operations, and logistics. Other H-60 variants (e.g., SH-60B) perform Anti-Submarine Warfare (ASW), surface warfare, surface surveillance, and other missions. Naval Research Laboratory scientists were tasked to demonstrate and evaluate the potential of a cockpit moving-map for enhanced situation awareness during multi-functional helicopter missions (particularly MCM and ASW). This project consisted of three main tasks: (1) conduct a web-based survey of pilots and aircrew experienced in MCM and ASW for their preferences with respect to various environmental data that could be displayed in a moving-map; (2) demonstrate and evaluate pilot-preferred data on existing moving-map displays; and (3) recommend potential data types to be collected and displayed in a multi-mission helicopter.

Electronic access: http://handle.dtic.mil/100.2/ADA393119

Abstract: The purpose of this Ballast Block is to ballast an unoccupied ejection seat in the S-3A aircraft. The block adjusts the mass of the seat and the center of gravity to fall within acceptable limits to prevent rapid seat acceleration and tumbling both of which might cause interference with an ejected occupied seat.

NPS/DKL Location: MICROFORM ADA109808

Abstract: The S-3A aircraft has (4) ejection seats. Both the pilot and copilot have Comand Eject Selector levers which allow them the option to eject all crewmembers or 'Self Eject.' If one of the aft seats is unoccupied, and 'Command Eject' is selected, the unoccupied seat will accelerate ahead of the occupied seat next to it. Two hazards exist; first, the crewmember next to the unoccupied seat could be burned by the rocket plume from the empty seat which has a higher acceleration; second, the empty seat could tumble into one of the other seats because the center of gravity and the center of rocket thrust are too far apart. To eliminate these hazards it is necessary to ballast the unoccupied seat. This is presently being done with anthropomorphic test dummies, if they can be obtained. Unfortunately these dummies have various weights and are usually damaged (i.e. arms, legs, or head missing). There is no guarantee that the center of gravity is in the proper location to prevent tumbling. To correct this potentially dangerous situation the Naval Air Systems Command tasked the Naval Air Development Center to design...
a ballast vk. After the initial prototype was developed and tested, references (1) and (2) recommended changes to be incorporated into the final design. All of these recommendations have been incorporated into the final design. The S-3A Ballast Block is a 169 pound (77 Kg) assembly of four (4) interlocking aluminum blocks. It is used to control the trajectory of an unoccupied 1E-1 ejection seat. Tests indicate that it meets all functional and structural requirements for use in the S-3A aircraft.

NPS/DKL Location: MICROFORM ADA147685

Abstract: The third prototype S-3A Ballast Block weighs 169 pounds (77 Kg). It is an assembly of four interlocking aluminum blocks. One crewman can carry two blocks at a time into the aircraft where he can quickly assemble the unit either on the 1E-1 ejection seat or on the avionics aisleway step. Restraint on the ejection seat is obtained by connecting the four quick disconnect adjuster fittings on the ejection seat to fittings on the Ballast Block. When the Assembly is placed on the avionics aisle steps it is restrained with two aluminum locking plates which are bolted to the top block. These plates extend beyond the edges of the block and fit into keyways on either side of the main bulkhead forgings directly behind the aft ejection seats. When the Block is secured on the 1E1-1 seat the overall center of gravity falls 0.72 inches below the centerline of rocket thrust. The Ballast Block meets all operational and structural requirements for safe function in the aircraft. It can be maintained at the Operational level; the only parts that may need replacement are straps which are readily available. The S-3A Ballast Block provides a simple and cost effective replacement for anthropomorphic dummies presently being used to ballast unoccupied 1E1 ejection seats.

Electronic access: http://handle.dtic.mil/100.2/ADA327372

Abstract: NAVAIKTESTCEN was tasked by reference (a) to conduct dynamic interface (DI) testing of the SH-60B helicopter on the DDG-993 class ships. Testing was conducted on board the USS CALLAGHAN, DDG-994, from 14 through 18 May 1984. Lack of ambient winds precluded completion of day/night launch/recovery envelopes. Further testing is possible 11 through 15 June 1984. Data were collected using the DI Pilot Rating Scale (PRS) presented in enclosure (1).

Electronic access: http://handle.dtic.mil/100.2/ADA383636

Abstract: Antisubmarine warfare, once the number one priority of the United States Navy, seems to have faded into the background amidst the clamor over the demise of the Soviet Union and military operations in Southwest Asia. Despite perceptions to the contrary, ASW is still a vital mission in the post Cold War world. The former Soviet Union continues to operate a formidable submarine fleet, albeit at a reduced tempo, and Third World navies collectively possess an enormous conventionally powered submarine fleet. Emerging technology and the continued proliferation of sensors and weapons, project the ASW problem well into the future. Antisubmarine warfare must be kept in the forefront of military planning as the Navy builds down in size. Acquisition strategies, training and tactical doctrine must keep pace with the reality of the submarine threat in the new regionally focused National Military Strategy.

Electronic access: http://handle.dtic.mil/100.2/ADA253131

Abstract: The remotely piloted seaplane (RPS) for antisubmarine warfare (ASW) is a small, relatively inexpensive, unmanned water-based aircraft that provides excellent time-on-station performance, tactical flexibility, and energy efficiency. In the 1980's, command, control, and communications (C3) technology will be available which will permit a seaplane to be designed with no crew on board. Such a vehicle would be capable of performing military ASW operations in open ocean areas while taking full advantage of its waterborne capability. The removal of a crew from the seaplane has a substantial impact on the aircraft design. A RPS having a 1200 n mi radius of action and 72 hr time-on-station would weigh only 34,800 lb (15,764 kgm) and would incorporate a 5300 lb (2400 kg) ASW payload.

Abstract: There were a series of events that led to the consolidation and downsizing of the Integrated Undersea Surveillance System (IUSS). These events occurred simultaneously during a period when the United States was, defining its National Strategy toward the Soviet Union. What caused the IUSS Downsizing and consolidation. Budget cuts. End of the Cold War (Change in National Strategy). The Dissolution of the Soviet Union as a threat. Base realignment and closure. Were the decisions made valid now that it is 2001, eight years after the consolidation.

Electronic access: http://handle.dtic.mil/100.2/ADA401150

Abstract: Many industries operate high value equipment often remotely -- that requires reliable performance in severe environments. Similarly, the U.S. Navy's submarine p (TASs) stress conventional approaches to operating and maintaining this system level capability comprised of integrated hydraulic, mechanical, electronic and acoustic sub-systems. The Navy invested in a Condition Based Maintenance (CBM) proof of concept for an individual ship TAS by developing the Thinline Health Monitoring System (THMS). THMS collects real-time discrete reliability data and synchronizes this data with other historical information and the TAS's current condition assessment. As a predictive "intelligent code" it uses Bayesian Belief Networks (BBNs) to extract the full value of real-time data and provide a complete range of system performance evaluations -- from diagnosis to prediction. Drawing upon THMS' success, the U.S. Navy supported expanding this capability fleet-wide to encompass health assessments of the entire submarine TASs population. Plans have been developed to build a relational database that is accessible to a geographically separated towed systems community via the Internet for interactive analysis and diagnostics. These system level analyses and first principal processes are directly translatable to other government and commercial critical systems that cannot afford unscheduled -- or unnecessary -- maintenance.

Electronic access: http://handle.dtic.mil/100.2/ADA412395

McConnell, James M. A Possible Change in Soviet Views on the Prospects for Anti-Submarine Warfare. Alexandria, VA: Center for Naval Analyses, Naval Planning, Manpower, and Logistics Division, 1985. (ADA153610; Professional paper; 431; Soviet Union Special Studies, 1982-1985; 9; Special Studies series (University Publications of
America, Inc.). 19p.

Abstract: In the summer of 1982 there was an apparent shift in Soviet views on the future potential for combating submarines. The following points trace the perceived evolution of this shift. (1) From the early 1970s, Soviet emphasis had been on the submarine's great capacity for concealment and the decreasing cost effectiveness of Anti-Submarine Warfare (ASW) as a 'law-governed' trend extending into the foreseeable future; (2) The first sign of a new perspective came in 1979-80; here, the Soviets implied that no significant breakthrough in ASW was expected during the next five-year plan (1981-85), but they did not rule out an effective innovation after that; (3) In 1982, however, the Soviets apparently saw an operational capability arising ahead of this schedule. Using alleged U.S. views as an almost certain surrogate for their own, they indicated that a 'technological break-through' in ASW (possibly nonacoustic and space- based) was imminent, perhaps (this is the best interpretation) before the end of the current planning period in 1985. A new 'law-governed' trend in naval affairs was set out: The growing susceptibility of submarines to detection and the increasing cost effectiveness of ASW; (4) If Moscow is on the verge of a long-range detection capability, then one might want to speculate on the means they would develop for submarine kill. It is conceivable they might revive the concept, abandoned in the 1970s, of using a submarine-launched ballistic-missile (SLBM) system for hitting mobile targets at sea.

NPS/DKL Location: MICROFORM ADA153610

Abstract: Operational maneuver, one of the principles of operational art, is key to the Navy's doctrine in From the Sea and Forward From the Sea. The objective of operational maneuver is to strike quickly and violently to isolate and frustrate the enemy and destroy their forces and will to fight. The application of operational maneuver can enable U.S. forces to overcome the shallow-water diesel submarine threat by using speed and concentrated fires to avoid the enemy's strengths and attack their weaknesses, thus isolating, neutralizing and destroying the threat.

Electronic access: http://handle.dtic.mil/100.2/ADA298144

Abstract: The objectives of Project 1.2 were to determine and evaluate the effects of an underwater nuclear explosion on the operational capabilities of shipboard sonar and other types of hydroacoustic systems. Project 1.3b included all measurements at ranges greater than 10 nautical miles and the results of these measurements constitute the subject of this report. This report concerns the effects of the underwater nuclear explosion, Sword Fish, on: (a) Long-range active detection systems at the first convergence zone (25 to 30 miles); (b) Passive shipboard or submarine sonars at a few hundred miles; and (c) Long-range passive detection and surveillance at Sound Surveillance System (SOSUS) and Missile Impact Locating System (MILS) stations at several hundred to several thousand miles. A submarine station at the first convergence zone and five shipboard stations at ranges from 200 miles to 5,000 miles recorded signals from hydrophones suspended at various depths to approximately 2,000 feet. Submarines on other assignments recorded signals on standard submarine sonar equipment on a not-to interfere basis. SOSUS and MILS stations operated normally during the period and also made special magnetic-tape and strip-chart recordings of signals from single hydrophones from before burst time to several hours after burst.

NPS/DKL Location: MICROFORM ADA995394

Abstract: A study known as Strat-X, published in 1967, was probably the broadest and most influential study ever conducted on strategic options. Its results have been used or quoted countless times over the years, the latest instance being MX Missile Basing, a study conducted last year by the Congressional Office of Technology Assessment (OTA). In the course of examining the possibility of ship-basing the MX, I found mathematical errors in Strat-X, one of which is quite significant. It has nothing to do with the assumptions, only with a faulty understanding of the ship-trailing process being modeled. This Strat-X error is a simple example of averages being taken too soon, a frequent malady of expected-value approaches. In this case, it takes little extra effort to get the right answer. Further, a more detailed Markov-chain trailing model that also includes trail reacquisition is not difficult to build. In addition, the Strat-X formula for the required number of Soviet trailing ships, duly retranscribed and used in the OTA MX study is not explained, could not be rederived, and does not make sense for certain values of the parameters. A correct expression is also not difficult to find.

NPS/DKL Location: MICROFORM ADA145909

Abstract: Vertical and short takeoff and landing (V/STOL) aircraft promise new operational capabilities for the Navy. In the past, new vehicle types have been slow in gaining acceptance because of the difficulty in visualizing how these new vehicles should be employed. Once built, experience gained with the vehicle evolved into an operational concept exploiting its best qualities. Now, competition for fiscal resources has reached a level from which it may be difficult to justify the development of any new vehicle without having a well-defined operational concept in hand. This report discusses the use of existing large helicopters to develop operational concepts for V/STOL in naval applications.

NPS/DKL Location: MICROFORM ADA139354

Extracted version of report dated 21 Jan 63.

Electronic access: http://handle.dtic.mil/100.2/ADA995502

NPS/DKL Location: GENERAL V214 .N38 2007

Electronic access: http://www.nap.edu/catalog/11927.html

Abstract: The Naval Underwater Systems Center was formed in 1970 by the merger of two independent laboratories of the Naval Material Command: The Naval Underwater Weapons Research and Engineering Station (NUWS), Newport, Rhode Island, and the Naval Underwater Sound Laboratory (NUSL), New London, Connecticut. These two complexes are now the principal laboratories of NUSC. In July 1971, the Atlantic Undersea Test and Evaluation Center (AUTEC) in the Bahamas was made a detachment of NUSC. A basic and applied research program supporting systems development is a major thrust at the Center, and activities at NUSC cover all phases of the Center's primary mission responsibilities as the Navy's principal research, development, test, and evaluation center for submarine warfare and submarine weapons systems. These activities include responsibilities in programs in surface ship and submarine
sonars, ASW weapons, combat control, and in undersea ranges--including the management of the AUTEC range complex.

NPS/DKL Location: MICROFORM ADA103242

Abstract: The declining military budget has resulted in service life extensions for many weapons systems. Conversely, mission essential systems, such as the avionics suite, on naval aircraft extend, must contend with the scheduled phase out of subcomponents and microcircuits over the next few years. This unplanned obsolescence will have a costly impact on the ability of naval aviation to maintain weapons systems in a high state of operational readiness. Identifying the size of this problem is made more complex because provisioning data (for older systems) is often incomplete or inaccurate, making it difficult to cross obsolete part numbers to specific system applications. This paper describes a proactive process for analyzing avionics system supportability issues involving microcircuit obsolescence and other factors, such as mission criticality, reliability, supply and demand, and aircraft allowance. Based on this analysis, a comprehensive, life cycle model is developed to predict time critical mission degraders and offers solutions for solving supportability issues.

Electronic access: http://handle.dtic.mil/100.2/ADA309766

Abstract: Estimates are made of low frequency volume scattering using average numbers of animals for the shell break and offshore waters off the Oregon-Washington coast. Animal densities were derived from fisheries assessments and surveys of marine mammals. Target strengths were based on resonant models of fish with swimbladders and in situ measurements of mammals. Average volume reverberation levels of -60 dB at 1 00 Hz, and -44 dB at 1 00 Hz are expected at both offshore and shelf break locations during summernights (July-September). These levels will decline by about 7dB by day. During winter (January- March) scattering will be low at offshore sites, less than -90 dB at 1 00 Hz and -60 dB at 1000 Hz but will remain high at the shelf break, near -61 dB at 1 00 Hz to -48 dB near 1 000 Hz. Spring and fall are transitional between winter and summer, and hence, will have volume reverberation levels between those of summer and winter. A model of school encounter suggests that when schools of pomfret jack mackerel, anchovy, and rockfish are present they will be sufficiently widespread to appear as average reverberation levels. Schools of albacore, coho, and chinook salmon will be sufficiently rare and compact so as to cause discrete echoes.

NPS/DKL Location: MICROFORM ADA249775

Abstract: The purpose of the evaluation was to verify that all the deficiencies from OT-IIC OPEVAL has been corrected prior to approval for full fleet introduction. The evaluation was based on the results of non-scenario operational tests conducted under Project M756, supplemented by the results of OPEVAL, developmental testing, and operational experience. Based on this evaluation, the CPU-152/A SCADC as installed in the S-3A/B aircraft is determined to be operationally effective and operationally suitable. Approval for full fleet introduction of the CPU-152/A is recommended. The SCADC uses air pressure from the pitot static system and temperature signals from the temperature probe to provide air data outputs for navigation, cockpit display, sonobuoy and weapon delivery systems, Automatic Flight Control System (AFCS), and altitude reporting. While the digital SCADC is a form, fit, and function replacement for the existing S-3 Airspeed Altitude Computer Set (AACS), it has, in addition, a Built-in-test (BIT) function allowing maintenance personnel to determine system status without removing the unit. Keywords:

Abstract: The Mk 15 torpedo, designed and developed by the former Naval Torpedo Station in Newport, Rhode Island, in the 1930s, was the last destroyer-launched antisurface ship weapon to see wide service use. Longer, heavier, and more powerful than its predecessors, it was the Navy's principal destroyer torpedo when World War II began. During the early war years, three new classes of improved Navy destroyers having twin deck mounts of multiple torpedo tubes began entering the fleet. As is recounted in this booklet, salvos of Mk 15 torpedoes launched from those destroyer tubes proved decisive on several occasions in the Pacific campaign.

Electronic access: http://handle.dtic.mil/100.2/ADA274999

Abstract: This paper addresses applied procedures for nonlinear aerodynamic model development and extraction from flight data for the S-3B Viking aircraft. The entire analysis procedures, from dynamic flight test data management to final blending and validation of the upgraded aerodynamic model, was performed within the Integrated Data Evaluation and Analysis Systems (IDEAS) developed by SAIC. IDEAS is a powerful database management system and analysis software containing a full complement of flight data preprocessing, calibration, simulation, model estimation, model verification, and validation tools.

Electronic access: http://handle.dtic.mil/100.2/ADA384281

Abstract: Rectification of oblique aerial photographs is one means used to obtain contours of the base surge formed by an underwater nuclear explosion. An analytic photogrammetric method of rectification, based on the visible horizon and altitude of the photo aircraft, is described. This method gives the position of any point on the photograph in terms of its coordinates on a rectangular grid system on the water surface. The supplemental information needed to rectify an oblique photograph is discussed. (Author)

Identifiers: BASE SURGE, DOMINIC OPERATION.

NPS/DKL Location: MICROFORM AD0603252

Extracted version of report dated 25 Jun 68. See also Project 1.2, ADA995301.

NPS/DKL Location: MICROFORM ADA995472

Abstract: The shock loading in ships and the response of shipboard machinery were measured during Shots Wahoo and Umbrella to: (1) determine safe- and shock-damage ranges, particularly with respect to shipboard machinery and equipment, for delivery of antisubmarine nuclear weapons by destroyers and submarines; (2) determine the intensity and character of the shock motions on a submarine and on a merchant ship under quasi-lethal attack by and underwater nuclear explosion; and (3) acquire shock-motion data and correlate such data with other measurements and with theory in order to extrapolate the results to other attack geometries. Conclusions include: (1) The shock damaging ranges for ships from underwater explosions depend greatly on the design and condition of the machinery and equipments as well as on charge size, burst depth, water depth, and the like. (2) Immobilization ranges for a destroyer are given as horizontal ranges from surface zero to the center of the ship. (3) Temperature gradients in the water increase or decrease the damage ranges.

Abstract: This thesis analyses the contributions of operational research to the work of the Royal Canadian Air Force Eastern Air Command during the Second World War. The efforts of the handful of Canadian operational researchers in the Allied campaign against the German U-Boat force, although having produced only modest results, did make a small but important contribution to the War which have been neglected by historians. The techniques of operational research, first promulgated during the British experiments with radar during the 1930s, were, by 1941, applied to assist Royal Air Force Coastal Command in its campaign against the German U-Boats which were taking an ever-increasing toll of Allied shipping. The work of P. M. S. Blackett and his staff at Coastal Command Operational Research Section would serve as the foundation upon which Eastern Air Command's Operational Research Section (ORS) would be constructed when it was created in November 1942. Under the leadership of Professor Colin Barnes and later Dr. J. W. T. Spinks, Eastern Air Command ORS produced a series of studies which explored issues of concern to the Command's anti-submarine (bomber-reconnaissance) squadrons.

Abstract: The problem addressed is the extent to which the United States Navy used Ultra, or Special Intelligence, in the campaign against the German U-Boats. Information was gathered through published and unpublished sources. Through a chronological approach, United States Navy involvement is traced from entry into the War until its conclusion. Many factors are involved in the final outcome of the War and Ultra is only one. The Battle of the Atlantic was long and gruesome rather than short and spectacular. The United States Navy used Ultra along with technology, tactics, brilliant leadership and courageous men at sea to win the Battle of the Atlantic in World War II. The lessons for the future are clear. If the United States intends to oppose the Soviet submarine force at sea anywhere in the world, then we must maintain the lead in intelligence, tactics and technology. Further, and most importantly, we must strive to regain superiority of forces in those ocean areas where our interests are at stake. Electronic access: http://handle.dtic.mil/100.2/ADA089275

Abstract: Operating in a dangerously sensor-limited closed environment, submarine sonar operators are plagued by primitive sensory interfaces inherited from earlier hardware designs. The inefficient match to the operator's perceptual capability is exacerbated as submarines increasingly operate in the littoral where, at now reduced ranges from quieter threat targets, detection requires immediate action for crew safety. Present use of the sonar operator's auditory ability ignores the superior acuity of the mammalian binaural system. In humans, this system is sensitive to minute instantaneous differences in phase, intensity and time of arrival between its two channels. This research developed, and perceptually tested, a binaural auditory display that optimized the essential noise correlation between a pair of formed listening beams. To generate the necessary perceptual characteristics for the binaural display, a breakthrough audio beamforming process formed beams from a hull mounted wide-aperture hydrophone array (WAA) which were focused at two different distances but in the same direction. This unique processing, named Spatial Vernier Beamforming (SVBF), maintained the essential high noise correlation between the pair of formed directional beams. Once appropriate beamforming was proven feasible, laboratory testing was undertaken to quantify perceptual performance. A representative sample of 15 sonar contacts were beamform processed, stored as wavefiles and systematically presented to a group of 18 highly experienced sonar operators. Results show a highly significant 8.6 dB detection improvement over the current single beam display. This improvement represents the ability to acoustically detect targets at more than twice the distance currently achieved.

Electronic access: http://handle.dtic.mil/100.2/ADA456692

Abstract: The Navy trains its forces with a combination of classroom, simulated, and actual training events. The relation of these types of training events to each other and their relative proportions have not been closely examined in decades. However, the technological capabilities of simulators and classroom instruction have grown enormously. At the same time, the cost of actual training events has increased, and the opportunities to conduct them have decreased. Environmental restrictions, encroachment on training areas, and the decreasing tolerance of the civilian populace for the intrusion of military training have combined to make it more difficult to carry out the type of live training activities common 20 or even 10 years ago. The Navy asked RAND's National Defense Research Institute to examine the three types of training to determine if a different mix of the three types might offer either training efficiencies or synergies.

NPS/DKL Location: V169 .F53 2002
Electronic access: http://www.rand.org/pubs/monograph_reports/MR1441/
Electronic access: http://handle.dtic.mil/100.2/ADA402212

Abstract: Described here is the application of a nonlinear finite element analysis (FEA) technique to predict the structural behaviors for a class of brittle materials that shows near-complete brittleness when loaded in tension, but exhibits some ductility when compressed. An ABAQUS constitutive model, consisting of an isotropically hardening yield surface, which is active when the stress state is dominantly compressive, and an independent crack detection surface to determine if a point in the material fails by cracking in tension, is employed to simulate the failure of the brittle material. The application of the technique to determine if a potential frangible nosecap design of the Vertical Launch Antisubmarine Rocket (VIA) would break up as intended upon water impact for a given entry condition is presented as an example. Frangible nosecaps, Large deformation, Non-linear structural analysis, Water entry

Electronic access: http://handle.dtic.mil/100.2/ADA276835

Stone, Lawrence D., Thomas L. Corwin and James B. Hofmann. Technical
Interim Report, 11 December 1995
Abstract: This report presents a general framework for the process of multiple-target, multiple-sensor data fusion. With that framework in place, those areas in which the methodology is mature and ripe for implementation and those areas that require further development are identified. One area in which the methodology is well advanced is nonlinear tracking. For that area, a basic engine, Nodestar, which has been developed to perform nonlinear, multiple-target tracking, is described. The version of Nodestar that has been developed for the Spotlight Advanced Technology Demonstration is described. A discussion of extensions to this version of Nodestar is also included. Identifier: IUSS(INTEGRATED UNDERWATER SURVEILLANCE SYSTEM).
Electronic access: http://handle.dtic.mil/100.2/ADA302458

Interim Report, 1 January 1980.
Abstract: This report examines the feasibility of detecting submerged vessels during darkness applying bioluminescence imaging. First, the most recent information on the physical properties of marine bioluminescence (spectral distribution, intensity, duration) are reviewed. Secondly, a simple model of bioluminescence and light transmission is constructed to estimate luminance contrasts for the detection of a submerged vessel. Finally, recommendations for exploiting the Navy's Antisubmarine Warfare (ASW) potential of bioluminescence imaging are made.
Electronic access: http://handle.dtic.mil/100.2/ADA084124

Abstract: Develop the piecewise quadratic strength tensor theory for composite materials and demonstrate its applicability to the available biaxial fracture data on composites. The theory will have application to current composite structures of Naval Ocean Systems Center's interest such as transducers and future composite structures such as torpedo hull section, Vertical Launch ASROC (VLA) nosecaps, and tethered deep submergence structures. The theory can also be used with a wide variety of other NAVY structures such as aircraft and submarine Substructures.
NPS/DKL Location: MICROFORM ADA190929

Proceedings from the Navy Interoperability Workshop, 30-31 May 2001; sponsored by NDIA. Viewgraphs only.
Electronic access: http://handle.dtic.mil/100.2/ADA393700

Abstract: The report consists of a summary of each pass with crew comments included. Users of the data should review the pass summaries to be alerted for anomalies that may have occurred during the collection or noted by processing or analysis people. The appendix contains plots of critical parameters as a function of time. This information is provided so that users can examine, in some detail the exact
time and magnitude of observed anomalies. In addition users can go back to this data to determine if there is a correlation between funnies observed during processing and the engineering data. For example, if there was a blank strip in the image it might correlate with the transmitter power plot showing that the transmitter was off during that time. All of the data shown in the plots is also recorded on the HDDT's in the Aux. data block and could be reproduced by the user. These plots are included in the appendix as a convenience for users of the data. The appendix is available upon request and thus is not included with this set of data.

Electronic access: http://handle.dtic.mil/100.2/ADA368196

Abstract: This report is an appendix containing the results of the P-3 passes and radar imagery data. All of the data shown in the plots is also recorded on the HDDT's in the Aux. data block and could be reproduced by the user. These plots are included in the appendix as a convenience for users of the data. The appendix is available upon request and thus is not included with this set of data.

Electronic access: http://handle.dtic.mil/100.2/ADA368195

Abstract: This report is written as an aid to users of the SAR data collected by the P-3/SAR on 27-28 June 1995. The data set generated consists of: (1) HDDT #E1439, (2) HDDT #E1440, (3) HDDT #E1441, (4) HDDT #E1442, (5) Mission Plan disk, data, etc., (6) Navigation disks, (7) Post Pass disks, and (8) Post Pass Summary Sheets. The report consists of a summary of each pass with crew comments included. Users of the data should review the pass summaries to be alerted for anomalies that may have occurred during the collection or noted by processing or analysis people. The appendix contains plots of critical parameters as a function of time. This information is provided so that users can examine, in some detail the exact time and magnitude of observed anomalies. In addition users can go back to this data to determine if there is a correlation between funnies observed during processing and the engineering data. For example, if there was a blank strip in the image it might correlate with the transmitter power plot showing that the transmitter was off during that time. All of the data shown in the plots is also recorded on the HDDT's in the Aux. data block and could be reproduced by the user. These plots are included in the appendix as a convenience for users of the data. The appendix is available upon request and thus is not included with this set of data.

Electronic access: http://handle.dtic.mil/100.2/ADA368075

Electronic access: http://handle.dtic.mil/100.2/ADA368074

Abstract: The report consists of a summary of each pass with crew comments included. Users of the data should review the pass summaries to be alerted for anomalies that may have occurred during the collection or noted by processing or analysis people. The appendix contains plots of critical parameters as a function of time. This information is provided so that users can examine, in some detail the exact time and magnitude of observed anomalies. In addition users can go back to this data to determine if there is a correlation between funnies observed during processing and the engineering data. For example, if there was a blank strip in the image it might correlate with the transmitter power plot showing...
that the transmitter was off during that time. All of the data shown in the plots is also recorded on the HDDT's in the Aux. data block and could be reproduced by the user. These plots are included in the appendix as a convenience for users of the data. The appendix is available upon request and thus is not included with this set of data.

Electronic access: http://handle.dtic.mil/100.2/ADA368198

Abstract: This appendix contains the data recorded from the P-3 passes.
Electronic access: http://handle.dtic.mil/100.2/ADA368199

Abstract: Many comparative naval architecture analyses of surface ships have been performed, but few published comparative analyses of submarines exist. Of the several design concept papers, reports and studies that have been written on submarines, no exclusively diesel submarine comparative naval architecture analyses have been published. One possible reason for few submarine studies may be the lack of complete and accurate information regarding the naval architecture of foreign diesel submarines. However, with some fundamental submarine design principles, drawings of inboard profiles and plan views, and key assumptions to develop empirical equations, a process can be developed by which to estimate the submarine naval architectural characteristics. comparative naval architecture analysis creates an opportunity to identify new technologies, review the architectural characteristics best suited for submarine missions and to possibly build more effective submarines. An accurate observation is that submarines designed for different missions possess different capabilities. But are these unique capabilities due to differences in submarine naval architecture? Can mission, cost, or other factors affect the architecture? This study examines and compares the naval architecture of selected diesel submarines from data found in open literature. The goal is to determine weight group estimates and analyze whether these estimates provide a relevant comparison of diesel submarine naval architecture.
Electronic access: http://handle.dtic.mil/100.2/ADA447063

Abstract: This historical review traces the development of the role of the Army Air Corps in antisubmarine warfare. Pre-war plans exempted the Air Corps from this duty. Despite lack of training and equipment, the Air Corps contributed significantly to the defeat of the submarine threat. In defeating this threat, the Air Corps had to first battle the Navy's strategy of using airplanes to escort convoys. Before being relieved of antisubmarine warfare duty, the Air Corps had proved the necessity of using the airplane in an offensive role to search and destroy submarines.
NPS/DKL Location: MICROFORM ADA157118

Master's thesis.
Abstract: This study attempts to determine whether or not the existing conventional military forces and
defense systems in North America are adequate both to meet commitments to NATO in the event of a major European conflict and provide for continental security. Investigation reveals that Canada is weakly defended relative to the capabilities of the USSR to project forces onto her territory. Thus, should the USSR choose to exploit this vulnerability by executing rear area military operations on the North American flank at the outset of a NATO-Warsaw Pact conflict, she could succeed in diverting crucial U.S. and Canadian reinforcements away from their primary missions on the battlefields of Europe.

Abstract: The Coast Guard has declared its intentions to exploit emerging technologies as it moves toward its vision of the Coast Guard in the year 2020. Attaining this vision requires the appropriate integration of technology as part of the solution to close gaps in mission performance. For this to happen, the Coast Guard must make concerted and deliberate efforts to exploit technology, moving effectively from ideation through development, acquisition, implementation, and life-cycle support. The role of the Research and Development (R&D) Center in exploiting technology is to anticipate future needs, create ideas, and insert new technologies. As a platform for various sensors, the Autonomous Underwater Vehicle (AUV) is one such technology with the potential to close the gaps in Coast Guard performance as well as enhance current mission capabilities. This paper addresses the Coast Guard’s AUV needs for specific mission areas. The variety and unique nature of Coast Guard missions add a high degree of complexity to technological solutions. In a world where high complexity often equals high cost, development does not always follow a path that resolves the issues encountered by the Coast Guard. By working to articulate its needs now, the Coast Guard hopes to influence AUV development in such a way that off-the-shelf items eventually can meet its operational needs. Several areas show that AUV developments are already taking this path. AUV complexity can be addressed through the ever-reducing costs of computing ability, modularization, sensor packaging, communication networking, and miniaturization. The following mission areas are addressed in this paper: Fisheries Management, Port Safety and Security, and Law Enforcement. For each mission area, an AUV application is described that could meet Coast Guard needs for that particular mission.

Electronic access: http://handle.dtic.mil/100.2/ADA450814

Abstract: The CHURCH OPAL Exercise is one of a series of LRAPP Exercises designed specifically to acquire environmental acoustic data required for ASW program decisions. At-sea operations were conducted during September 1975 in a region of the Northeast Pacific Ocean. This exercise includes the following ocean acoustic experiments related to the Moored Surveillance System (MSS), the Sound Surveillance System (SOSUS), and the Surveillance Towed Array Sonar System (SURTASS): (1) Noise Floor Characteristics, (2) ASEPS Evaluation; Coherent Multi Array Processing, (3) Horizontal Incoherence of Ambient Noise; Towed Array Performance. The objective of the Noise Floor Verification Experiment is to verify the noise floor concept. The noise floor is a depth below which distance shipping noise is significantly reduced and where short range acoustic sensors could attain a substantial performance gain.

Electronic access: http://handle.dtic.mil/100.2/ADC007024

NPS/DKL Location: FEDDOCS Y 4.AR 5/2 A:989-90/40

Abstract: This report reviews the various ways in which the MX intercontinental ballistic missile could be based, and assesses the technical issues, the advantages, and the disadvantages associated with each major option. The report explores a wide variety of military technologies and issues, ranging from antiballistic missile defense to antisubmarine warfare to the impact of major construction projects on arid Western lands. A wide variety of possible basing modes is identified and evaluated in terms of: Technical risk; degree of survivability; endurance; contribution to weapon effectiveness; effectiveness of command, control and communications; arms control impacts; institutional considerations; impacts on the deployment region; costs; schedule; and impact on stability. Five basing modes were found that appear feasible and offer reasonable prospects of survivability, but none of them is without serious risks, high cost, important uncertainties, or significant drawbacks.
NPS/DKL Location: GENERAL UG1312.I2 M88 1981

Abstract: This audit was performed at the request of Representative John Conyers, Jr., Chairman of the House Committee on Government Operations. The Chairman requested that we perform an audit of the procedures used by the Navy in soliciting a second source for the production of the AN/SQQ-89 ASW Combat System. The request was based on information that GE's cost and pricing data may have been disclosed to WEC, and that WEC may not have been qualified to produce the combat system.
Electronic access: http://handle.dtic.mil/100.2/ADA379828

Abstract: The SSN-21 Class Attack Submarine (SSN-21) is a nuclear powered attack submarine that was designed to meet threats well into the 21st Century. The SSN-21's missions include antisubmarine and antisurface warfare, strike warfare, ocean surveillance, and electronic and mine warfare. Research and development (R&D) of the SSN-21 began in 1984, and as of August 1991, about $1.6 billion of research, development, test, and evaluation (RDT&E) funds had been expended for the SSN-21. At the time of the audit, the FY 1992 through FY 1997 RDT&E budget for continued development was $776.2 million. No funds were requested in the DOD FY 1992 budget; however, the Program Office believes that Substantial requirements remain.
Electronic access: http://handle.dtic.mil/100.2/ADA377672

Abstract: This report should be read by all who are interested in the acquisition of the Navy's Advanced
Deployable System (the System). The report addresses acquisition issues that require higher management attention before the System program should be allowed to progress further through the acquisition process. The System, a Navy Acquisition Category II program, is a next-generation, ship-deployable, undersea surveillance system that is designed to operate in littoral waters. The System is linked to a land facility for data processing, evaluation, and reporting. The System will be used to conduct missions, such as threat port surveillance, friendly port protection, area defense, area sanitation, and strategic indications and warnings. The System will have the ability to be installed overtly or covertly, depending on the needs of the Joint Task Force Commander. The program office's estimate includes $793.7 million for research, development, test, and evaluation for all four blocks of the evolutionary acquisition strategy and $785 million for procurement for the first two blocks.

Electronic access: http://handle.dtic.mil/100.2/ADA406702

Abstract: This report summarizes the scientific efforts of the Deep Submergence Program at the Navy Electronics laboratory, San Diego, California. Since its inception in 1958, the program has been vitally concerned with development of techniques, instrumentation, and vehicles to fulfill its assignment -- research of the marine environment, from the continental shelf to the abyssal sea floor. While NEL's primary interests are in relating applied research data in marine acoustics, biology, geology, and physical oceanography to antisubmarine and submarine warfare projects, the Deep Submergence Program has also added significantly to man's basic knowledge of the ocean sciences.

NPS/DKL Location: MICROFORM ADA074138

Abstract: An evaluation of FP500 and FP1500 paint replacement film (applique) small-scale coupons with 52-4 adhesive installed on the S-3B aircraft was conducted during 225 hr of laboratory tests and 2 flights totaling 2.0 flight-hours to determine system suitability for large-scale coupon evaluation. Complete adhesion of the film to the surface of the aircraft during basic maneuvers is an enhancing characteristic that will promote reliable performance of FP500 and FP1500 applique material reducing corrosion and maintenance down time aircraft. Tattering of prepeeled (failed) sections of the applique was an enhancing characteristic that will prevent any in-flight failures from becoming catastrophic failures. The capability of the adhesive to adhere to the film and not the aircraft surface during applique removal is an enhancing characteristic that will facilitate the rapid removal of the applique. There are no deficiencies.

Electronic access: http://handle.dtic.mil/100.2/ADA388188

Abstract: Second strikes are dominated by submarine-launched missiles in the absence of defenses, but shift to aircraft at modest levels of defense. Defenses protect some retaliatory missiles, but not enough to retaliate strongly. With defenses, missiles should be vestigial and could be eliminated without penalty. Then aircraft could also be significantly reduced without impacting stability. The combination of parameters that maximizes cost effectiveness also maximizes midcourse effectiveness and crisis stability.

Electronic access: http://handle.dtic.mil/100.2/ADA344705

Weston, David Mark. **DIFAR Bearing Estimation Using Wavelet Transforms = L’évaluation du Relèvement DIFAR en Utilisant la Méthode des Ondelettes.**

Abstract: One of the most difficult acoustic signal processing tasks in Anti-Submarine warfare (ASW) is the accurate estimation of passive acoustic source bearings from Directional Frequency Analysis and Recording (DIFAR) sonobuoys in high directional noise environments. The Maximum-Likelihood Adaptive Beamforming (MLAB) technique solved using Fourier analysis is well suited for estimating the DIFAR bearing to continuous wave (CW) sources. This thesis proposes exploiting the similarity between transient sources and Wavelet Transforms in the estimation of transient source DIFAR bearings. The Wavelet MLAB exploits the filtering effect of the Wavelet Transform through appropriate matching of its analysing function, or wavelet, to the transient source. Since Wavelet Transforms have not been previously applied to DIFAR adaptive beamformers, the Wavelet MLAB is presented here as a proof of concept. A limited comparison is made with the results of the Fourier MLAB in order to gauge the performance of the Wavelet MLAB under similar circumstances.

THESIS (M.Sc.Econ.) -- University of Wales, Aberystwyth, 1992.

Abstract: This report summarizes research on both metallic and ferrite magnetostrictive type transducers. The research was directed toward (1) establishing methods for calculating how a magnetostrictor responds to large amplitude excitation, (2) determining how magnetostrictive elements respond to uniaxial static compressive stresses, (3) investigating the effect of hydrostatic stress on the important magnetostrictive parameters lambda and mu, (4) extending existing theory to include the dissipative forces inside a vibrating magnetostrictor, (5) investigations of the coupled vibrational modes of a ferrite tube magnetostrictor, and (6) investigations of magnetostrictive ferrite transducers for high power sonar applications. The lack of a suitable nonlinear theory for the behavior of magnetostrictors under large amplitude excitations dictated the empirical approach taken. However, throughout the contract limited work was directed, based upon these empirical results, toward the possible formulation of a nonlinear theory.

Wignall, Michael Brown. **Scientists and the Admiralty: Conflict and Collaboration in Anti-Submarine Warfare, 1914-1921.** 456 l.

Patent, Filed 28 December 64, patented 23 March 99 PATENT-5 886 284, supersedes PAT-APPL-423 640-64. Government-owned invention available for U.S. licensing and possibly, for foreign licensing. Copy of patent available Commissioner of Patents,
Washington, DC 20231.

Abstract: The invention pertains to an arming and safing system for a missile having an acceleration responsive mechanism for actuating a timing device upon launching to insure arming only after the passage of predetermined period of time, and an omni-directional impact switch for activating a dudding switch in case of missile impact at a distance less than a minimum safe distance from the launching vehicle.

Electronic access: http://patft.uspto.gov/netahtml/srchnum.htm

Abstract: The invention pertains to an arming system for a missile which prevents destruction of the missile outside of a specified area. The missile may be launched from a submarine, and follow a water-air-trajectory, and includes a variable-range timer acting in conjunction with an impact detection system. The timer drives arming switches to the armed condition after a predetermined time, and then opens the switches after a second predetermined time, which establishes a maximum range for detonation of the missile warhead.

Electronic access: http://patft.uspto.gov/netahtml/srchnum.htm

Abstract: A gating circuit for a missile guidance system having a capacitor for supplying the output signal together with plurality of silicon controlled rectifiers for applying or removing a supply voltage to the capacitor.

Electronic access: http://patft.uspto.gov/netahtml/srchnum.htm

Abstract: Huff Duff (HF/DF, high frequency direction finding) is widely credited with playing a significant part in winning the Battle of the Atlantic for the Allies. This work examines the origins of the American device, how it came to be developed, deployed, and operated in combat, and the justification for claims of its effectiveness. Like sonar and radar, HF/DF was an electronic device used by Allied navies to locate German U-Boats.

Abstract: Details are given of the expression used to describe the aerodynamics and kinematics of the Sea King Mk.50 helicopter during steady flight and low rate maneuvers up to an advance ratio of 0.3. The aerodynamics/kinematics formulation is a major component of the Sea King mathematical model.
Abstract: Recent world change requires that the United States Navy review strategic objectives, operational concepts, and supporting warfare applications among them antisubmarine warfare (ASW). This paper reviews possible implications from an ASW perspective as the U.S. shifts focus from the former Soviet threat to the Third World. The purpose of this paper is not to speculate in which areas the U.S. might become involved. Nor does the paper address detailed strategic or tactical implications. Instead, this paper addresses what operational ASW-related areas might possibly require review and modification, providing rationale regarding why these areas might be affected. ASW doctrine in the past has focused on the former Soviet nuclear submarine threat operating in open blue water. New doctrine and operational concepts must be developed which are applicable to conventionally-powered (non-nuclear propulsion) submarines operated by Third World countries in littoral shallow water regions. Revised concepts must be developed which consider threat diversity, the environment, and technology.
Electronic access: http://handle.dtic.mil/100.2/ADA250015

Abstract: The CHURCH OPAL Exercise is one of a series of LRAPP Exercises specifically designed to acquire environmental acoustic data required for ASW program decisions. It will be conducted during September 1975 in a region of the Northeast Pacific Ocean in accordance with the CHURCH OPAL Exercise Plan (U), August 1975 (Secret). This Exercise includes the following ocean acoustic experiments related to the Moored Surveillance System (MSS), the Sound Surveillance System (SOSUS), and the Surveillance Towed Array Sonar System (SURTASS): (1) Noise Floor Characteristics, (2) ASEPS Evaluation - Inter-Array Coherent Processing, and (3) Horizontal Directionality of Ambient Noise - Towed Array Performance. The objective of the Noise Floor experiment is to establish the characteristics, persistence, and geographic extent of the low frequency ambient noise floor. The noise floor is a depth below which distant shipping noise is dramatically reduced, thereby providing the opportunity for short range acoustic sensors to attain a substantial performance gain.
Electronic access: http://handle.dtic.mil/100.2/ADC004343

Abstract: Shot Sword Fish was an operational test of the ASROC antisubmarine weapon system. The general objectives of the project were (1) to record and measure the formation, growth, and dissipation of the visible surface phenomena, including slicks, spray domes, plumes, fallout, base surge, and foam patch resulting from the underwater detonation of an ASROC weapon; (2) to use the data obtained to estimate the actual depth of burst, position of burst, yield, and bubble period; (3) to determine the location of ships and platforms in the experimental array before, during and after the test; (4) to provide surface-phenomena time-of-arrival data at platforms and ships in the array for use by other projects; and (85) to make the results available for improving the surface-phenomena scaling and prediction techniques which are currently employed for establishing delivery and lethal ranges for fleet nuclear weapons. In general, there was good agreement between the observed dimensions of the Sword Fish phenomena and the predictions.
NPS/DKL Location: MICROFORM ADA995301

Abstract: Design developments dating from completion of "Holland" in 1898 are noted; designs of recent attack submarines are considered in relation to speed and power, dimensions and arrangement, weight, buoyancy, static stability, weight margins, structure, stability and control; volume and weight requirements of diesel electric versus nuclear power are discussed; possible trends in displacements and operating depths are mentioned.

Contents: Design in general. -- Milestones in Submarine History. -- Submarine hydrostatics. -- The weight/space relationship. -- Submarine structures. -- Powering of Submarines. -- Geometric form and arrangements. -- Dynamics and Control. -- Submarine Systems. -- Considerations of Building and costs in design. -- Generating a concept design.

NPS/DKL Location: GENERAL V857 .B9

Burgess, Robert Forrest. *Ships Beneath the Sea: A History of Submarines and

Abstract: This dissertation analyzes the submarine problem in Sweden as an object of security politicization. It investigates how politicians and military officers dealt with the submarine incidents of the 1980s and 1990s, and how their actions were portrayed in the media. A popular assumption in modern literature on media and politics is that the media arena helps define the political arena; which players are important, what issues are placed on the political agenda, and which options are available for competitive political elites in democratic systems of government. By quantitatively analyzing the media image of the submarine "threat", and comparing those results with indicators of public opinion and policy change, the dissertation investigates the influence of the media image on security policy over time. The results of the quantitative analysis inform a number of qualitative case studies, highlighting the important events and developments of the submarine threat and the causal mechanisms by which media and public opinion may have influenced Swedish security policy. The dynamics by which the political and military levels interact in creating a public image of the submarine threat are a particular focus in the strategically selected cases over the period—including both events that can be seen as escalating threat perceptions and those that have de-escalated such public anxieties. In the end, it is found that several problems relating to organizational coherence, institutional legitimacy and political controversy led the uncontrolled fashion in which the submarine issue became a publicly perceived threat.

NPS/DKL Location: GENERAL V857 .C6

Japanese translation of “Submarine Versus Submarine.”

NPS/DKL Location: BUCKLEY V857 .C652 1999
NPS/DKL Location: GENERAL V214.5 .C65 1988

NPS-DKL Location: GENERAL TJ795 .C86 2007

NPS/DKL Location: GENERAL V857 .D56 2003

Thesis (Ph.D.) -- Syracuse University, 1970.

Contents: The silent service. -- August 12, 2000: The final moments aboard the Russian Navy's nuclear Submarine Kurst. -- The birth of the Submarine: A brief history of early Subs, including the Turtle and the Nautilus. -- The First underwater weapon of war: The American Confederate sub H.L. Hunley. -- The Submarine comes of age: The influence of John Holland on Submarine design. -- Battle under the sea: The Submarine has now become a formidable weapon, as Germany's U-Boats prove during the First World War. -- Lost in peace: Two Submarine tragedies, the US Navy's Squalus and the Royal Navy's Thetis, dominate peacetime headlines. -- The U-Boat war: Germany Revolutionizes the way Submarines are used in combat. -- A Casualty of the Cold War: A tiny piece of aluminum foil spells disaster for the US Navy's nuclear Submarine Scorpion. -- Disaster under the Barents Sea: The tragic Story of the Kursk. -- For those in peril.

NPS/DKL Location: GENERAL VB230 .D97 2002

Original title: Wolf packs.

Electronic access: http://forsvar.regeringen.se/propositionermm/sou/.

"Published by permission of the Lords Commissioners of the Admiralty."

livre I. Historique. -- livre II. Technologie

Forsén, Björn och Annette Forsén. Tysklands och Finlands Hemliga

Fyfe, Herbert C. Submarine Warfare Past, Present and Future. 2nd ed. London: Grant Richards, 1903. 332p. Electronic access:

Gray, Edwyn. **Disasters of the Deep: A Comprehensive Survey of Submarine Accidents and Disasters.** 3rd rev. and updated ed. Annapolis, MD: Naval Institute Press; Barnsley, South Yorkshire: Leo Cooper, 2003. 306p. Contents: Give us air! -- Into perpetual night. -- The best tradition of the Service. -- They feel very cold. -- Overdue and presumed lost. -- When in doubt--dive! -- A trifling mistake. -- Slow torture as well as death. -- Hi, fellas. Here we are (USS Squalus). -- We couldn’t open the hatch (HMS Thetis). -- Here we go for 14 Days survivors leave. -- We are at the north end of the Hurd Deep. -- Gertrude-- check K. -- Don’t lose hope! -- Affray, the Last word. -- Deliver us, O Lord. -- Appendices: Pioneer and Experimental Submarines lost before 1 January 1990. -- Naval Submarines lost by Accident or error since 1990. -- Submarine Losses from 1 January 1900 to 31 July 1914. -- Submarine Losses from 1 August 1914 to 11 November 1918. -- Submarine Losses from 12 November 1918 to 31 August 1939. -- Submarine Losses from 1 September 1939 to 2 September 1945. -- 3 September 1945 to 31 December 2001. -- World Submarine Losses. Originally published: London: Leo Cooper, 1996 as “Few survived.” NPS/DKL Location: GENERAL VK1265 G73 2003

Originally published: Poole: Blandford Press, 1976 as “Submarines in colour.”

Also published: London: Constable, 2003, as "Dive! Dive! Dive! Submarines at War."
NPS/DKL Location: GENERAL V210 .G95 2003

Also published: London: Sidgwick & Jackson, c1974
NPS/DKL Location: GENERAL V210 .H8

NPS/DKL Location: GENERAL V857 .H89 2001

Russian translation of "Submarines of the World."

Spanish translation of "Submarines of the World."

German translation of "Submarines of the World."

NPS/DKL Location: BUCKLEY V857.J3 1965

NPS/DKL Location: REFERENCE V214.J36 YY/YY

Abstract: The history of submarines shows there were two significant advances in the performance of submarines, which occurred after full scientific studies were undertaken. The first was by the Germans at the end of World War II when they produced the Type 21, which could have upset the balance in the U-
Boat campaign if it had arrived earlier. The second was by the US Navy with Albacore which had a submerged speed of over 30 knots. To neglect full scientific studies would be a serious mistake in the design of any future replacement submarine. Design is shown to be like a jigsaw puzzle where altering one piece requires alterations in all surrounding features to make a workable complete design. The basis of improved hydrodynamic features is discussed. A new nose shape is presented which should improve the performance of the forward passive sonar up to operational speeds. Other major sources of resistance may be improved. It is proposed a first major step should be to establish the detailed performance of Collins using wind tunnels and computational fluid dynamics which will serve as the comparative foundation for any new design.

Electronic access: http://handle.dtic.mil/100.2/ADA428039

Abstract: The end of the Cold War has left the United States as the world's sole superpower. The ability of the United States to strike deep into the territories of most nations with impunity represents a new security threat to many nations. Defeating the U.S. military is not feasible in most cases, but balancing the United States may be possible, especially with weapons of mass destruction (WMD). Although WMD might provide a formidable deterrent, their technical, political, and economic costs preclude most nations from pursuing them. On the other hand, modern conventionally powered submarines are easier to obtain and operate and could present a significant deterrent to U.S. military force. This thesis assesses whether the perceived threat posed by the United States has emerged as a motivation for acquiring conventionally powered submarines since the end of the Cold War. After examining the motivations behind the recent submarine acquisitions of India and Iran, this thesis presents an economic model to predict when developing nations will be able to afford submarines if they choose to acquire them.

Electronic access: http://handle.dtic.mil/100.2/ADA333352
NPS/DKL Location: THESIS J7115

Contents: The mission. -- Trial and error. -- Diesel Boats. -- Unterseeboote. -- Routine. -- Command. -- The downside. -- True Submarines. -- Russians and others. -- Deployment. -- Fish don't vote. -- Why I do it. -- Gallery.
NPS/DKL Location: V857 .K27 2002

Kolesnik, Eugene M. NATO and Warsaw Pact Submarines Since 1955. Poole,
NPS/DKL Location: GENERAL V857 .K65 1987

NPS/DKL Location: GENERAL V210 .L6

NPS/DKL Location: FOLIO V857 .L7

NPS/DKL Location: GENERAL VM365 .M34 2003

NPS/DKL Location: FEDDOCS D 208.207:58

German translation of "Histoire des Sous-Marins: Des origines à nos jours."

Synopsis: This book brings to life the tales of the 121 submarines that lie entombed on the seabed of the English Channel. Most of them got there as the result of war and peacetime accident. The first was lost in 1774; the last was the tragic accident that befell HMS Affray in 1951, the last British submarine to have been lost at sea.

NPS/DKL Location: GENERAL V210 .M52 1976

NPS/DKL Location: GENERAL V857 .M5397 2002

Originally published: London: Salamander, 2002

NPS/DKL Location: GENERAL V214 .M55 1984

NPS/DKL Location: GENERAL V857 .M54 1982

Swedish translation of “Modern Submarines.”

NPS/DKL Location: GENERAL V857 .M54 1991

German translation of “Modern Submarine Warfare.”
NPS/DKL Location: REFERENCE V857 .J3

NPS/DKL Location: GENERAL V210 .M66 1987

Abstract: A knowledge-based shell QUAESTOR, developed by Maritime Research Institute Netherlands, is chosen for assisting the designer in solving complex design problems. One of the key features of such a shell is the distinction it makes between numerical knowledge, represented by the parameters, relations and constraints, and the way this knowledge is used for predicting the performance of a design. The conceptual design stage of a Submarine is complex, because the relationship between the design characteristics and its performance is not always straightforward. Changing a characteristic may improve one specific performance while worsening another. The traditional way of dealing with this complexity was to base a new concept on well-described previous designs. These traditional systems have two major limitations: (1) Limiting free creativity. The conceptual design can be characterised by an intensive dialogue between a client and a design team. This implies that the control of the design process should be data-driven, as opposed to procedure-driven in the traditional systems. (2) Design knowledge is represented in numerical format only. An internal arrangement can only be modelled by numerical knowledge, making it difficult to change the geometrical and topological knowledge of a concept. To overcome these drawbacks an un-directed network approach is used, which includes design knowledge in numerical, geometrical and topological format. This thesis describes the major issues which have risen during the development of a conceptual design tool based on this approach. The developed prototype, called SUBCEM, shows the feasibility of the tool for predicting the size and performances of submarines in the conceptual stage of the design process.
NPS/DKL Location: GENERAL VM365 .N3X 1999

NPS/DKL Location: BUCKLEY V857 .P727 1982

NPS/DKL Location: REFERENCE VC345 .P75 1997

Abstract: This document presents the Department of the Navy (DON) Exploratory Development (6.2) Investment Strategy, which establishes the focus and major thrusts of the 6.2 Program. The Navy's investment strategy for its exploratory development activities is derived from a national security strategy that mandates continued fulfillment of U.S. responsibilities in both Europe and Asia. In addition, the changing world environment will increase our responsibilities with respect to Third World nations. Successful implementation of U.S. strategy presumes that our naval forces will maintain technical superiority in their weaponry and platforms. As such, our warfighting strategy is achievable only if our nation maintains its current technological leadership. The Soviet Union's quantitative advantages and qualitative advances in space, submarine warfare, cruise missiles, and electronic warfare are tangible evidence that our ability to maintain a technological edge clearly is being challenged. Proliferation of high technology will continue to expand on the world arms market and will become prevalent in the Third World. Therefore, the requirement to maintain technological superiority remains absolutely essential.
NPS/DKL Location: MICROFORM ADA229337

Abstract: The United States is heavily reliant on sea based logistics shipping. This shipping gives the United States great flexibility but it is also a critical vulnerability. During WW II Japan was a nation dependent on maritime shipping and Japan failed to provide adequate resources to protect that shipping. The results were disastrous. The U.S. and Great Britain also experienced attacks on maritime shipping in WW I and II. Resources were allocated and tactics developed to counter the German submarine threat. Current U.S. doctrine addresses protection of maritime shipping, but without a credible threat and with ever decreasing Naval resources, it is doubtful that the issue of maritime force protection will be seriously addressed until disaster strikes.

Electronic access: http://handle.dtic.mil/100.2/ADA370875

NPS/DKL Location: GENERAL V210 .S7

NPS/DKL Location: GENERAL VC345 .T48 1997

Original title: Wolf packs

NPS/DKL Location: GENERAL VA593 .T85 2004

“This article is based on material from this almost 400-page volume ... The Secret War Against Sweden -- US and British Submarine Deception in the 1980s, published by Frank Cass (Naval Series).

Electronic access: http://www.prio.no/page/preview/preview/9429/44917.html

NPS/DKL Location: FEDDOCS D 5.202:W 89/2

NPS/DKL Location: FEDDOCS D 201.2:W 89

Czech translation of “Stealth at Sea: The History of the Submarine.”

NPS/DKL Location: GENERAL V857 .V35 1995

Van der Vat, Dan. **Stealth at Sea: The History of the Submarine**. 1st Replica Books

Electronic access: http://www.isn.ethz.ch/php/research/AreaStudies/Wahlback.pdf

NPS/DKL Location: GENERAL RC1005 .W49 1992

NPS/DKL Location: GENERAL V210 .W5

SUBMARINES -- GENERAL

BIBLIOGRAPHIES

Originally published in 1963 as Submarines, Submariners, Submarining.
NPS/DKL Location: REFERENCE VM365 .Z9

NPS/DKL Location: REFERENCE V857.M38 2001

NPS/DKL Location: REFERENCE V857.A26

Contents: Bibliography correspondence in chronological order from 23 Apr. 1958 to 4 Mar. 1974 to and about Submarine booklist: A comprehensive compilation of books on submarine and undersea warfare available in the United States.

Note: "A submarine registry listing approximately eight thousand boats of 50 nations, with an annotated bibliography cataloging six thousands books and significant articles characteristics, and operational history in the undersea campaigns of this century."-- t.p.

NPS/DKL Location: REFERENCE Z6834.S9 P355 1992

NPS/DKL Location: REFERENCE D780.S35 2000
SUBMARINES -- GENERAL

COLD WAR

NPS/DKL Location: GENERAL V214 .C67 2003

Synopsis: Tango Charlie, the military phonetic alphabetic for the letters T and C, was Tommy Cox's operator's sign during his years in the Navy. Retired as a Senior Chief Cryptologic Technician in 1979, Cox spent much of his career riding submarines as a part of the Naval Security Group. The first part of this book is a fascinating memoir of the Cold War, written by someone who was in the middle of a lot of the action. During and after his military career, Tommy Cox had a second career as a singer-songwriter. The second part of his book contains the lyrics to 25 of his songs, and discusses how they came to be written. Cox has created his own musical genre, writing and singing songs about submarines and the men who serve in them. -- http://riverdaleebooks.com/tangocharlie.html

NPS/DKL Location: GENERAL V63.C7 A3 2001

NPS/DKL Location: GENERAL/INTELL VB231.U54 D86 1996

Collection of articles, essays, etc. translated from the Russian.

DKL Location: GENERAL VA65.S394 O44 2007

DKL Location: GENERAL V859.R8 S49 2005

NPS/DKL Location: GENERAL V214.5.S74 2007

Vyborny, Lee and Don Davis. **Dark Waters: An Insider's Account of the NR-1, the Cold War's Undercover Nuclear Sub**. New York: New American Library, 2003. 243 P.
NPS/DKL Location: GENERAL VA65.N67 V95 2003

NPS/DKL Location: GENERAL V859.R9 W45 2003

SUBMARINES -- GENERAL

FICTION (SELECTED AUTHORS)

Also published: Dunton Green: Coronet, 1992.
DKL Location: LEISURE BAL

German translation of “Bright Shark.”
DKL Location: GENERAL PS3552.A467 B71 1994

German translation of “Bright Shark.”

NPS/DKL Location: BUCKLEY PS3503.E2 R9 1955

NPS/DKL Location: BUCKLEY PS3503.E2 R9 1985

German translation of "Run Silent, run Deep."

Hungarian translation of “Das Boot.”

English translation of “Das Boot.”

English translation of “Das Boot.”
NPS/DKL Location: GENERAL PT2662.U3134 B613 1999

Estonian translation of “Das Boot.”

Dutch translation of “Das Boot.”

Dutch translation of “Das Boot.”

Buchheim, Lothar-Günther. **U-Boot: [Atlantico, 1941: La Grande Avventura di un**
Italian translation of “Das Boot.”

Italian translation of “Das Boot.”

Japanese translation of “Das Boot.”

Japanese translation of “Das Boot.”

Japanese translation of “Das Boot.”

Spanish translation of “The Hunt for Red October.”

German translation of “The Hunt for Red October.”

German translation of “The Hunt for Red October.”

German translation of “The Hunt for Red October.”

Grass, Günter. **Crabwalk**, translated from the German by Krishna Winston. 1st ed. Orlando: Harcourt, c2002. 234p. Publisher’s blurb: Gunter Grass has been wrestling with Germany's past for decades now, but no book since The Tin Drum has generated as much excitement as this engrossing account of the sinking of the Wilhelm Gustloff. A German cruise ship turned refugee carrier, it was attacked by a Soviet submarine in January 1945. Some 9,000 people went down in the Baltic Sea, making it the deadliest maritime disaster of all time. English translation of “Im Krebsgang.” NPS/DKL Location: GENERAL PT2613.R338 I413 2002

Swedish translation of “Haie und kleine Fische.”

Danish translation of “Haie und kleine Fische.”

Icelandic translation of “Haie und kleine Fische.”

Norwegian translation of “Haie und kleine Fische.”

Serbo-Croat translation of “Haie und kleine Fische.”

Polish translation of “Haie und kleine Fische.”

French translation of “Haie und kleine Fische.”

Japanese translation of “Haie und kleine Fische.”

English translation of “Haie und kleine Fische.”
NPS/DKL LOCATION: LEISURE OTT

English translation of “Haie und kleine Fische.”

English translation of “Haie und kleine Fische.”

Italian translation of “Haie und kleine Fische.”

Czech translation of “Haie und kleine Fische.”

SUBMARINES -- GENERAL

NUCLEAR

German translation of “Submarine: A Guided tour Inside a Nuclear Warship.”

NPS/DKL Location: GENERAL V857.5 .C55 1993

NPS/DKL Location: GENERAL V857.5 .C55 2002

NPS/DKL Location: GENERAL V214 .C67 2003
NPS/DKL Location: GENERAL V63.C7 A3 2001

NPS/DKL Location: GENERAL VM774 .C9

Abstract: This thesis compares the development of fleet ballistic missile systems in the United States and Soviet Union and their contribution to the achievement of national security objectives of each nation. To this end, submarine and missile technologies, elements of operational practices and support, and general strategic doctrine, are traced. A comparative assessment of weapon system effectiveness and potential in achieving stated objectives is derived from capabilities, peacetime employment, and wartime plans as stated in open doctrinal documents.
NPS/DKL Location: THESIS F5797

NPS/DKL Location: REFERENCE VM317 .N38 1993

Great Britain. Defence Radiological Protection Service. Marine Environmental

LeSage, L. G. and A.A. Sarkisov, eds. Nuclear Submarine Decommissioning and
NPS/DKL Location: GENERAL V857.5 .N38 1996

NPS/DKL Location: GENERAL VA633 .L48 1994

Accompanies the PBS series War and Peace in the Nuclear Age.

NPS/DKL Location: GENERAL V858 .P63 2004

Abstract: In July 1998, Britain published its Strategic Defense Review(SDR). The SDR outlined significant changes for Britain's nuclear weapons program and formalized the policy of sub-strategic deterrence using the Trident missile. It is unprecedented for a nuclear power to have consolidated its strategic and sub-strategic nuclear forces into a single system. The benefits offered by the British choice might be enjoyed for only a short time. The British have slashed their nuclear forces and eliminated the range of options previously available to their national command authority. Dependence on a single delivery system could result in the inability to respond to crises, to act autonomously, or to negotiate effectively with other nuclear weapon states. This thesis analyzes the benefits that nuclear Tomahawk could provide the British. Since the United States owns the system, the future of the nuclear Tomahawk in the American arsenal is crucial to any British decision to adopt it or a similar system. An unmanned nuclear cruise missile weapon offers many advantages in today's security environment. The United States should retain nuclear Tomahawk and Britain, with its mature maritime force, should consider acquiring a similar capability. The elimination of nuclear Tomahawk from the U.S. arsenal would be a mistake.

NPS/DKL Location: THESIS R3686
Electronic access: http://handle.dtic.mil/100.2/ADA359545

NPS/DKL Location: GENERAL DA87.1.A1 R56 2001

SUBMARINES -- GENERAL

WWI

NPS/DKL Location: GENERAL VM365 .D6

Gill, C. C. Naval Power in the War (1914-1918) [Lectures delivered at the United States Naval Academy in the winter of 1915-16 to midshipmen]. New York, George H. Doran company, c1919. 302p.
NPS/DKL Location: GENERAL D580.G4

NPS/DKL Location: GENERAL D580.H34 1994

NPS/DKL Location: GENERAL V857.L53 2005

NPS/DKL Location: GENERAL V214.5 .S74 2007

Vargas, Rafael. **Submarinos y Sumergibles.** Yokohama, Japón: Japan Gazette, 1917. 185p.

NPS/DKL Location: BUCKLEY D590 .W57 1997

SUBMARINES -- GENERAL

WWII

NPS/DKL Location: GENERAL D783 .A54 1989

Bagnasco, Erminio. **I Sommersgibili Della Seconda Guerra Mondiale.** Parma: E.

English translation of "I sommergibili della Seconda Guerra mondiale."
NPS/TKL Location: REFERENCE V857 .B25

English translation of "I sommergibili della Seconda Guerra mondiale."

German translation of "Submarines of World War Two."

Contents: Saphir class. -- Surcouf class. -- Type II class. -- Type VII class. -- Type IX class. -- Type X and Type XI classes. -- Type XVII class. -- Type XXI class. -- Type XXIII class. -- Sirene, Perla, Adua and Acciaio classes. -- Cagni class. -- Archimede class. -- RO-100 and RO-35 classes. -- I-15 class. -- I-361, I-313 and I-351 classes. -- I-400 class. -- O, P and R classes. -- Porpoise class. -- S class. -- T class. -- U and V classes. -- Narwhal class. -- New S class. -- Gato and Balao classes. -- Tench class.

German translation of "Submarine Warfare Today."

Previously published in a different format as part of the reference set "War machines."

Chant, Christopher. Submarinos de Guerra: Los Sistemas de Armas Submarinas
Contents: Introducción. -- Submarinos con misiles balísticos. -- Submarinos nucleares de ataque. -- Submarinos Diesel de ataque. -- Armas Submarinas. -- Armas antisubmarinas. -- A la caza del Submarino.
Spanish translation of “Submarine Warfare Today.”

NPS/DKL Location: GENERAL D783 .C6 1951

NPS/DKL Location: GENERAL D777.5.A92 D56 1997

NPS/DKL Location: GENERAL D783 V61 .G73 1988

Synopsis: Submarines have only one operational purpose, namely the destruction of enemy shipping. This book tells the story of seventeen captains drawn from six nations in two World wars. Germany is represented by the likes of Weddigen who sank three cruisers in an afternoon, Von Spiegel (WW2) and Von Arnauld arguably the most successful submarine commander of all time. Britain fields Holbrook as the first submariner to win the VC, Sandford of Zeebrugge fame and Wanklyn VC, one of our top aces in WW2. The US provides four true heroes including Dealey who sank six Japanese
destroyers and won the Congressional Medal of Honour and Dudley Morton, the legendary skipper of Wahoo. Not to be overlooked are Italy’s de la Penne (of Alexandria two-man sub fame), the Pole Jan Grudinski and Japan’s Hasimoto who sank USN Indianapolis in the closing stages of WW2.

http://www.amazon.co.uk/Captains-Underwater-War-Submarine-Commanders/dp/1844151107/

NPS/DKL Location: GENERAL D780 .I2

NPS/DKL Location: GENERAL / BUCKLEY D770 .R45 2001

German translation of “Dönitz, the Last Führer.”

NPS/DKL Location: GENERAL CT4.O46 P34 1984

Originally published: London: Gollancz, 1984./

Originally published: London: Gollancz, 1984 as “Dönitz, the Last Führer: Portrait of a Nazi War Leader.”

German translation of “War Beneath the Sea.”

NPS/DKL Location: GENERAL D780 .P33 1998

Abstract: This work assesses the nature of the submarine forces in the German and United States navies before and during the Second World War by studying their logistics. It examines five elements of the submarine forces in these navies: The construction of boats, their repair, the selection and training of crews, their supply with food, fuel and weapons, and the solution of the problems in their torpedoes. These elements reveal that each navy possessed a distinct conception for what a submarine was and before the Second World War, a conception that played a direct role in combat during the conflict.

Abstract: The effectiveness of the German and United States submarine campaigns during World War II is compared by analyzing the genesis of each campaign, the commitment to each and the effort to overcome the losses imposed by submarine warfare. This comparison highlights one aspect of the strategic and operational consequences of conflict with an adversary able to build and maintain a superior industrial base in support of the military effort. This analysis places primary focus on German U-Boat efforts in the Battle of the Atlantic and the U.S. submarine efforts in the Western Pacific. Ultimately, the overriding factor in the outcomes of both campaigns was the ability of the United States to produce more ships than the Germans could sink, to build more submarines than the Japanese could sink, and to sink more Japanese ships than the Japanese could build. As a result, the United States was able to sustain its total military effort against Germany; Japan was not able to sustain its efforts in the Pacific.
Electronic access: http://handle.dtic.mil/100.2/ADA283407

German translation of “Histoire Generale de la Guerre Sousmarine 1939 à 1945.”

NPS/DKL Location: GENERAL D810.S7 D487 2004

United States. Office of the Chief of Naval Operations. **German, Japanese, and Italian**
NPS/DKL Location: GENERAL D780 .U55 1946

NPS/DKL Location: GENERAL D770 .V28 1988

Contents: Introduction - 3 September 1939: Churchill returns to the Admiralty; Germany unready; the First shot sinks the Athenia; replay of the 'Lusitania factor'; Britain adopts convoy. -- PART ONE THE FIRST BOUT AND THE INTERVAL: The First Round, 1914-1918: The blackest month ever, Germany embraces the Submarine; Britain panics; the Submarine as retaliation for the British blockade; British Intelligence; Sinkings mount; Germany vacillates; unrestricted warfare; the Greatest ‘ace’; the Crisis; convoy; Aircraft; the lessons. -- Disarmament Fails, 1919-1933: Versailles; Revolution in Germany; Soviet ambivalence; Western equivocation; the German Navy adjusts; the Great Submarine fraud; the German Navy revives; the British Navy declines; Naval arms ‘limitation’; Asdic; Naval Aviation; 1933 as a turning-point. -- Rearmament Proceeds, 1933-1939: Hitler; Secret Submarine School; illegal Rearmament; Versailles breached; Naval agreements; Karl Donitz; the Z-plan; Britain Rearms; and America; Isolationism; FDR; convoy plans; British Intelligence; and German; Intelligent British; Admiral Found; escorts; the road to war. -- PART TWO THE MAIN EVENT: September 1939 to June 1940: Convoys Start: German Navy unready; British Navy old; air; Mines; Royal Oak; Graf Spee; Norway; Prime Minister Churchill; Iceland; Blitzkrieg; Enigma; Alan Turing; the B-dienst; torpedo Crisis; Asdic; air; disguised ships; French Bases ‘Operation Catapult’; convoy system; USA natural; Roosevelt and Churchill; Germany rampant; Losses at sea. -- June 1940 to March 1941: Donitz in Brittany; Britain at bay; disguised Raiders; Mediterranean closed; Canada helps; ‘No surrender’- US aid; ‘destroyers for Bases’; Secrets for sale; Lend-Lease; Anglo-American rapprochement; the Happy Time of the German aces; Battle of Britain; wolf-packs; escort-groups; Western Approaches; the Gap; surface Actions; Luftwaffe; Loss of three aces; Intelligence; life in the Submarine arm; Radar, HF/DF- tactics; Kondors; ‘clear the ports’; Losses at sea. -- April to December 1941: Germans move West; Greenland; USN opens fire; constant shifts in attack; Britishransack U110; Canada and end-to-end convoy; Hood and Bismarck sunk; Rodger Winn; Turing rebels; supply-ships sunk; Hitler invades USSR; Roosevelt and Churchill meet; Russian convoys; Liberator Bomber; American Losses; Canadian problems; German Tactics; air-cover; ‘Johnnie’ Walker; Atlantis; British home front; Japan strikes; US at war; B-dienst; Losses at sea. -- January to July 1942: Admiral King; The Second Happy Time; US Naval build-up; but no convoys in US waters; haemorrhage of shipping; the Channel Dash humiliates the Royal Navy; Ultra Fails; B-dienst flourishes; Canada as middleman; refuelling at sea; Winn in US; Interlocking Convoy System; Germans move south; US Shipbuilding; air-threat to Submarines; Admiral Tovey’s Revolt; Tirpitz; St Nazaire; Spitzbergen; PQ17 Disaster-Losses at sea. -- July 1942 to May 1943: Donitz warns-the airgaps; Laconia; disguised Raiders beaten; Russian convoys; Losses at sea; Canadian Disasters; ‘Operation Torch’; Admiral Horton at Western Approaches; Bay Offensive Radar; Ultra returns; Donitz succeeds Raeder; TM1 Disaster; Casablanca Conference; Canada sidelined; good news from Russia; the Great Crisis of the Campaign; four climactic convoys; the pendulum swings against Germany; airpower; Canada’s First C-in-C; US Tenth Fleet; Donitz Retreats. -- June 1943 to May 1945: Germany down but not out; war on the milch-cows; Donitz fights on; Submarine Revolution; the Schnorchel; the struggle against Radar; rival technologies; Shipbuilders’ victory; the Azores; the US air ‘horse-Trade’; row over carriers; long death of Tirpitz; Scharnhorst sunk; Pound dead; acoustic Rodger Winn; Turing rebels; supply ships sunk; Torpedoes; ‘Johnnie’ Walker rampant; the last wolf-pack; after D-day; Retreat to Norway. new boats at sea; surrender; the final reckoning.
NPS/DKL Location: GENERAL D767.9 .V36 1991

German translation of “The Atlantic Campaign.”

Czech translation of “The Pacific Campaign: World War II, the U.S.-Japanese Naval War, 1941-1945.”

NPS/DKL Location: GENERAL V857 .W36 1977

This was also listed as “Hunter & Hunted: Submarine Operations, 1940-44,” sharing the ISBN 184145215. No one seems to actually hold this title.

“Nevertheless the Indian Ocean has one vital factor of interest to the submarine historian. It was the one area of the world, where, uniquely, the submarines of seven nations -- Great Britain, the Netherlands, the United States of America, France, Italy, Germany and Japan -- all operated and Fought During the war.” p.13
NPS/DKL Location: GENERAL D780 .W55 2000

AMERICAN

GENERAL

358

Beckman, Philip J. *Scheduling Attack Submarine Deployments*. Monterey, CA: Naval Postgraduate School, 1997. (ADA331771). 47p. Thesis (M.S. in Operations Research) -- Naval Postgraduate School, 1997. Abstract: The Navy's peacetime mission is "to conduct forward presence operations to help shape the strategic environment by deterring conflict, building interoperability, and by responding, as necessary, to fast breaking crises with the demonstration and application of credible combat power." (OPNAV INSTRUCTION 3501.316, February 1995) The ability to carry out this mission hinges on the Navy's ability to maintain ships and submarines forward deployed in regions where such crises may occur. The end of the Cold War and current budget constraints have caused a drawdown in the number of ships and submarines with which to provide forward presence. Coupled with the continued requirement to maintain a certain level of forward presence, this drawdown creates shortfalls when attempting to deploy ships or submarines to fill certain mission requirements. To minimize these shortfalls, this thesis formulates the problem of scheduling attack submarine deployments as an integer program. Due to its size and complexity, heuristic algorithms are developed to provide near-optimal solutions in a reasonable amount of time. In addition to providing near-optimal deployment schedules, results from the algorithms are also useful in evaluating changes in maintenance and operational policies. NPS/DKL Location: THESIS B3355 Electronic access: http://handle.dtic.mil/100.2/ADA331771

Bentley, John. *The Thresher Disaster; the Most Tragic Dive in Submarine History*. 359
NPS/DKL Location: GENERAL VA65.T7 B44

NPS/DKL Location: GENERAL V858 .U2 1994

NPS/DKL Location: GENERAL V858 .U213 1994
Electronic access: http://handle.dtic.mil/100.2/ADA288636

NPS/DKL Location: GENERAL VA70.N5 B57 2005

NPS/DKL Location: GENERAL V396.3 .C3

NPS/DKL Location: GENERAL VA65.S6 C2

NPS/DKL Location: REFERENCE V858 .C47 2000

Cosentino, Michele. Sommeregibilisti in America: Storie di Marinai Italiani e di

Abstract: From 1923 to 1940 the U.S. Navy held Twenty-one major exercises, known as “Fleet Problems.” While only part of annual fleet training, these exercises differed from routine maneuvers and gunnery exercises. All available fleet units were integrated into a single major action…. Concepts such as dive-bombing, independent submarine operations, antisubmarine warfare, and amphibious operations were explored in a medium that stressed the thinking of naval officers as how best to fight a naval war with modern weapons.

NPS/DKL Location: BUCKLEY V858 .F75 1994

NPS/DKL Location: BUCKLEY V858 .F75 1995

Master's thesis.
Abstract: The naval force structure proposed by the 1993 Department of Defense 'Bottom Up Review' was analyzed in terms of three force planning cases built around illustrative scenarios using representative depictions of future threats. Each case included: Regional analysis in terms of mission, forces, area, and command and control; development of military requirements; and comparison of requirements and capabilities, identification of shortfalls, and characterization of risk. A notional U.S. carrier battle group and air wing for the year 2000 were examined in scenarios involving a conventional global war with a reconstituted Russia, a major regional contingency on the Korean peninsula, and a lesser regional contingency involving a freedom of navigation dispute with Indonesia. The scenarios represent different levels from the spectrum of conflict. The future naval force was found insufficient to ensure victory in global conventional war, the scenario which involved the greatest risk to U.S. interests. The future force, optimized for blue-water operations, was also shown seriously deficient in countering mines and diesel submarines, another threat which entailed the potential for damage to U.S. interests.
NPS/DKL Location: MICROFORM ADA284646

NPS/DKL Location: FEDDOCS D 221.6/54:H 46

NPS/DKL Location: GENERAL VA65.S15 H54 2002
Published in association with the Naval Submarine League and Sonalysts.

NPS/DKL Location: FOLIO V858 .U55 2002

Reprinted from the North American Review.

Abstract: The end of the Cold War has been the watershed event for changes in the international and national security environments that present tremendous implications for the US submarine force. These changes include calls for significant US defense cuts to reap a peace dividend, the increasing importance of economics as a determinant of defense spending, and the disintegration of the Soviet Union resulting in the absence of a clear tangible global threat to US national interests. What has resulted from these changes is the formulation of a new US national security strategy that focuses on regional contingencies, and the decision to cut US defense forces by at least 25% over five years including the cancellation of the Seawolf submarine program. This thesis addresses the implications of these tremendous changes on the US submarine force. Specifically, issues that are addressed include roles and missions, force structure, submarine design, and changing the institutional mindset of the submarine community. The issue of roles and missions involves demonstrating the applicability of the submarine to regional warfare. The issue of submarine force structure deals with both the short term and long term factors affecting submarine force reductions and ultimate submarine force size. The issue of submarine design addresses concerns over the submarine industrial base, the Centurion program, and design requirements for a regional warfighting submarine.

NPS/DKL Location: THESIS H8253

Jointly sponsored by the History Dept. of the University of Western Ontario and the
Canadian Institute of International Affairs. Cf. Editor’s introd.

NPS/DKL Location: GENERAL V163.C7

Abstract: This report summarizes Phase I of a study entitled Training Benefit Analysis of the Accelerated Use of Interactive Electronic Technical Manuals (IETM's). An initial evaluation of the interactive, computer controlled display of technical information has been carried out by the Navy training community. Results indicate the use of IETM's, integrated with automated courseware, could significantly improve training processes. Forty-seven candidate projects covering surface, air and submarine warfare areas were identified. Fifteen IETM hypotheses and associated implementation scenarios were evaluated. Of these, twelve were supported by more than two-thirds of the participants in this study. Candidate projects were identified for business-case-analyses to be performed in Phase II. This report also identifies technical and administrative issues which must be addressed before the full potential of IETM's can be realized. Measures needed for greater integration, infrastructure support and standardization of IETM's in training are recommended. Phase II of the study will consist of a more detailed analysis of the selected candidate projects, particularly from the standpoint of return on investment. This will provide the Chief of Naval Operations with the basis for training input to the Program Objective Memorandum (POM) '98 preparation process.

Electronic access: http://handle.dtic.mil/100.2/ADA309992

NPS/DKL Location: FOLIO V858.K38 1989

Also published: New York: St. Martin's Press, 1971]
Includes the Thresher and the Scorpion.

The second volume to emerge from the General Economic Systems Project at Princeton University.

Japanese translation of "The terrible hours."

Italian translation of “The Terrible Hours.”

NPS/DKL Location: GENERAL VA65.S68 M33 1999

Abstract: The current military/political climate of budget cuts, downsizing, the demise of the Soviet Union, and the establishment of a new world order has forced all services to reexamine and justify their existence. I will specifically examine what U.S. submarine has to offer in the defense of America in relation to the National Military Strategy, to include deterrence, forward presence, crisis response and reconstitution; enduring characteristics which include stealth, endurance and agility; critical roles such as peacetime engagement, surveillance, deterrence, regional sea denial, precision strike, task group support, ground warfare support and battlespace dominance; and contributions that the submarine can make to the post-Cold War era. While there is no possible way to predict where or when the next conflict will occur, the submarine possesses valuable attributes which can be successfully utilized at the operational level to enhance the mission and achieve success.
NPS/DKL Location: MICROFORM ADA293371

NPS/DKL Location: FEDDOCS D 201.2:SU 1

NPS/DKL Location: GENERAL CT8.047 M8

Abstract: With the Navy’s shift in focus from blue water operations to littoral warfare, significant effort has been expended toward developing operational concepts that optimize the employment of naval forces, with the emphasis being placed on the Naval Expeditionary Task Force (Carrier Battle group and Amphibious Ready Group). Submarines play a key role in tactical operations within the battle group, but also have the potential to have a significant impact on the operational level of war, if properly utilized by the theater CINC. In order to get the most out of the submarine force, the CINC must balance operational tasks with the tactical needs of the CJTF. If the CINC allows the CJTF to control the SSNs to conduct littoral warfare tasks, he is forfeiting some of his operational flexibility. By viewing the JTF as a unit operating at the operational/tactical level, the CINC can better focus on tasks that need to be accomplished at the operational level. Employment of SSNs at this level of warfare can fill the gap that has been left by the Navy’s concentration on littoral warfare. Emphasis on the development of doctrine for littoral warfare need to focus on the value of the SSN at all levels of warfare. Proper integration at all levels will result in maximum flexibility and will restore blue water Navy capabilities to the theater commander.
Navy times. **They Fought Under the Sea; The Saga of the Submarine** [compiled by the editors of Navy times]. Harrisburg, PA, Stackpole Co., 1962. 184p.
NPS/DKL Location: GENERAL V210 .N3

(ADA193027). 126p.
Abstract: This thesis examines the force procurement element of the military strategic planning process and is comprised of two parts. First, models are constructed to depict ideal strategic planning. The initial step in each model is the formulation of the national interest. The national interest is defined in terms useful to strategic planners by creating a unique paradigm based on the Constitution. The technological imperative hypothesis is explored as an aberration to the ideal strategic planning process. Second, the technological imperative hypothesis is tested with case studies of the Polaris and the Tomahawk. Even though the hypothesis was disproved in each case, the case studies yielded useful relationships between technology, strategy, and doctrine.
NPS/DKL Location: THESIS N885

(ADA427686). 81p.
Abstract: This study compares an experimental watchstanding schedule derived at Naval Submarine Medical Research Laboratory (NSMRL) with the schedule currently used onboard the submarine USS HENRY M. JACKSON (SSBN 730 GOLD). It analyzes subjective and objective data to determine if the new schedule is compatible in an operational submarine environment. This study reviews sleep and fatigue literature to emphasize important concepts needed to make schedule comparisons. Results from this study indicate a need exists among the U.S. submarine force to employ an operational schedule which provides more sleep and which is in better alignment with human circadian rhythms, thus improving cognitive effectiveness. One of the experimental schedules tested in this study yielded results similar to those of the existing submarine watchstanding schedule. This experimental schedule employed a validated model of human performance and fatigue to assess individual cognitive effectiveness. However, the results also indicate that the existing schedule is better suited in its accommodation of operational scheduling constraints which, in turn, allow watchstanders to receive more sleep. Recommendations address the need for the U.S. submarine force to continue to pursue a watchstanding schedule that provides better sleep while still accommodating operational constraints. Recommendations also address improvements in experiment implementation which can be integrated into future studies.
Electronic access: http://handle.dtic.mil/100.2/ADA427686

NPS/DKL Location: GENERAL V858 .P59 1983
NPS/DKL Location: GENERAL VM1 .L25 P65 1999

NPS/DKL Location: GENERAL V858 .R63 2007

NPS/DKL Location: ON-ORDER??

"An Occasional Paper of the Center for International Security and Arms Control."
NPS/DKL Location: GENERAL V210 .S24 1988

Abstract: In any future conflict, the U.S. Navy will most likely enjoy a significant technological and numerical superiority over its adversary. A relatively small navy may, however, avoid decisive battle and influence events at sea indefinitely. Naval strategists have coined the terms fleet in being, fortress fleet, and risk fleet to describe strategies designed to use inferior forces to an advantage. Through an examination of these strategies as analyzed by both Alfred Thayer Mahan and Julian Corbett and study of historical examples of each, the relevance of these strategies to current naval thought can be determined. While fortress fleet and risk fleet have very limited value today, a diesel submarine fleet in being poses a significant threat that must be addressed in future U.S. naval strategy.
Electronic access: http://handle.dtic.mil/100.2/ADA293409

NPS/DKL Location: BUCKLEY/INTELL VB231.U54 S65 1998

Russian translation of “Blind Man’s Bluff.”

German translation of “Blind Man’s bluff.”

Dutch translation of “Blind Man’s Bluff.”

Polish translation of “Blind Man’s Bluff.”

Abstract: The problem of detecting an enemy submarine whose possible position was revealed by the hit of a torpedo is known as the “Flaming Datum” problem. All previous studies devoted to this theme make unrealistic assumptions about the speed of the escaping target when dealing with a diesel-electric submarine. In this kind of submarine the constraint imposed by the remaining charge of its batteries determines that its behavior is essentially conservative in how fast it should escape. The objective of this thesis is to explore the idea of varying speed in the flaming datum problem. Two different approaches are considered. An analytical model is developed based on the relationship among some of the physical factors that could determine or constrain the behavior of a diesel submarine while escaping from the area of the flaming datum. The second approach considers a discrete event simulation using the Java-based Simkit package. Data analysis is used to determine a possible fit for the simulation results. Several tactics are explored to determine their effects on detection probability.
NPS/DKL Location: THESIS S66611635
Electronic access: http://handle.dtic.mil/100.2/ADA379766

NPS/DKL Location: GENERAL V210 .S695 1962

NPS/DKL Location: GENERAL VA65.S43 S7

Contents: 1. Parks and the Pompano / Capt. Slade D. Cutter, USN (Ret.). -- 2. The President Takes a

NPS/DKL Location: GENERAL V858 .S73 2007

NPS/DKL Location: GENERAL UG1312.C7 S78 1996

NPS/DKL Location: GENERAL V858 .S73 2007

NPS/DKL Location: GENERAL UG1312.C7 S78 1996

NPS/DKL Location: GENERAL V858 .S73 2007

NPS/DKL Location: GENERAL V63.S85 A3 2004

English translation of “U-Boote der US Navy.”

German translation of “Submarines of the US Navy.”

Abstract: This report examines how intra-service parochialism has affected the United States Navy since the end of the Second World War. It traces the development of naval bureaucratic dominance from the prewar battleship admirals, through the rise of naval aviators to the eventual dominance by nuclear submariners. The author posits that the Navy may now have entered a new era once again dominated by surface warfare officers and wonders what the consequences of this change may be. The study argues for balance and urges naval leadership to rise above the natural tendency to square the past by primarily promoting the interests of the dominant warfare group.
Electronic access: http://handle.dtic.mil/100.2/ADA299970

Abstract: The three basic elements where we traditionally commence strategic planning have changed dramatically in the past two years. A new national security strategy recasts the roles and missions of the armed forces in new terms. The submarine force needs to be justified under the new grammar for warfare as a part of the four new mission areas under the new national military strategy. The submarine force alone can perform the strategic deterrence and defense missions. The submarine's role in presence involves a high/low mix choice. There should be increased emphasis on the submarine force for crisis response: (1) rapid response (2) shore bombardment and strike (3) as the initial leading maritime component for second major regional contingencies, and (4) initial and limited sea control. A European regional war evolving out of a major regional contingency is not the same thing as the old European-centered global war with the USSR. Decreased emphasis should be placed on strategic anti-submarine warfare. Reconstitution goals could be met with at-sea nuclear weapons.
NPS/DKL Location: FEDDOCS D 208.14/2:NPS-NS-92-010
Electronic access: http://handle.dtic.mil/100.2/ADA252808

NPS/DKL Location: GENERAL V858 .U64 1946

Abstract: For decades, the Navy has been striving to improve its ability to detect potential enemy submarines before they can get within effective weapons range of U.S. forces. In 1985, the Navy established the Surveillance Towed Array Sensor System (SURTASS) Low Frequency Active (LFA) sonar program to develop a long-range capability for detecting a new generation of quieter Soviet nuclear and diesel submarines operating principally in the open ocean. Since the end of the Cold War, the Navy has shifted its focus to include regional conflicts and the threat posed by diesel-electric submarines operating in littoral waters. The Navy continued to develop SURTASS/LFA because it showed technological potential to detect objects at great distances. Sound produced at low frequencies can travel further underwater than sound produced at higher frequencies. However, as the Navy conducted testing of the system in the mid-1990s, some public interest groups and scientists raised concerns that SURTASS/LFA may cause harm to marine mammals. The Navy discontinued operational testing of the system and initiated an environmental impact statement process. Currently, the Navy will not begin testing or operating the system until it receives a Letter of Authorization from the National Marine Fisheries Service. According to Navy officials, a decision on the authorization is expected later in 2002. In addition, some of the same groups that have raised environmental concerns have questioned whether SURTASS/LFA will increase the Navy's undersea detection capabilities and whether the Navy has an alternative for the system.

Electronic access: http://handle.dtic.mil/100.2/ADA402657

Abstract: The P-3 is a shore-based, long-range aircraft designed to combat submarines. The Navy has 24 active P-3 squadrons, 13 reserve squadrons, and 5 squadrons for training and special projects. The P-3 inventory totals 441 aircraft. During its 30-year life, a P-3 is expected to undergo six overhauls at one of two Naval Air Rework Facilities, also known as depots. The study's objective was to determine whether the Navy could reduce depot overhaul turnaround time for the P-3 aircraft by improving overhaul procedures. Topics examined include: Selecting aircraft for overhaul; Inspections needed to ensure overhauls are necessary; Overhauls can be scheduled more efficiently; Laboratory resources can be applied more efficiently; and Depots have excess overhaul capacity.

Electronic access: http://handle.dtic.mil/100.2/ADA182095

Report to the Acting Secretary of the Navy, 3 December 1992.

Abstract: The Navy's Surveillance Towed Array Sensor System (SURTASS) program, like other
defense programs, has been caught in the midst of rapidly changing world events. SURTASS sensors "listen" for acoustic signals from enemy submarines in the deep, open ocean. However, the submarine threat for which SURTASS was designed has declined dramatically with the collapse of the Soviet Union. The United States no longer faces a well-defined nuclear submarine threat in the deep water ocean areas where strategic naval conflict and antisubmarine warfare operations were expected to occur. Instead, the Navy faces an ill-defined, less predictable regional threat from diesel submarines operating in shallow water areas. Yet, the Navy continues to build SURTASS surveillance ships designed for the deep water threat. In light of the recent world changes, we examined (1) how the submarine threat environment has changed and (2) what changes the Navy has proposed regarding its SURTASS program.

Electronic access: http://handle.dtic.mil/100.2/ADA258570

Report to the Congress.
Abstract: To aid the Congress in its deliberations on the fiscal year 1984 defense budget, The General Accounting Office issued, from August 1982 through July 1983, 17 reports on selected weapon systems. Chapter 2 summarizes the potential impact of GAO's recommendations and observations. Chapter 3 categorizes and summarizes the major issues highlighted in each report. These issues could have a direct impact on the systems' efficient acquisition and/or operational effectiveness. These issues formed the bases for GAO's recommendations and observations. Chapters 4 through 7 contain individual report summaries. The systems which were reviewed and which are included in this overview are: AH-64; Army Helicopter Improvement Program; Patriot; Sergeant York; Stinger POST; S-3A; CG-47; Rapidly Deployable Surveillance System; TOMAHAWK; F/A-18; Over-the-Horizon Backscatter Radar; The antisatellite development program; The Wide Area Antiarmor Munitions; The B-1B Bomber; Light Armored Vehicle; Advanced Medium Range Air-to-Air Missile; and Trainer aircraft.

Electronic access: http://handle.dtic.mil/100.2/ADA133323

Electronic access: http://purl.access.gpo.gov/GPO/LPS12498
Electronic access: http://handle.dtic.mil/100.2/ADA390303

NPS/DKL Location: GENERAL V858 .U3

Wilkins, George Hubert. **Under the North Pole.** New York: Brewer, Warren & Putnam, c1931. 347p. Contents: The History of the idea / by Vilhjalmur Stefansson. -- The plans of the Expedition / by Sir Hubert Wilkins. -- The development of the under ice Submarine / by Simon Lake. -- The Arctic Submarine
"Nautilus" / by Sloan Danenhower. -- Mathematicall Magick, or, The wonders that may be performed by mechanick geometry / by [John] W[jilkins]. [Facsimile reproduction of Chapter 5 of the 1648 ed.]. -- Lincoln Ellsworth / by Vilhjalmur Stefansson. -- Sloan Danenhower / by Vilhjalmur Stefansson. -- Studies of Arctic conditions may help solve world Problems / by Harald U. Sverdrup. -- The endorsement of scientific groups. -- Who's who on the "Nautilus" scientific staff.

"Published in cooperation with the Portsmouth Submarine Memorial Association."

Abstract: During the Cold War, the U.S. nuclear arsenal contained many types of delivery vehicles for nuclear weapons. The longer range systems, which included long-range missiles based on U.S. territory, long-range missiles based on submarines, and heavy bombers that could threaten Soviet targets from their bases in the United States, are known as strategic nuclear delivery vehicles. At the end of the Cold War, in 1991, the United States deployed more than 10,000 warheads on these delivery vehicles. That number has declined to around 6,000 warheads today, and is slated, under the 2002 Moscow Treaty, to decline to 2,200 warheads by the year 2012.--p. 2.

Electronic access: http://opencrs.com/document/RL33640/

AMERICAN KOREAN WAR

Abstract: United States submarine operations during the Korean War are critically analyzed from an
operational perspective. The Korean War represented a prototype for future Major Regional Conflicts (MRCs). Examining the Operational Commander's use of submarines against a relatively weak naval power, in a conflict dominated by land battle, provides lessons which may be applicable to future MRCs. Brief historical and operational overviews are followed by operational analyses of submarine command and control, operational reconnaissance missions, and the war's impact on the submarine force. Conclusions discuss lessons learned for present and future operational planning. Compared to their significant contribution during World War II, U.S. submarines did not play a major role in Korea. Their employment was mostly directed towards training and reconnaissance operations. Korean War operational reconnaissance set the stage for submarine operations throughout the Cold War. Submarine employment in the Korean War was affected by three key issues: Difficulty in preventing blue-on-blue engagements, communications limitations which inhibited rapid, reliable submarine operational tasking, and defensive mining of the littoral region. These three issues will continue to challenge operational Commanders when employing submarines in future MRCs.

Electronic access: http://handle.dtic.mil/100.2/ADA279727

Cagle, Malcolm W. and Frank A. Manson. The Sea War in Korea. Annapolis, MD: United States Naval Institute, c1957. 555p. NPS/DKL Location: GENERAL DS920.A3 C2

AMERICAN

NUCLEAR

NPS/DKL Location: GENERAL V63.R54 A55 2007

NPS/DKL Location: GENERAL VA65.N3 A6

NPS/DKL Location: GENERAL VG93 .B2

NPS/DKL Location: GENERAL VA65.T48 B3

NPS/DKL Location: GENERAL V858 .U2 1994

NPS/DKL Location: BUCKLEY VA65.N3 B6

Duncan, Francis. *Rickover and the Nuclear Navy: The Discipline of Technology*.

377
NPS/DKL Location: GENERAL V63.R63 D86 2001

NPS/DKL Location: BUCKLEY CT18.I52 G67 2000

Abstract: How can nuclear powered submarines (SSNs) contribute to joint force protection? Are these submarines essential to a joint force commander's concept of operations? Would their absence significantly alter his branch and sequel plans? Although SSNs represent a significant combat capability, do they possess the necessary range of capabilities to enhance operational protection in a given theater? SSNs can be a force multiplier in the right scenario. 'The modern attack submarine is a versatile multi-mission warship that is more survivable than any other naval vessel in history.' However, just as the special operating forces complement ground troops, SSNs complement the naval forces. SSNs can not accomplish all tasks all the time, but the capabilities they bring to joint force operations can free other forces to act in contributing areas to accomplish the overall mission. This is their forte. The principle missions submarines can perform have grown tremendously from the pre-World War II tasks. These tasks included covert strike warfare, surface warfare, underway warfare, intelligence collection and surveillance, covert indication and warning, electronic warfare, special warfare, covert mine warfare, and battlegroup support. With so many capabilities available, the operational commander must rely on doctrine to incorporate these tasks into his concept of operations. This paper will attempt to articulate the fundamental principles to guide the use of SSNs in warfare. Just as air superiority against an adversary requires phasing of operations, so does undersea superiority. Submarines can best combine time and space with stealth to help prepare the littoral battlespace for future operations.
Electronic access: http://handle.dtic.mil/100.2/ADA328103

378

NPS/DKL Location: GENERAL VA65 .S394 J64 2006

The third volume to emerge from the General Economic Systems Project at Princeton University.
NPS/DKL Location: GENERAL V993 .K9

Abstract: By 2012, the reactor on the U.S. Navy's only deep-diving research submarine will be exhausted, making it necessary to either refuel the reactor or replace the submarine. If the Navy opts for a new submarine, what capabilities should it retain and what capabilities should be added? What would be its most important missions and what would be required for it to perform those missions? In this report, the authors worked with panels of qualified scientists, defense experts, and naval officers to develop a concept of operation for a possible replacement platform, analyzing which military and scientific missions should have the highest priorities. The authors conclude by offering a list of the highest-priority missions and two design concepts that would be best be able to achieve them.
NPS/DKL Location: GENERAL V857.5 .C65 2001
Electronic access: http://www.rand.org/publications/MR/MR1395/

NPS/DKL Location: GENERAL V857 .L29 1991

NPS/DKL Location: GENERAL V857.5 .L43 1999

Abstract: Of the 281 ships in the Navy at the end of FY2006, 55 were nuclear-powered attack Submarines (SSNs). The Navy wants to maintain in coming years a fleet of 313 ships, including 48 SSNs. The Navy is currently procuring Virginia (SSN-774) class SSNs. The First was procured in FY1998, a total of nine have been procured through FY2007, and the first two had entered service as of the end of FY2006. The FY2008-FY2013 Future Years Defense Plan (FYDP) proposes procuring one Virginia-class boat per year through FY2011, and then two boats per year starting in FY2012.

Electronic access: http://opencrs.com/document/RL32418/

NPS/DKL Location: GENERAL VA65.S394 O44 2007

NPS/DKL Location: GENERAL VA65.N3 U52 2004

NPS/DKL Location: GENERAL V858 .P7

NPS/DKL Location: GENERAL V858 .P63 2004

NPS/DKL Location: GENERAL VA65.T7 P7

NPS/DKL Location: GENERAL CT18.I52 P64 1982

Spanish translation of “The Sea and the Subs.”

NPS/DKL Location: GENERAL V858 .R3

NPS/DKL Location: GENERAL CT18.I52 R62 1992

Ruiz, C. Kenneth and John R. Bruning. The Luck of the Draw: The Memoir of a
NPS/DKL Location: BUCKLEY D783.5.P66 R85 2005

NPS/DKL Location: GENERAL V993.S2

German translation of “Nautilus 90 North.”

NPS/DKL Location: GENERAL V993.S65 1994

(Ph.D.) -- University of Edinburgh, 1988
Abstract: The main aim of the study is to document the development of US Fleet Ballistic Missile technology from its mid-1950s beginnings through to Trident II D5. This historical documentation is framed by a perspective which seeks to understand how technology evolves and what the relationship is between, to put it simply, technology and strategy, or technology and politics. Of particular interest in this case study is the relationship between technology and nuclear strategy. It is a commonplace assertion that technology is a dominant, determining factor in the arms race, that indeed there is a technological imperative. In particular there are many who argue that improvements in missile accuracies have driven changes in nuclear strategy away from counter-city retaliatory deterrence to war-fighting counter-force postures. Tracing the history of FBM development from Polaris, considered by many the archetypal counter-city deterrent, to Trident II, with hard-target kill capability comparable to MX, helps our understanding of this issue.

Abstract: This paper opens with an examination of existing legal restraints on naval forces and arms control agreements and concludes that the U.S. is already heavily engaged in naval arms control. Given the new international security environment and the new U.S. regionally-oriented national security and military strategies, the author then recommends a series of additional naval arms control measures that
should be taken: Exchanges of data, transparency, INCSEA, cooperative measures, an agreement on the laws of submarine warfare, abolishing NCND, no first tactical nuclear use at sea, NWFZs, advanced notification of operational-level exercises, environmental protection measures, controls over maritime technologies, armed escorts of nuclear shipments, new Roes, PALs, the resolution of outstanding political issues at sea, deep cuts in nuclear forces, CFE follow-on, limits on specific types of naval forces, geographic limits, expanded standing naval forces, and a renegotiation of the ABM Treaty. The paper then addresses verification and compliance issues. Author concludes that since the U.S. Navy has already managed to avoid major arms control while balanced on the precarious ‘slippery slope’, there is no reason to continue its stonewalling policies.

NPS/DKL Location: FEDDOCS D 208.14/2:NPS-NS-92-016
Electronic access: http://handle.dtic.mil/100.2/ADA259759

NPS/DKL Location: GENERAL HC110.D4 T95 1986

NPS/DKL Location: FEDDOCS Y 4.M 53:97-47

NPS/DKL Location: FEDDOCS Y 4.SE 2/1 A:995-96/16

NPS/DKL Location: GENERAL KF26 .S20 V.103 NO.4

Abstract: This Draft Environmental Impact Statement (DEIS) evaluates the environmental consequences of shock testing the SEAWOLF submarine at an offshore location. The submarine would be subjected to a series of five 4,536 kg (10,000 lb) explosive charge detonations of incrementally increasing intensity sometime between 1 April and 30 September 1997. The DEIS evaluates a 'no action' alternative and analyzes in detail two alternative areas offshore of Mayport, Florida and Norfolk, Virginia. Alternatives are compared with respect to project purpose and need, operational criteria, and environmental impacts. Most environmental impacts of shock testing would be similar at Mayport or Norfolk. These include minor and/or temporary impacts to the physical and biological environments and existing human uses of the area. However, the number of marine mammals potentially affected by the detonations would be about eight times lower at Mayport than at Norfolk. Thus, the preferred alternative is to shock test the SEAWOLF offshore of Mayport, Florida, with mitigation to minimize risk to marine mammals and turtles. If the Mayport area is selected, the shock tests would be conducted between 1 May and 30 September 1997 to minimize risk to sea turtles, which are more abundant at the Mayport area during April. The USS SEAWOLF is the first of a new class of submarines being acquired by the Navy. The class is expected to consist of three submarines, with the second currently under construction. SEAWOLF class submarines will be the largest and most capable fast attack submarines in the fleet. Features include reduced acoustic and electromagnetic signatures, improved speed, greater triaximum operating depth, greater ordnance capacity, and other technological improvements reflecting the state-of-the-art in submarine design.

Electronic access: handle.dtic.mil/100.2/ADA311510

Abstract: The purpose of this project is to shock test the SEAWOLF submarine so that the resultant data can be used to assess the survivability of the submarine. This project is needed because computer modeling and component testing on machines or in surrogates does not provide adequate information to assess the survivability of the submarine in accordance with Section 2366, Title 10, United States Code (10 USC 2366). Only by testing the submarine manned with the appropriate systems operating can the shock response of the entire ship, including the interaction of ship systems and components, be obtained and an adequate assessment of the survivability of the submarine be determined in accordance with 10 USC 2366. Shock tests have proven their value as recently as the Persian Gulf War when ships were able to survive battle damage and continue their mission because of ship design, crew training, and
survivability lessons learned during previous shock tests. The Final, specific site for shock testing would not be selected until 2 to 3 days before the test based on marine mammal and turtle surveys (see Section 4). Three weeks prior to the shock test, a single aerial survey would be conducted over the selected area (i.e., Mayport or Norfolk) to identify a single primary test site and two secondary test sites based on the lowest relative abundance of marine mammals and turtles. Two to three days prior to each detonation, an aerial survey would be conducted at the primary and secondary sites, and a final test site would be selected on the basis of scarcity of marine mammals and turtles. This would ensure that the final test site would be selected where shock testing poses the least risk to the marine environment.

Electronic access: http://handle.dtic.mil/100.2/ADA311509

Abstract: This FEIS evaluates the environmental consequences of shock testing the SEAWOLF submarine at an offshore location. The submarine would be subjected to a series of five 4,536 kg (10,000 lb) explosive charge detonations of incrementally increasing intensity sometime between 1 April and 30 September 2000. The FEIS evaluates a no action alternative and analyzes in detail two alternative areas offshore of Mayport, Florida and Norfolk, Virginia. Alternatives are compared with respect to project purpose and need, operational criteria, and environmental impacts. Most environmental impacts of shock testing would be similar at Mayport or Norfolk. These include minor and/or temporary impacts to the physical and biological environments and existing human uses of the area. Using 1995 survey data from both areas as the most appropriate basis for comparison, the risk of mortality and injury of marine mammals is about 5 to 7 times lower at Mayport than at Norfolk, whereas the risk to sea turtles is about the same at the two areas. Thus, the preferred alternative is to shock test the SEAWOLF offshore of Mayport, Florida, with mitigation to minimize risk to marine mammals and turtles. If the Mayport area is selected, the shock tests would be conducted between 1 May and 30 September to minimize risk to sea turtles, which may be more abundant there during April.

Electronic access: http://handle.dtic.mil/100.2/ADA346334

NPS/DKL Location: GENERAL V993 .U63

NPS/DKL Location: GENERAL V993 .F35 1996

NPS/DKL Location: GENERAL V993 .F35 1982

NPS/DKL Location: GENERAL V993 .F35 1990

Waller, Douglas C. **Big Red: Three Months on Board a Trident Nuclear Submarine.**

Abstract: For operational commanders, the use of military force today requires flexibility, efficiency, and careful risk management among joint forces. In light of these requirements, this paper examines the influence of the fast attack nuclear submarine (SSN) and the Joint Force Commander's (JFC) employment of SSNs as an operational-level asset. The history of submarine warfare provides many lessons regarding submarine employment. Although the JFC can use submarines to accomplish or support a broad scope of missions, optimum employment requires analysis of the characteristics, capabilities, and expertise of submarines. The intrinsic and enduring characteristics of the SSN are stealth, mobility, endurance, and flexibility. The SSN also possesses diverse capabilities that allow it to perform a number of missions in support of the operational commander. These include theater ISR, support of ground components and operations ashore, and attacks on sea-based threats and objectives. Matching the submarine's characteristics with these capabilities yields several employment principles. For the JFC, SSNs are flexible assets that are best employed operationally deep where autonomous, survivable, or enabling forces are required. As an operational asset, the SSN contributes directly to several of the JFC's operational functions. First, submarines are important to the JFC because of their role in operational intelligence. Because of their stealth and forward positions, SSNs are able to conduct ISR directed at the enemy's operational weaknesses and centers of gravity. Second, the SSN's mobility and endurance enable it to execute operational maneuver. Third, through their USW, SUW and MIW capabilities, SSNs provide superb operational protection of naval forces. Finally, the SSN's extensive operational reach and autonomy make it particularly effective at conducting operational fires. Effective employment of SSNs will help the JFC achieve leverage and freedom of action in the theater.

Electronic access: http://handle.dtic.mil/100.2/ADA348604

NPS/DKL Location: GENERAL VA65.N67 V95 2003

AMERICAN

PERSIAN GULF WAR

NPS/DKL Location: GENERAL DS79.72 .U55 1991

AMERICAN

WWI

Appeared in 2 parts in United States Institute Proceedings vol. 46, no. 6 [208] (June 1920) and no. 7 [209] July 1920.

NPS/DKL Location: GENERAL D619 .B3

Battey, George Magruder. 70,000 Miles on a Submarine Destroyer; or, The Reid Boat in the World War. Atlanta, The Webb & Vary company, 1919. 384p.
NPS/DKL Location: BUCKLEY D589.U6 B3 1919

NPS/DKL Location: GENERAL D589.U6 L5

NPS/DKL Location: BUCKLEY D589.U6 S6 1920

NPS/DKL Location: GENERAL D589.U6 S6 1984

NPS/DKL Location: GENERAL D595.U3 T4

AMERICAN WWII

Banning, Kendall. *Submarine! The Story of Undersea Fighters.* Random House, 1942. 51p. Contents: Submarine is born. Submersibles in the Civil War; Modern submarine gradually emerges; Test of the Submarine in war; Enemies that stalk the Submarine; How the modern Submarine is designed; Control room; Air for the Submariners; Prime weapon of the Submarine; Submarine rescue ships and rescue chambers; Some facts to remember about Submarines; Making of a Submariner; Submarine in action today. NPS/DKL Location: BUCKLEY VM365 .B2

Norwegian translation of “Submarine!”

Abstract: This paper analyzes the United States use of unrestricted submarine warfare against the Japanese in World War II. Within the framework of the principles of war, the paper critically analyzes the strategy of the use of submarines during the war and how the operational strategy changed during the course of the war. This paper also critically surveys the use (or misuse) of the key tenets of modern, fundamental military thought. Recommendations and observations are offered which are considered applicable to modern warfare.

USS Bowfin.

Polish translation of “Silent Victory.”

Author's note: During the closing stages of the war, Lockwood detailed his operations officer, Richard Voge, to write an official administrative and operational history of the submarine war. Voge was assisted in this large undertaking by W.J. Holmes, W.H. Hazard, D.S. Graham and H.J. Kuehn.

The Administrative History forms a portion of the Navy's unpublished known as "United States Naval Administration in World War II." It is subtitled "Submarine Commands, Volumes 1 and 2." Copies are on file in the Navy Library, Washington, D.C., and at the Submarine Force Library and Museum, Submarine Base, New London. The Administrative History deals with personnel, bases, submarine construction, repair and refit, communications, and other matters. The author made extensive use of these volumes and it grateful to the Submarine Force Library for their long-term loan.

The Operational History produced by Voge et al. is a massive document of more than 1,500 pages dealing with every conceivable operational aspect of the submarine War. No one attempting a serious submarine history should begin without consulting it. Generally it tells a positive story; the "skipper problem," for example, is not dealt with. However, the torpedo section contains a long and frank account of torpedo problems which the author has consulted extensively, along with other sources.

After the War, John M. Will, while attached to the Bureau of Personnel (Assistant Director of Training), hired a writer, Theodore Roscoe, to reduce the Operational History to publishable form. The result was United States Submarine Operations in World War II, published in 1949 by the U.S. Naval Institute, Annapolis, Maryland. It is in effect a truncated version of the Operational History (sometimes reproduced word for word). Since it was produced by the navy, it too is a positive story—the Operational History in a more manageable form. This work was published in condensed form in paperback by Bantam Books, 1976, under the title Pigboats [i.e., Pig Boats]. pp. 979-980.

NPS/DKL Location: GENERAL D783.B6

Discussion of a proposed new submarine with sixteen inch gun, invented by N. M. Hopkins.

Bown, Robert C. **The Jallao at War: Memories of Lcdr. Robert C. Bown, USNR Ret.**
St. Louis, MO: R.C. Bown, 2005. 71 l.

NPS/DKL Location: GENERAL D782.J33 C35 1995

At least 800 soldiers and civilian prisoners of war lost their lives on July 1, 1942, when the ship on which they were sent from Rabaul to Japan, the Montevideo Maru, was sunk off the north Coast of Luzon by the US Submarine Sturgeon (SS-187).
-- Wikipedia, the free Encyclopedia
NPS/DKL Location: GENERAL D783.5.S8 C2

NPS/DKL Location: BUCKLEY D783.C3

French translation of "Battle Below."

NPS/DKL Location: REFERENCE V858.C47 2000

NPS/DKL Location: GENERAL D783.5.G73 C55 1999

Conner, Claude C. *Nothing Friendly in the Vicinity: My Patrols on the Submarine
NPS/DKL Location: GENERAL D783 .C66 2004

Abstract: The Battle for Leyte Gulf was the greatest naval battle of all time in terms of number of ships involved, losses of ships and aircraft and size of area over which the battle was fought. The American victory effectively marked the end of the Japanese Navy in World War Two. The battle was marked by furious surface, air and submarine action at sea and fierce fighting ashore on Leyte Island by US Army and Marine ground forces. While U.S. Navy dealt devastating losses to the Japanese fleet and claimed a resounding victory, the battle continues to be discussed for the significant operational, tactical and judgmental errors made by commanders of both sides. This study examines the errors made, the reasons for the errors and the effect the errors had toward deciding the outcome of this battle. It investigates the Japanese plan for the battle and the Japanese philosophy toward the war in 1944 and how these issues affected the outcome. It also considers the American chain of command in the Pacific theater and the problems caused by that unique setup. The paper discusses what we have learned, if anything from Leyte Gulf, and if in a similar situation would we make the same mistakes again. Finally the paper evaluates the composite effect of errors on both sides.
NPS/DKL Location: MICROFORM ADA209582

NPS/DKL Location: GENERAL D783.5 .W3 D39 2000

Dienesch, Robert M. Submarine Against the Rising Sun: The Impact of Radar on the American Submarine War in 1943, the Year of Change. Fredericton: University of New Brunswick. 1996. 227 l.
Thesis (M.A.) -- University of New Brunswick, Department of History 1996.
Abstract: In the opening year of World War II, the American submarine fleet faced many problems that limited their ability to sink Japanese merchant shipping. By 1944, most of these had been overcome, leading to the destruction of millions of tons of shipping and the establishment of an effective blockade of the Japanese home islands in 1945. The reason for this change in effectiveness during 1943 has never really been adequately explained. The accepted explanation is that three faults crippled US submarine performance in 1942: Faulty torpedoes, over cautious captains and a lack of submarines. When these were fixed, historians argue, submarine effectiveness greatly improved. However, this explanation does not seem complete. This thesis demonstrates that the adoption of an effective surface search radar in 1943 was the catalyst that fused all the more familiar corrections together, making the submarine fleet effective by late 1943.

NPS/DKL Location: GENERAL D777.5 .A92 D56 1997

Fluckey, Eugene B. *Thunder Below!: The USS Barb Revolutionizes Submarine Warfare in World War II.* Urbana: University of Illinois Press, c1992. 444p. Publisher's synopsis: The thunderous roar of exploding depth charges was a familiar and comforting sound to the crew members of the USS Barb, who frequently found themselves somewhere between enemy fire and Davy Jones's locker.

Under the leadership of her fearless skipper, Captain Gene Fluckey, the Barb sank the greatest tonnage of any American sub in World War II. At the same time, the Barb did far more than merely sink ships—she changed forever the way submarines stalk and kill their prey.

This is a gripping adventure chock-full of "you-are-there" moments. Fluckey has drawn on logs, reports, letters, interviews, and a recently discovered illegal diary kept by one of his torpedomen. And in a fascinating twist, he uses archival documents from the Japanese Navy to give its version of events.

The unique story of the Barb begins with its men, who had the confidence to become unbeatable. Each team helped develop innovative ideas, new tactics, and new strategies. All strove for personal excellence, and success became contagious. Instead of lying in wait under the waves, the USS Barb pursued enemy ships on the surface, attacking in the swift and precise style of torpedo boats. She was the first sub to use rocket missiles and to creep up on enemy convoys at night, joining the flank escort line from astern, darting in and out as she sank ships up the column.

Surface-cruising, diving only to escape, "Luckey Fluckey" relentlessly patrolled the Pacific, driving his boat and crew to their limits. There can be no greater contrast to modern warfare's long-distance, videogame style of battle than the exploits of the captain and crew of the USS Barb, where they sub, out of ammunition, actually rammed an enemy ship until it sank.

Thunder Below! is a first-rate, true-life, inspirational story of the courage and heroism of ordinary men under fire. -- http://www.press.uillinois.edu/books/catalog/23wqh3fb9780252019258.html

NPS/DKL Location: GENERAL D783.5 .B36 F58 1992

USS Halibut.

NPS/DKL Location: GENERAL D783.5.H26 G35 2007

Publisher's synopsis: The stirring account of how the U.S. Navy's inferior torpedo program caught up to those of Japan and Germany and helped win World War II.
"The U.S. Navy's failure to provide its submarines with effective torpedoes was one of the great near disasters of the Second World War. Gannon offers us a finely crafted, thoroughly informative study of the failure and the successful technical effort to develop winning weapons for the fleet."—Harvey M. Sapolsky, Massachusetts Institute of Technology
Ultimately, World War II was the first war won by technology, but within only a few weeks after the war began, the U.S. Navy realized its torpedo program was a dismal failure. Submarine skippers reported that most of their torpedoes were either missing the targets or failing to explode if they did hit. The United States had to work fast if it expected to compete with the Japanese Long Lance, the biggest and fastest torpedo in the world, and Germany's electric and sonar models. Hellions of the Deep tells the dramatic story of how Navy planners threw aside the careful procedures of peacetime science and initiated "radical research": Gathering together the nation's best scientists and engineers in huge research centers and giving them freedom of experimentation to create sophisticated weaponry with a single goal—winning the war.

The largest center for torpedo work was a requisitioned gymnasium at Harvard University, where the most famous names in science worked with the best graduate students from all around the country at the business of war. They had to produce tangible weapons, to consider production and supply tactics, to take orders from the military, and, in many cases, also to teach the military how to use the weapons they developed. World War II grew into a chess match played by scientists and physicists, and it became the only war in history to be won by weapons invented during the conflict.
For this book, Robert Gannon conducted numerous interviews over a Twenty-year period with scientists, engineers, physicists, submarine skippers, and Navy bureaucrats, all involved in the development of the advanced weapons technology that won the war. While the search for new weapons was deadly serious, stretching imagination and resourcefulness to the limit each day, the need was obvious: American ships were being blown up daily just outside the Boston harbor. These oral histories reveal that, in retrospect, surprising even to those who went through it, the search for the "Hellions of the Deep" was, for many, the most exciting period of their lives. -- http://www.psupress.org/books/titles/0-271-01508-X.html

NPS/DKL Location: GENERAL V850 .G36 1996

NPS/DKL Location: GENERAL D769.87.A4 G2

Contents: An autobiographical sketch of the author; World War II: The period from May, 1946 to June, 1948; My personal readiness for this experience; World War II experiences at the USPHS Hospital, Fort Worth, Texas; Submarine duty and its effects on the manifestations of a mental disorder; Surface ships and mental disorders occurring aboard them; Effect of patient load on the psychiatrist; The so-called "Insane" patients from World War I; Observations on selected World War II patients; Narcotic and drug abuse treatment; World War II effects noted and observed after June, 1948.
NPS/DKL Location: GENERAL RC550 .G65 2004

NPS/DKL Location: GENERAL D783 .G8

NPS/DKL Location: GENERAL D783 .H27 2000
NPS/DKL Location: BUCKLEY D783 H3

Contents: Naval Chronology, WW II: A) 1939; b) 1940; c) 1941; d) 1942; e) 1943; f) 1944; g) 1945. -- U.S. Naval Losses. -- British Submarine Losses. -- Japanese Submarine Losses. -- German Submarine Losses. -- Italian Submarine Losses. --Principal civilian Officials and Naval Officers in Command, 7 December 1941-2 September 1945.

NPS/DKL Location: GENERAL D783 H58 1994

NPS/DKL Location: GENERAL D810.S7 H74

NPS/DKL Location: GENERAL D783 H7

Holmes, Wilfred Jay. **Undersea Victory, the Influence of Submarine Operations on the War in the Pacific.** Garden City, NY, Doubleday, 1966. 6 v. in 6 portfolios and 1 case.
University of Hawaii Manoa: Hamilton Pacific Rare Books-Library Use Only

Holwitt, Joel Ira. "Execute Against Japan": Freedom-of-the-Seas, the U.S. Navy, Fleet Submarines, and the U.S. Decision to Conduct Unrestricted Warfare, 1919-
Abstract: On 7 December 1941, the U.S. Navy began unrestricted warfare against Japan, attacking "noncombatant" Japanese merchant ships. The decision violated international law and directly cost the lives of thousands of civilian Japanese sailors as well as possibly hundreds of thousands of Japanese civilians on shore. The conditions for unrestricted warfare were created during the interwar period by impractical naval treaties that did not prohibit armed merchant ships that could easily sink surfaced submarines attempting to conduct search-and-seizure operations. Many U.S. naval officers understood the importance of commerce warfare and they suggested changes like prohibiting armed merchant ships in order to permit legitimate submarine warfare. However, the U.S. Navy's fleet submarine was designed not as a commerce raider but as a warship that could operate in support of the battle fleet in the Pacific Ocean. Fortunately, the abilities required for such a difficult mission gave U.S. submarines the versatility to shift from naval warfare to commerce warfare when the time came. The decision to conduct unrestricted warfare began to coalesce with the acceptance of Plan Dog as the United States' national military strategy in December 1940. By late September 1941, Chief of Naval Operations Admiral Harold R. Stark and his Director of War Plans, Rear Admiral Richmond K. Turner, had decided to commence unrestricted warfare almost immediately upon the outbreak of hostilities. They did so with no documented approval from their civilian chain-of-command and in contravention of repeated public statements by President Franklin D. Roosevelt, who urged defense of absolute freedom-of-the-seas. Stark, Turner, and other naval leaders had a number of reasons for conducting unrestricted warfare. Chief among these was a pragmatic strategic objective: To economically strangle Japan by completely cutting off the shipping lanes. The American strategy was also influenced by decades of naval training, as well as culturally inculcated Eurocentricism and racism. Although there were a number of ramifications of U.S. unrestricted warfare, the most important and lasting ramifications was the end of previous paradigms of freedom-of-the-seas and the introduction of a new and more pragmatic freedom-of-the-seas that classified merchant sailors as combatants and their cargoes as legitimate military targets. This study is the story of that transition.

NPS/DKL Location: GENERAL CT32 .M461 1993

NPS/DKL Location: D783.5 .B68 H69 1983

Czech translation of "Bowfin."

USS Harder (SS-257).

Hoyt, Edwin Palmer. **Submarines at War: The History of the American Silent**

Abstract: U.S. submarine operational failure led to tactical insignificance at the Battle of Midway. This was a remarkable outcome since interwar U.S. policy, submarine design, and fleet exercises dictated fleet support by submarines. From today's view this failure is neither unique to a platform nor specific to an operation. It can and does cross all services. The operational failure at Midway resulted from the failure to abide by the operational art factors of synergy, simultaneity and depth, anticipation, and leverage. These were compounded by failure to provide adequate C3I system operational support. These failures were a consequence of the submarine force, and the Navy, not adequately addressing and training on operational art during the interwar years. Today, Navy doctrine and training still have not adequately addressed operational art though it is an essential part of joint warfare. The present use of exercises designed only to test and build tactical proficiency of air, land, or sea forces risk the same type of operational failure in future wars. Suggestions on developing operational art proficiency through innovation as a function of today's forces, budgets, and training technology are presented for consideration.
Electronic access: http://handle.dtic.mil/100.2/ADA311656

Contents: Forewords by Rear Adm. Maurice H. Rindskopf and Lt. Comdr. Max Shean; First arrivals; The Navy comes ashore; S-Boats; S-Boats in the Solomons; New tasks; New Submarines arrive; Boats from Pearl Harbor; The compound and the city; A new leader; Hard times; Further operations; Supporting the coastwatchers; Buildup in Brisbane; Leave in Queensland; The rest centers; Testing and training; Progress; Milne Bay; A new Squadron; Philippine "spy Squadron"; Final success; Closing down; The British arrive; Conclusion; Appendix 1. American Submarines using Brisbane Base; Appendix 2. Enemy shipping sunk by Submarines of TF42 and TF72.
NPS/DKL Location: GENERAL D783 .J66 2004

NPS/DKL Location: GENERAL V857 .K28 1993

Contents: Inside a World War II "Diesel Boat"; USS Cod (SS-224); SS Drum (SS-228); USS Silversides
NPS/DKL Location: GENERAL VA65.B38 K45 2005

NPS/DKL Location: GENERAL VA65.A57 H46 2004

NPS/DKL Location: GENERAL D780 .K56 1999

NPS/DKL Location: BUCKLEY D783 .K56 1996

Contents: Black Sailors and the Evolution of the Steward's Branch in the United States Navy from 1775 to 1939. -- Overview of the Steward's Branch of the United States Navy During World War II: Becoming a Steward: Joining the Navy: Voluntary Enlistment; Joining the Navy via the Draft; The Navy Boot Camp Experience; Black Sailors and the Navy's Rating System During the War; Becoming a Submariner: From Boot Camp to Submarines; From the Surface Navy to the Silent Service; Transfer from a Tender, Relief Crew, or Shore Duty. -- Life as a Wartime Submariner: The Daily Routine of a Submarine Steward; Qualifying as a Submariner; Battle-Station Action; The Men of the O-, R-, and S-Class Boats; Other Shipboard Activities; Crew Relations Aboard the Boat; Rest and Relaxation Ashore; Leaving the Boat; At War's End; The Submarine Navy During the Postwar Years: The End of the 1940s and President Truman's Desegregation Order. -- The 1950s: Enter the Nuclear Age. -- The 1960s: Boomers and Fast Attacks. -- 1970--1975: An End and a Beginning. -- Histories of Black Submariners: Carroll Louden Allen; Jesse Allen; William Allison; Bruce Anderson; Dave Ball; George Bracey; Arthur Brown; Mack Butler; Wallace Coleman; Robert Coley; David Collier; Clark Cooper; Tyree Cornish; Joseph Cross; Earnest Danford; Alonza Davis; Everett Davis; Lewis Davis; Shirley Day; Jesse Debro; Nathan Dogan; Russell Donan; Donald Fenner; LC Fisher; Robert Goens; John Gray; William Green; Harold Hale; Alfred Hall; Leslie Hamilton; L.T. Hammond; John Harris; Arthur Haynes; Curtis Hill; Lonnie Jackson; Zedell Jackson; Willie James; Isaac Johnson; Woodrow Wilson Jones; Carl Kimmons; William Knight; Richard Lucas; George Washington Lytle; Sammie Major; Elvin Mayo; Hosey Mays; Edward McNair; Bert Minor; Eugene Mosley, Jr; R.D. Mosley; William Murray; Edward Neely; Killrainie Newton; Claude Palmer, Jr; Walter Patrick; Roscoe Pennington; William Perry; John Phillips; Paul Ragland; Charles Richardson; Anderson Royal; Albert Rozar; Leonard Rozar; Harry Senior; Spaulding Settle; Mason Smith; Albert Soles; Jake Spurlock; Jim Stallings; Lacey Stevenson; Ezell "Tommy" Strong; O'Neal Thaxton; Hadwick Thompson;

Russian translation of “Sink 'Em All.”

NPS/DKL Location: GENERAL D773 .L77

French translation of "Hellcats of the Sea."

Polish translation of “Hellcats of the Sea.”

NPS/DKL Location: GENERAL V858 .L8

NPS/DKL Location: BUCKLEY D780 .L8

Russian translation of "Hellcats of the Sea."

NPS/DKL Location: BUCKLEY D783.5 .H3 L8

NPS/DKL Location: BUCKLEY D783.5.T35 U28 2005

NPS/DKL Location: BUCKLEY D783.5.W3 U27 2005

NPS/DKL Location: GENERAL D783 .M45 1990

NPS/DKL Location: BUCKLEY D790 .M5

NPS/DKL Location: ON ORDER??

NPS/DKL Location: GENERAL D767.9 .M42 2004

NPS/DKL Location: GENERAL D783.5.P4 M53 2000

NPS/DKL Location: GENERAL D783 .M55 2000

Spanish translation of “Coral Sea, Midway and Submarine Actions, May 1942-August
1942," v. 4 of History of United States Naval Operations in World War II.

NPS/DKL Location: GENERAL V850 .N49 2006

NPS/DKL Location: GENERAL D783.5 .T35 O43

NPS/DKL Location: GENERAL CT15 .K36 1989

"The most decorated surviving US Navy Submarine from World War II -- now berthed in Muskegon, Michigan."--Cover.

Abstract: Friendly fire in naval warfare is a virtually unstudied phenomenon. In order to prepare future U.S. naval forces for the inevitable losses that will occur as a result of fratricide, we must look to the past to discover the role it has played in this century's wars at sea. This study examines the significance of friendly fire in U.S. naval surface and submarine operations during World War II and argues that the occurrence of self-inflicted casualties is a function primarily of the frequency and intensity of naval combat. Additionally, the causes of and factors contributing to naval fratricide are identified and discussed in detail using historical cases. The crucial result of this thesis is that even the most technologically advanced and highly trained force is subject to surprisingly high rates of friendly fire. Only when the vulnerability of every navy to fratricide is officially acknowledged can technology and doctrine be developed to reduce the risk of accidentally engaging one's own forces.
Electronic access: http://handle.dtic.mil/100.2/ADA374561

Ostlund, Mike. **Find 'Em, Chase 'Em, Sink 'Em: The Mysterious Loss of the WWII Submarine, "USS Gudgeon."** Guilford, CT: Lyons Press, 2006. 471p.

NPS/DKL Location: GENERAL D743.5 .P56 1991

HMS Seraph / "USS Seraph" During Operation Kingpin.
NPS/DKL Location: BUCKLEY D772.S4 R6

NPS/DKL Location: BUCKLEY D783 .R7

NPS/DKL Location: GENERAL D783 .R83 1995

NPS/DKL Location: GENERAL CT18.U17 R83 1994

NPS/DKL Location: GENERAL D783.5 .R37 S27 1995

Contents: First War patrol; Second War patrol; Third War patrol; Fourth War patrol; Fifth War patrol. -- Appendix 1. Attack summaries. -- Appendix 2. Commanding Officers.

NPS/DKL Location: GENERAL V63.S38 A3 1988

NPS/DKL Location: GENERAL D783.5.B8 S5 2004

NPS/DKL Location: GENERAL D767.917 .S65 2003

NPS/DKL Location: GENERAL D783.5 .C74 S63 2001

NPS/DKL Location: GENERAL D783.5 .W3 S75 1999

NPS/DKL Location: GENERAL D783.5.W3 S75 1999

NPS/DKL Location: BUCKLEY D783 .S73 1979

Contents: Prologue: Presumed Lost;Retreating Asiatic Fleet; Construction; Sam Dealey; Unfriendly Fire; Mush; Pearl; Lifeguard Duty; Ralph Christie; Fremantle; Python; Special Mission; Departure; Exmouth Gulf; Attack on the Minatsuki; Attack on the Hayanami; The Pickup; Attack on the Tanikaze; Reconnaissance; Battle of the Philippine Sea; Darwin; Admiral on Board; More Commandos for Submarines; Apotheosis; Wolf Pack; Last Attack; Medal of Honor; War's End.
NPS/DKL Location: GENERAL D783.5 .H3 S78 2006
Published in condensed form in Harper's magazine under the title: "The strange Cruise of the yawl Zaida."
NPS/DKL Location: BUCKLEY D783.5.C6 T4

NPS/DKL Location: GENERAL D783.5.S5 T8

NPS/DKL Location: GENERAL D783.O43 T86 2001

NPS/DKL Location: GENERAL D783.U6

NPS/DKL Location: BUCKLEY D783.U6 1949

NPS/DKL Location: GENERAL D783.U62

History of the Gato, Balco and Trench class Submarines

Watrous, Allen E. *Encounter!: The Timosa [Tinosa] in Combat*. 1st ed. Manchester,
On 24 July, 1943, Tinosa encountered the cargo ship Tonan Maru no. 3 sailing from Palau to Truk. Tinosa found itself in a favorable firing position and fired on Tonan Maru no. 3, but was unable to do considerable damage to the vessel, even after firing all save one of the boat's torpedoes at the ship, due to the faulty design of the magnetic detonators of the Mark 14 Torpedo. Afterwards, the boat's skipper, Lieutenant Commander L. R. Daspit, ordered Tinosa to Pearl Harbor for resupply. While there, the incident was logged with Rear Admiral Charles Lockwood, commander of all American submarines in the Southwest Pacific. It was Tinosa's attack on Tonan Maru no. 3 that finally convinced the Navy that the torpedoes were unacceptably faulty, and changes were made to reduce the chance of misfires.

NPS/DKL Location: GENERAL D767 .W47

Contents: Black Sunday; The fruits of war; A tough row to hoe; Hell on earth; Damn these Torpedoes; School days; The end of the beginning; Ready for war; At home in the caboose; Abortive Attack; Just stay loose; Feather Merchant third class; The road to Tokyo; The finest Submarine Commander; The fate of the empire; The death of innocents; Return to the Philippines; Disaster at sea; A lesson in cruelty; A writhing, twisting maelstrom; Bear the unbearable.

“Covers the United States Navy WWII era submarines of the Gato, Balao, and Tench classes and how they evolved into primary front line forces in the Pacific War Against Japan.”

"Names indexed by state."--Cover.

Electronic access: http://www.subvetpaul.com/Diedwwii.htm

Abstract: After WWI, Army airmen like Billy Mitchell, in a bid for service independence, touted land-based air power's dominance over ships. Later, airmen at the Air Corps Tactical School developed a theory of independent air power application based on strategic bombing. These airmen persuaded Congress to purchase the tools to implement strategic bombing—fleets of heavy bombers—by citing these aircraft as optimum for defending the US coasts against enemy ships. However, when the opportunity to test the efficacy of bombers against ships presented itself in WWII's Pacific Theater, Army Air Force (AAF) leaders proved reluctant to throw their full support behind such an effort. A key aspect of the US Navy's Pacific strategy was an intense campaign against Japanese commercial shipping. This blockade, primarily targeting oil after late 1943, was spearheaded by US Navy submarines. A blockade proved the most effective means of attacking Japan's oil, although AAF leaders preferred strategic bombing of the Japanese home islands, including oil facilities, over blockade support. This thesis analyzes the campaign against Japanese oil to explore why an oil blockade was effective against Japan and, more important, to examine how service parochialism distorted the development of a rational military strategy in the Pacific Theater. The US will not likely enjoy such luxury again. Hence, this study's implications and recommendation concern the future of the Air Force's maritime role. After WWII, the USAF let their maritime capability atrophy. The USAF and US Navy, fearing an emergent Soviet naval threat, revitalized USAF maritime capabilities in the 70s and 80s. However, with the Cold War's end, the emergence of "hyperwar" airpower theory, and slashed defense budgets, the USAF now finds itself with little maritime capability once more. While this may be an appropriate course for today, tomorrow's strategic environment may require the USAF to maintain a robust, fast response maritime capability.

ELECTRONIC access: http://handle.dtic.mil/100.2/ADA425684

NPS/DKL Location: BUCKLEY VM365 .Z7

SUBMARINES

ARGENTINIAN

Abstract: The virtually unknown operations of the Argentinian Type-209 diesel-electric submarine ARA San Luis during the Falkland Islands war highlights the significance of a littoral submarine threat to naval operations. As the U.S. Navy focuses on future participation in joint operations in the littoral environment, operational planners must carefully assess the risk posed by a capable regional submarine force. Third World submarine force capabilities are improving significantly as new submarine technology and advanced weapons systems are incorporated into many Third World submarine forces. The potential impact that a future adversary's submarine operations could have on currently envisioned naval operations must be carefully evaluated. In preparing to counter a potential littoral submarine threat, the U.S. Navy should: (1) closely monitor and evaluate Third World submarine proliferation issues and current capabilities, (2) emphasize shallow water ASW tactical development and training, (3) develop technologies to exploit the shallow water environment, and (4) be prepared to incorporate an effective
ASW strategy into future littoral operations.
Electronic access: http://handle.dtic.mil/100.2/ADA293726

AUSTRALIAN

GENERAL

NPS/TKL Location: GENERAL V859.A8 B35 2001

Topmill Pty. Ltd. **Australian Seapower: Submarines.** Marrickville, NSW: Topmill,

Contents: No. 1. Major warships; no. 2. Australian Submarines, destroyers and escorts; no.3. Maritime patrol; Helicopter ships, sunmersibles, amphivious, mine warfare and patrol craft; no.4. New construction ships, and auxiliaries. - no. 5. Australia's Navy in the Second World War.

AUSTRALIAN

WWI

Includes information and photographs about the discovery and documentation of the wreck of the Australian Submarine AE2 scuttled off the Gallipoli Peninsula, Turkey, During World War 1. The site includes underwater photography by research team leader Dr Mark Spencer.

NPS/DKL Location: GENERAL D590 .B74

Stroker, Henry. **Straws in the Wind.** London: Herbert Jenkins, 1925. 315p.

SUBMARINES -- AUSTRIAN

NPS/DKL Location: BUCKLEY D568.3 .W5

NPS/DKL Location: REFERENCE V210 .M6513 2004

NPS/DKL Location: GENERAL CT20.R3 T73 1920
BRAZILIAN

BRITISH

GENERAL

NPS/DKL Location: GENERAL V767.B83 2000

NPS/DKL Location: GENERAL VM365.B9 V.1

NPS/DKL Location: REFERENCE V859.G7 C63 1982

Abstract: Nuclear power has several unique advantages over other air independent energy sources for nuclear combat submarines. An inherently safe, small nuclear reactor, capable of supply the hotel load of the Victoria Class submarines, has been conceptually developed. The reactor is designed to complement the existing diesel electric power generation plant presently onboard the submarine. The reactor, rated at greater than 1 MW thermal, will supply electricity to the submarine's batteries through an organic Rankine cycle energy conversion plant at 200 kW. This load will increase the operational envelope of the submarine by providing up to 28 continuous days submerged, allowing for an enhanced indiscretion ratio (ratio of time spent on the surface versus time submerged) and a limited under ice capability. The power plant can be fitted into the existing submarine by inserting a 6 m hull plug. With its simplistic design and inherent safety features, the reactor plant will require a minimal addition to the crew.

Preston, Antony. *The Royal Navy Submarine Service: A Centennial History.* London: Conway Maritime, 2001. 192p. Summary: In honor of the one hundredth anniversary of the Royal Naval Submarine Service, renowned naval historian Antony Preston has written a day-by-day account of the history and achievements of the Royal Navy's submarine fleet. From the Controversial launch of the Holland One in 1901 through the modern nuclear submarine of today, Preston celebrates the heroic feats and everyday life above and under the sea. His chronological analysis is rich in such details as the award of nine Victoria Crosses, the use of caged mice to detect exhaust gases in early submarines, and the fact that during the peak of the Battle of the Atlantic the chances of a submarine returning from patrol were only 65 percent. Published in association with the Royal Navy Submarine Museum in Gosport, England, this volume is a noteworthy centennial commemorative of Great Britain's silent service.

NPS/DKL Location: GENERAL V859.G7 S8X 1999

BRITISH

NUCLEAR

Contents: V. 1. Sustaining design and production resources; John F. Schank, Jessie Riposo, J.L. Birkler, James Chiesa. v. 3. Options for initial fuelling; Raj Raman, Robert Murphy, Laurence Smallman, John F. Schank, J.L. Birkler, James Chiesa.

Abstract: V. 1: The complexity and uniqueness of a nuclear submarine require special skills, facilities, and oversight not supported by other shipbuilding programmes. In fact, a single shipyard, Barrow-in-Furness, designs and builds the United Kingdom's nuclear submarines, and many of the vendors that support submarine construction are sole-source providers. With such specialisation, in addition to a limited design and production demand, there is concern about whether the submarine industrial base can maintain its viability into the future. This report seeks to determine what actions should be taken to maintain nuclear submarine design capabilities and how nuclear submarine production should be scheduled for efficient use of the industrial base. Based on their findings, the authors recommend that the Ministry of Defence determine the scheduling of construction for future submarine contracts as soon as possible; plan to retain a design core of designers, engineers, and draughtsmen during periods of reduced demand; and take steps towards collaboration with other countries. v. 3: Currently in the United Kingdom, BAE Systems' Barrow-in-Furness shipyard builds and fuels new submarines, while Devonport Management Limited (DML) refuels existing submarines-once their initial fuel load is depleted-and defuels them at retirement. Cost increases in maintaining regulating licenses at both facilities have led the UK Ministry of Defence (MOD) to consider the possibility of consolidating its nuclear fuel-handling capabilities at the existing refuelling site at DML. Consolidation would, however, have complex implications for cost and scheduling of the Astute programme, which is already under way. The authors of this report compare various aspects of the two shipyards, including facility conflicts, workload, nuclear regulation, and contractual issues, in regard to three cases hypothesized for distributing the share of Astute's fuelling between the yards. As a result of this analysis, it is recommended that the MOD not consider refuelling the Astute first of class at DML. The authors also look briefly at BAE Systems' recent proposal to fuel the submarines at Barrow in a way that reduces the risks of nuclear accidents and recommend that the MOD take immediate action in reviewing this proposal. They also suggest that the MOD promptly examine the transportation challenges associated with moving the Astute submarines from the Barrow docks to the open sea.

NPS/DKL Location: GENERAL V859.G7 U55 2005

BRITISH

WWI

By “Klaxon.”

NPS/DKL Location: BUCKLEY D593 .C16

NPS/DKL Location: BUCKLEY D593 .C2

"Narrating the naval career of Commander Godfrey Herbert."

Sequel to author's work: Fighting the U-Boats.
NPS/DKL Location: BUCKLEY D593 .C38

NPS/DKL Location: BUCKLEY D580 .C4

216p.
NPS/DKL Location: BUCKLEY D593 .C4

NPS/DKL Location: BUCKLEY D581 .C4

Synopsis: This book is a landmark history of submarine warfare during World War One. An-ex submariner, the author captures the very essence of what is what like to operate in these new and lethal craft. This periscope eye view introduces the reader to the great submarine commanders, the tactics they employed and the often-futile attempts made to sink them.

NPS/DKL Location: GENERAL D594 .D44

NPS/DKL Location: BUCKLEY V859.G7 E2

Contents: I. The Cruiser period.--II. From the opening of the Submarine Campaign to the appointment of the shipping Controller.--III. The period of unrestricted Submarine warfare.

Russian translation of “The German Submarine War, 1914-1918.”

Jellicoe, John Rushworth Jellicoe, Earl. **The Crisis of the Naval War.** New York:
George H. Doran company, 1921. 331p.
NPS/DKL Location: GENERAL D581 .J4

German translation of two works: “The Grand Fleet” and “Crisis of the Naval War.”

NPS/DKL Location: BUCKLEY D593 .J4

German translation of “The Submarine peril.”

NPS/DKL Location: GENERAL V859.G7 S82 2001

NPS/DKL Location: BUCKLEY D593 .M3

NPS/DKL Location: ON ORDER
NPS/DKL Location: GENERAL D568.3 .S5

NPS/DKL Location: GENERAL D619 .S6

NPS/DKL Location: BUCKLEY D568.3 .W5

Wilson, Herbert Wrigley. **Hush; or The Hydrophone Service.** London, Mills & Boon, ltd., 1920. 188p.

NPS/DKL Location: GENERAL D593 .W53 1988

BRITISH

WWII

Synopsis: "Joe's length of service in submarines and the breadth of his experience puts him in a special and rare category, and the account that he has written is a unique record, in peace and war, of submarine life...." Vice Admiral Sir Ian McIntosh, KBE, DSO, MBE, DSC. After six years in the Royal Navy, Joel Blamey was conscripted into Britain's submarine service in 1926, aged 22. He went on to serve an unprecedented Twenty-eight years as a submariner, surviving both peacetime accidents and World War Two. At the age of Fifty, Joe returned to general service. He served on several submarines, surviving many hair-raising accidents, such as hitting an underwater pinnacle in Sidon and a collision in Seahorse, from which he was transferred before it was lost to enemy action. While Joel served in Porpoise, it supplied Malta with fuel and ammunition and sank several supply ships. The captured U570 was shortly under his jurisdiction. He also later survived almost certain destruction in Strongbow. In all Joel survived more than two hundred depth charges.

NPS/DKL Location: GENERAL VA454 .D45 1995

Bruce, Henry J. **Twenty Years Under the Sea.** S. Paul, 1939. 228p.

NPS/DKL Location: BUCKLEY VM981 .B8

NPS/DKL Location: GENERAL D784.G7 B94

NPS/DKL Location: BUCKLEY D780 .C4

Chalmers, William Scott. **Max Horton and the Western Approaches; a Biography of}

NPS/DKL Location: GENERAL D780 .C65 1982

NPS/ DKL Location: GENERAL D784.G7 D52 1999

Captured U-570 commissioned into the Royal Navy as HMS Graph.

Appeared, in part, in Blackwood's magazine, "From a Submariner's notebook."

NPS/ DKL Location: GENERAL D784.G7 H2

Contents: Naval Chronology, WW II: A) 1939; b) 1940; c) 1941; d) 1942; e) 1943; f) 1944; g) 1945. -- U.S. Naval Losses. -- British Submarine Losses. -- Japanese Submarine Losses. -- German Submarine Losses. -- Italian Submarine Losses. --Principal civilian Officials and Naval Officers in Command, 7 December 1941-2 September 1945.

NPS/DKL Location: GENERAL D784.G7 J5

NPS/DKL Location: BUCKLEY D770 .K2

NPS/DKL Location: GENERAL/BUCKLEY V859.G7 K47 1990

Revised edition of "The Stick and the Stars."

Thesis -- (PhD (Arts)), King’s College Department of War Studies, 2004.

Sequel to “Unbroken, the Story of a Submarine.”

Originally published: London, Kimber, 1971, as “British Submarines at War, 1939-1945.”

NPS/DKL Location: GENERAL D784.G7 M2

Synopsis: During the bleak, heartbreaking days of early 1942, when beleaguered Malta was reeling under bombardment and blockade and Rommel was making his last desperate thrust towards Egypt, only one British submarine was operating in the western Mediterranean - the tiny, 600-ton Unbroken. In twelve months in the Med, Unbroken sank over 30,000 tons of enemy shipping, took part in four secret operations, three successful gun actions, and survived a total of over 400 depth charges, as well as innumerable air and surface attacks. This account of the 26-year-old Alastair Mars' command of this outstandingly successful submarine embraces her construction, sea trials and voyage to Gibraltar preparatory to her vital role in the Mediterranean. Once there, she was responsible for the destruction of two Italian cruisers and played a pivotal part in Operation Pedestal, the convoy that saved Malta from surrender. Alastair Mars writes simply and without pretension, and his words evoke the claustrophobic yet heroic world of the Submariner. -- P&S

NPS/DKL Location: BUCKLEY D780 .M3

Mayers, Colin. **Submarines, Admirals and Navies.** Los Angeles, Associated publications, c1940. 280p.

NPS/DKL Location: GENERAL D771 .R74 1959

NPS/DKL Location: GENERAL D784.G7 S57 1972

Thompson, Julian. *The Imperial War Museum Book of the War at Sea: The Royal

Other Titles: Victoria Crosses of the Second World War.
Partial contents: 14. Malta Submariner Supreme Malcolm Wanklyn
On 24 May 1941 in the Mediterranean, south of Sicily, Lieutenant-Commander Wanklyn, commanding HM Submarine Upholder on her seventh patrol, torpedoed an Italian troopship (the 18,000 ton former liner Conte Rosso) which was with a strongly protected convoy. As the submarine's listening equipment was broken the approach to the attack was made entirely using the periscope without going deep and approaching the convoy by navigating towards the sounds of the propellers.--
http://en.wikipedia.org/wiki/Malcolm_David_Wanklyn

22. Bomb-Disposal On Submarine Peter Roberts, Thomas Gould
On 16 February 1942 north of Crete, in the Mediterranean, HM Submarine Thrasher, after attacking and sinking a supply ship, was itself attacked, and later, after surfacing, two unexploded bombs were discovered in the gun-casing. The First lieutenant (Peter Scawen Watkinson Roberts) and Petty Officer Gould removed the first one without too much difficulty, but the second was lying in a very confined space and they had to approach it lying full length. Petty Officer Gould then lay on his back with the bomb in his arms while the lieutenant dragged him along by the shoulders. It was 40 minutes before they got the bomb clear and dropped it over the side. -- http://en.wikipedia.org/wiki/Thomas_William_Gould

23. Submarine Attack In Corfu Harbour Anthony Miers
On 4 March 1942 in Corfu Harbour, north-western Greece, Commander Miers, commanding HM Submarine Torbay, having followed an enemy convoy into the harbour the previous day, fired torpedoes at a destroyer and two 5,000-ton transports, scoring hits on the two supply ships, which almost certainly sank. -- http://en.wikipedia.org/wiki/Anthony_Miers

37. HM Submarine Turbulent John Linton
From the outbreak of the war in 1939 to May 1943 which was the month of HMS Turbulent's last patrol in the Mediterranean, Commander Linton was responsible for sinking approximately 100,000 tons of enemy shipping, including a cruiser, a destroyer, a U-Boat and 28 other ships. In addition Turbulent destroyed three trains by gun fire. In his last year Commander Linton spent 254 days at sea, submerged for nearly half the time, his ship was hunted 13 times and had 250 depth charges aimed at her. -- http://en.wikipedia.org/wiki/John_Wallace_Linton

Walters, Derek. *The History of the British U-Class Submarine.* Barnsley, South
NPS/DKL Location: GENERAL D780.W35 2004

NPS/DKL Location: BUCKLEY VA458.T46 W37 1958

NPS/DKL Location: GENERAL V859.G7 W2

NPS/DKL Location: GENERAL D784.G7 W2

Minelaying submarine captured by the Germans and recommissioned as UB and used for training and propaganda purposes. http://uboat.net/boats/ub.htm

NPS/DKL Location: BUCKLEY D763.M3 W56 1991

431

Synopsis: This is the remarkable story of the Tenth Submarine Flotilla and its part in the Second World War in the Mediterranean. In the words of its second commander, Captain George Phillips, between 1940 and 1944, the 'Tenth' "fought the most concentrated Submarine battle in history, from the beleaguered island of Malta."

NPS/DKL Location: GENERAL D784.G7 Y7

Originally published: London, R. Hart-Davis, 1952 as “One of our Submarines.”

CANADIAN

NPS/DKL Location: GENERAL V859.C3 F47 1995

NPS/DKL Location: GENERAL V859.C3 P47 2000

CHINESE

"Published in cooperation with the China Maritime Studies Institute."
NPS/DKL Location: GENERAL V859.C6 C55 2007

NPS/DKL Location: GENERAL VA633 .L48 1994

433

DANISH

DUTCH

FINNISH

Kijanen, Kalervo. **Finlands Ubåtar i Fred Och Krig** [översättning från finskan: Leif-Åke
FRENCH

Castex, Raoul Victor Patrice. *Synthèse de la Guerre Sous-Marine; de Pontchartrain*

"Communications faites a l'Académie de Marine a la séance du 10 Décembre 1926."

English translation of “Casabianca, 27 novembre 1942-13 septembre 1943.”

Originally published: Bourg en Bresse, France: Marines edition, 1995?.

Valentiner, Max. **La Terreur des Mers; Mes Aventures en Sous-Marin, 1914-1918.**
GERMAN

GENERAL

Angolia, John R. and Adolf Schlicht.
Die Kriegs-Marine: Uniforms & Traditions.

Botting, Douglas and the editors of Time-Life Books.
The U-Boats.
NPS/DKL Location: GENERAL V210 .B67

Botting, Douglas and the editors of Time-Life Books.
Die Underseeboote.
German translation of “The U-Boats.”

Deutsche Marine.
Hundert Jahre Deutsche Uboote: Menschen, Technik und Geschichte.

Ewerth, Hannes.
Die Ubootflottille der Deutschen Marine: Von 1957 Bis Heute.
3., überarb. Aufl.

Föppl, Otto and Heinrich Strombeck.
Schnellaufende Dieselmachinen Unter Besonderer Berücksichtigung der Während des Krieges Ausgebildeten U-Boots-Dieselmachinen und Bord-Dieseldymanos.

Gabler, Ulrich.
Unterseebootbau.
4., überarb. u. erw. Aufl.

Guitard, Pierre.
U-Boat Warfare.

Hadley, Michael L.
Count Not the Dead: The Popular Image of the German Submarine.
NPS/DKL Location: GENERAL V859.G3 H33 1995

Hadley, Michael L.
Der Mythos der Deutschen U-Bootwaffe.
207p.
German translation of “Count not the dead: The popular image of the German Submarine.”

NPS/ DKL Location: GENERAL D781 .K46 1997

"NAVSHIPS translation no. 1313."

Originally published: Berlin: Militärverlag der Deutschen Demokratischen Republik,
1985.

NPS/DKL Location: GENERAL V859.G3 M555 2000

English translation of “Enzyklopädie deutscher U-Boote: Von 1904 bis zur Gegenwart.”
NPS/DKL Location: GENERAL V210 .M6513 2004

NPS/ DKL Location: GENERAL VM365 .R6413

Showell, Jak Mallmann. **The U-Boat Century: German Submarine Warfare 1906-2006.** London: Chatham, 2006. 224p. "This is an overview of 100 years of German submarine development by a leading U-Boat writer and, with its fascinating collection of more than 400 photographs, many not published before, is destined to be a core addition to the library of every modern naval historian and enthusiast."--BOOK JACKET. Also published: Annapolis, MD: Naval Institute Press, 2006. NPS/DKL Location: GENERAL V859.G3 S49 2006

Originally published: London: Osprey, c1995 as “Elite 60 U-Boat Crews 1914-45.”
NPS/DKL Location: GENERAL VC305.G3 W55 1995

NPS/DKL Location: GENERAL VA513 .W55 2002

GERMAN

WWI

Ajax, pseud. The German Pirate; His Methods and Record. New York, George H. Doran company [c1918. 124p.

“In 1935, Heinrich Himmler established a Nazi research institute called The Ahnenerbe, whose mission was to search around the world for proof of ancient Aryan conquests”. -- Heather Anne Pringle, The Master Plan: Himmler's scholars and the Holocaust. New York: Hyperion 2006.

NPS/DKL Location: BUCKLEY D591 .A7

Danish translation of “The Pirate's Progress.”

NPS/DKL Location: GENERAL D592.L8 B23

444

French translation of “U-Boote vor New York.”

NPS/TKL Location: GENERAL D619.B6

Thesis (Ph.D.) -- Universität Köln, 1937.

Chidsey, Donald Barr. **The Day They Sank the Lusitania.** New York, Award Books, 1967. 144p.

Clark, William Bell. **When the U-Boats Came to America.** Boston, Little, Brown & company, 1929. 359p.
NPS/DKL Location: BUCKLEY D591 .C5

NPS/DKL Location: GENERAL D589.U6 C6

Crompton, Iwan and Werner von Langsdorff. **Englands Verbrechen an U 41, der Zweite "Baralong"-Fall im Weltkrieg.** Gutersloh, C. Bertelsmann, 1940. 224p.

Originally published in 1915 as v. 2 of Documents on the War of the Nations from Neutral and Anti-German Sources
NPS/DKL Location: BUCKLEY D592.L8 D76 1972

"First published in Purnell's History of the First World War."

English translation of "Die verraten Flotte. Aus den letzten Tagen der deutschen Kriegsmarine."

English translation of “Alarm! Tauchen!!”

Contents: The disobedience of General von Kluck -- The declaration of unlimited Submarine warfare -- The relations with the Allies -- The fall of Chancellor Bethmann-Hollweg -- The debacle of the German people.
English translation of “La Discorde chez l'ennemi.”
NPS/DKL Location: GENERAL G3313 2002

NPS/DKL Location: BUCKLEY VK1491 .G46 1999

NPS/DKL Location: GENERAL D591 .G4

Contents: Material taken from the 1918 editions of a series of Confidential books, each devoted to a particular type of warship, compiled and regularly updated during the First World War by British Naval Intelligence and carried to sea by British warships.
NPS/DKL Location: GENERAL VA513 .G45 1992

NPS/DKL Location: GENERAL VA400 .H34 1991

French translation of "U-Boote Westwärts."

Previous edition entitled: "The log of a U-Boot Commander; or, U-Boats Westward -- 1914-1918."
English translation of "U-Boote Westwärts!"
NPS/DKL Location: BUCKLEY D591 .H3

NPS/DKL Location: BUCKLEY D592.L8 H6

French translation of “Murder at Sea.”

Portuguese translation of “Murder at Sea”

Spanish translation of “Murder at Sea.”

Abstract: On the sinking of civilian ships by German U-Boats.
Danish translation of “Murder at Sea.”

German translation of “Murder at Sea.”

Named Corp: Lusitania (Steamship).

"Alles rechten voorbehouden, volgens "Auteurswet 1912."
Dutch translation of “Murder at Sea.”

Karau, Mark D. "Lost Opportunities": The Marinekorps Flandern and the German War Effort 1914-1918. Florida State University, 2000. 600 l. Thesis (Ph.D.)--Florida State University, 2000. Abstract: In August 1914 Admiral Alfred von Tirpitz, with the assent of the German army, sponsored the creation of a new naval command, the MarineDivision Flandern. This unit was intended as a garrison for the Belgian and French coastlines and was to eventually command German naval operations against Great Britain in the English Channel and the southern North Sea. The stalemate that settled in on the western front in November 1914 left the MarineDivision, by this point it had been expanded into the MarineKorps Flandern, in control of the right flank of the German army on the western front. From that point until the end of the war the MarineKorps was involved in both the land and naval campaigns in the west. The primary mission of the MarineKorps was to conduct naval “Guerilla” operations against British shipping. The Germans called this strategy “kleinkrieg” and its instruments were torpedo craft; submarines and torpedo-boats. Adviser: Paul Halpern.

König, Paul. **Fahrten der U Deutschland im Weltkrieg.** Berlin, Ullstein, c1937. 188p.

English translation of “Fahrten der U Deutschland im weltkrieg.”

English translation of “Fahrten der U Deutschland im weltkrieg.”
NPS/DKL Location: BUCKLEY D592.D4 K7

Written by Ernst Bischof and published under the name of Capt. Paul König.
English translation of “Fahrten der U Deutschland im weltkrieg.”

NPS/DKL Location: BUCKLEY D592.L8 L3

Lorey, Hermann. **Der Krieg in den Türkischen Gewässern.** Berlin, E.S. Mittler, 1928-
38. (Der Krieg zur See, 1914-1918). 2v.

NPS/DKL Location: GENERAL D591 .M47 2002

French translation of "Der U-bootskrieg, 1914-1918."

Mielke, Otto. Unterseeboot "U 21": Dardanellenkämpfe 1915. Hamburg: Maximilian-

Summary: On Sept. 17, 1940, at a little after ten at night, a German submarine torpedoed the passenger liner S.S. City of Benares in the North Atlantic. There were 406 people on board, including 90 children headed for peaceful Canada, their parents having elected to send them away from Great Britain to escape the ravages of World War II. The Benares sank in half an hour, in a gale that sent several of her lifeboats pitching into the frigid sea, more than three hundred miles from the nearest rescue vessel. Not one of the survivors had any reasonable hope of rescue. The initial "miracle" involves one British destroyer's race to the scene; the second is the story of Lifeboat 12, missed by the destroyer, 46 people jammed for eight days in a craft built for 30. Based on first hand accounts from the child survivors and other passengers.--From publisher description.

NPS/DKL Location: BUCKLEY D591 .N6

Peillard, Léonce. *Le Trésor du Tubantia.* Paris: Editions Robert Laffont, 1978. 291p. Compiler’s note: SM UB 13 under the command of Oblt.z.S. Metz, sank on 15th March 1916 the Dutch steamer SS Tubantia which was supposed to have had German gold treasures on board. This affair was accompanied by fairly mysterious involvements of intelligence agencies and until today the mystery of the Tubantia, her cargo and the reason of her sinking, has not been properly solved. http://uboat.net/history/wwi/part3.htm

Selow-Serman, K. E. **U-Boot-Abenteuer im Sperrgebiet.** Berlin, A. Scherl, c1917]. 112p.

NPS/DKL Location: GENERAL D592.L8 S5

German translation of “The Lusitania.”

German translation of “The Lusitania.”

German translation of “The Lusitania.”

German translation of “The Lusitania.”

Speiss, Johannes. Six Years of Submarine Cruising. February 1929. Washington, DC: Office of Naval Intelligence, 1926. 94 l.
"Translated from the German For Official Circulation Only."/ Originally: "For Official use only."/ now DECLASSIFIED
English translation of “Sechs Jahre U-Bootfahrten.”

Spencer, Samuel R. Decision for War, 1917; the Laconia Sinking and the Zimmermann Telegram as Key Factors in the Public Reaction Against Germany. Rindge, NH, R.R. Smith, 1953. 109p.

NPS/DKL Location: BUCKLEY D591 .S7

Norweigen translation of “Kriegstagebuch "U 202".”

Finnish translation of "Kriegstagebuch "U 202"."

Originally published: Berlin: Scherl, 1930.

Spindler, Arno. **La Guerra al Commercio con i Sommergibili** [tr. Raffaele de Courten and Wladimiro Pini]. Roma, Instituto poligrafico dello stato, Libreria, 1934-. 3v.
Italian translation of "Der Handelskrieg mit U-Booten."

Spindler, Arno. **Der Handelskrieg mit U-Booten.** Berlin, E.S. Mittler & Sohn, 1932-. (Der Krieg zur See, 1914-1918). v.

Tennent’s excellent reference work on the loss of hundreds of merchant ships to german submarines in the First World War.-- Periscope Publishing

French translation of “Raiders of the Deep.”

NPS/DKL Location: GENERAL D591.T4

Contents: Raiders of the Deep: Tales of the U-Boat Commanders / by Thomas, Lowell. -- Campbell of the "Q" Boats: Who he was and what he did / Bayley, Sir Lewis. -- My Mystery ships: Some unwritten war History now told / by Campbell, Gordon. -- Making of a conquerer: Lawrence's preparation for the leadership of the desert hosts / Graves, Robert. -- New tales about Lawrence of Arabia: What he told the King about fighting Against Britain / Graves, Robert. -- Lawrence of Arabia as a buck private: He hid under an alias and disdained promotion. -- Real Colonel Lawrence: And what motivates the queer things he does / Graves, Robert. -- Pershing's job to-day: What the war-time leader does / Reilly, Henry J.-- Story of the Zeppelins: Some of their feats in war and peace / Mingos, Howard.

NPS/DKL Location: FEDDOCS AE 1.112/2:1

NPS/DKL Location: GENERAL D589.U5 A4 NO.1 1920

Contents: Introduction: Scapa Flow, 21 June 1919. -- PART I: A study in folly -- the Anglo-German Naval arms Race; German Naval expansion ends British isolation; Acceleration and the prelude to war. -- PART II: Willing to wound but afraid to strike -- the war at sea; The skirmishes before Jutland; Jutland and the U-Boat Campaign. -- PART III: The Grand Scuttle -- the salvage of honour; Mutiny; The Last Voyage; Internment; Reuter's decision; 'Paragraph eleven. Confirm.;' Aftermath. -- PART IV: Picking up the pieces -- the saga of the salvage; Unfinished business. -- Appendix I: The ships of the Internment; Formation. -- Appendix II: The text of the order to scuttle.

Abstract: This study is based on extensive research in the official records of the U.S. Shipping Board and Navy, and in the private papers of leading government officials--including the first two heads of the Shipping Board (William Denman and Edward N. Hurley) and the Secretary of the Navy (Josephus Daniels). The dissertation also makes extensive use of the published papers of President Woodrow Wilson. The narrative reveals the confusion and disputes that hampered the initial efforts of the Wilson Administration to meet the merchant shipping crisis caused by U-Boat attacks. Special emphasis is placed on the impracticality of the Shipping Board's plans for building a large fleet of wooden steamers, the personality conflicts that delayed the implementation of a logical merchant ship construction program.
for almost half a year, and the indecisiveness of President Wilson in dealing with these challenges. Late in July 1917 Wilson appointed new officials to head the merchant shipbuilding effort. The dissertation describes the actions these men took to speed both wood and steel construction, to commandeer all partially completed steel hulls, and to provide for the "mass production" of commercial tonnage in "fabricated shipyards." The study also examines the Navy's wartime shipbuilding program and shows that Secretary Daniel's delay in proceeding with a massive destroyer construction effort was prudent in light of the conflicting advice he was receiving from senior naval officers. Once Daniels decided to focus on the production of anti-submarine craft, the Navy developed a logical building program, although the Secretary's cautiousness and political sensitivity did cause some additional delay in the implementation of construction plans. The dissertation describes, as well, the labor situation in American shipyards during 1917 and provides a thorough explanation of the behind-the-scenes disputes involved in the development of the Shipbuilding Labor Adjustment Board. It fully discusses the attitudes and actions of shipyard owners, shipworkers, and labor unions during the rapid expansion of the shipbuilding industry. The basic theme is that by December 1917 the Wilson Administration had formulated a comprehensive and rational policy for the construction of merchant and naval tonnage--and had begun work on an ambitious shipbuilding program.

NPS/DKL Location: GENERAL VA513.W55 2002

GERMAN

WWII

On Christmas Eve, 1944 U-486 torpedoed the SS Leopoldville in the English Channel just 5 miles from the port of Cherbourg, France. The troopship was transporting 2235 American soldiers from regiments of the 66th Infantry Division. The ship finally sank 2 1/2 hours later. Everything that could went wrong; calls for help were mishandled, rescue craft were slow to the scene and the weather was unfavorable. 763 American soldiers died that night, making this the worst loss an American Infantry Division suffered from a U-Boat attack during the war. The Allied authorities were embarrassed by the incident and decided to bury the case. Many loved ones were told the men were missing in action although they were already dead by then, later to be classified as killed in action. It was not until 1996 that the files were opened to the public. -- http://www.uboat.net/boats/u486.htm

"Ft. Benning, Georgia, ceremony, October 22, 1999."

"Ft. Benning, Georgia, ceremony, September 13, 2002."

463

NPS/DKL Location: GENERAL D773.B17

NPS/DKL Location: GENERAL/INTELL D810.S7 B35 1998

Contents: The Early Offensive: The war that was not to happen. -- Wrangle with the Fleet. -- The Secret of the magnetic Mine. -- Navy versus Luftwaffe. -- Norwegian gamble: An Operation with calculated Loss. -- Failure of the German Torpedoes. -- Admiral versus grand-Admiral. -- Pyrrhic Victory: Did Hitler want to invade Britain?. -- Era of the grey Wolves. -- The menace of the big ships. -- The Retreat that looked like a Victory. -- The Battle of the Mediterranean: A lesson in Naval Supremacy. -- The landing that never happened. -- The fall of Grand-Admiral Raeder: War in the Arctic. -- Unhappy new Year. -- The Break. -- Climax in the Atlantic: The Crisis approaches. -- The Technique of Victory. -- The end of the German Navy: Tragedy off the North Cape. -- Retreat on all Fronts. -- Appendices.

English translation of “Verdammte See.”

NPS/DKL Location: GENERAL D771 .B44 1974

Japanese translation of “Defeat at Sea.”

NPS/DKL Location: GENERAL D771 .B44 1974

Bernig, Heinrich [pseud.] -- see Kurowski, Franz.

Synopsis: Every type of German submarine is featured, including Types II, VII, IX, XII, XIV, XVII, XXI, XXIII, as well as the numerous variants of the basic types. Each submarine profile is accompanied by exhaustive specifications, as well as details of individual and unit markings. Packed with 300 colour profiles of every major type of German U-Boat, this unique book is an essential guide for modellers, military historians and Naval warfare enthusiasts alike. www.amazon.uk

NPS/DKL Location: GENERAL D781 .B53 1996

Polish translation of "Hitler's U-Boat War."

Swedish translation of "Hitler's U-Boat War."

Partial contents: Chapter 6 -- Germany's Third and Last Chance, pp. 189-206.
NPS/DKL Location: GENERAL D785 .B69 1994

The French naval bases at St. Nazaire and Lorient, occupied by the Germans in June 1940, quickly became the homes of massive U-Boat fortresses—nearly indestructible submarine pens, built by mostly slave labor. The Royal Air Force began an all-out bombardment of the two ports. Despite their extensive
efforts—and those of the Americans who joined them in 1942—the fortresses would survive, surrounded by the decimated French towns and countryside. This is the story of what was, perhaps, the longest ongoing battle in Europe during the Second World War, seen through the eyes of someone who experienced much of it firsthand. [Website Link]

NPS/DKL Location: GENERAL D781 B68 2003

Contents: V. 1. Allied communication Intelligence and the Battle of Atlantic. -- v. 2. U-Boat Operations. - - v. 3. German naval communication Intelligence. -- v. 4. Technical Intelligence from Allied communications Intelligence. -- v. 5. German naval grid and its Cipher. -- v. 6 Appendices.
NPS/DKL Location: GENERAL Z102.5 C782

Spanish translation of “Jäger-Gejagte: Deutsche U-Boote, 1939-45.”

English translation of “Jager-Gejagte: Deutsche U-Boote, 1939-45.”
NPS/DKL Location: GENERAL D781 .B713 2003

English translation of “Wunderwaffe Elektro-Uboot Typ XXI.”
NPS/DKL Location: GENERAL V859.G3 B7413 1999

Ogiginally published: Berlin: Ullstein, 1982

Polish Translation of “Ali Cremer: U 333.”

Spanish translation of “Unternehmen Rettung.”

NPS/​DKL Location: GENERAL D781 B7813 1978

Buchheim, Lothar Günther and Michael Salewski. **U-Boot War** [translated by Gudie
English translation of “U-Boot-Krieg.”

English translation of “U-Boot-Krieg.”

Spanish translation of “So War der U-Boot-Krieg.”

Russian translation of “So War der U-Boot-Krieg.”

Russian translation of “So War der U-Boot-Krieg.”

English translation of “So War der U-Boot-Krieg.”
English translation of "So War der U-Boot-Krieg."

Originally published: Hamburg; Berlin; Bonn: Mittler & Sohn, 1996.
English translation of "Deutschen U-Boot-Kommandanten."

NPS/DKL Location: GENERAL CT32 .B87 1999

The "U-Who" was identified as the U-869 in 1997-- http://www.u869.com/.

Dutch translation of “The Last dive: The dramatic Account of a father and son's Underwater tragedy.”

German translation of “The Last dive: The dramatic Account of a father and son's Underwater tragedy.”

Czech translation of “The Last Dive: The Dramatic Account of a Father and Son's Underwater Tragedy.”

Finnish translation of “The Last dive: The dramatic Account of a Father and Son's Underwater Tragedy.”

Chinese translation of “The Last Dive: The Dramatic Account of a Father and Son's Underwater tragedy.”

NPS/DKL Location: GENERAL V859.G3 U26 1989X

Abstract: This paper will analyze World War II U-Boat operations against Allied sealift with focus on the period from May 1943 to the end of the War. It will show the relevance of the operational and strategic decisions of this historical campaign to the challenges of today's potential regional conflicts. In 1943, Allied technological innovations and convoy employment precipitated a decline in U-Boat successes and changes to the final portion of the U-Boat campaign produced fewer U-Boat victories, yet remained an effective operational scheme. It is relevant that the inability of Allied forces to consistently thwart successful U-Boat attacks, along their own coastlines, emphasizes a weakness in our Naval Strategy Today, insufficient and usually lightly protected sealift. The Navy and Marine Corps joint White Paper, From the Sea, articulates Navy support of the National Security and National Military Strategies of the United States with a commitment to concentrate more on capabilities required in the complex operating environment of the ' littoral' or coastlines of the earth.

Electronic access: http://handle.dtic.mil/100.2/ADA279488

English translation of “Ali Cremer, U 333.”

English translation of “Ali Cremer, U 333.”

NPS/DKL Location: GENERAL D781.C7413 1984A

English translation of “Ali Cremer, U 333.”

German translation of “U-Boote.”

Davis, Donald L. **A New Look at the Battle of the Atlantic.** Newport, RI: Naval War...
Abstract: The paper examines the Battle of the Atlantic from an operational rather than the usual strategic perspective. The impressive achievements of the small force of German submarines against such overwhelming odds was a direct result of Admiral Karl Doenitz's skillful practice of the Operational Art. An examination of his attributes and methods may provide useful guidance for the commander of the small, austere force of the future. Superior numbers or technology does not guarantee for military success. Sound doctrine, vision, operational excellence, initiative and audacity, on the other hand, can produce Substantial advantages. The paper also cautions that the dramatic Allied reconstitution which did so much to turn the tide in the Battle of the Atlantic, is unlikely to reoccur and that the large, costly multi-purpose weapons platforms of today may be as ineffective in fighting the low intensity naval battle on the littoral as the large capital ships were in the Battle of the Atlantic.

Electronic access: http://handle.dtic.mil/100.2/ADA266796
Translated from the German.

Originally published: Frankfurt am Main, Bernard & Graefe, 1970.

Italian translation of “Zehn Jahre und zwanzig Tage.”

French translation of “Zehn Jahre und Zwanzig Tage.”

Persian translation of “Zehn Jahre und zwanzig Tage?”

1st and 2nd editions published as “Deutsche Strategie zur See im Zweiten Weltkrieg.”

French translation of “Deutsche Strategie zur See im Zweiten Weltkrieg.”

French translation of “Mein wechselvolles Leben.”

Originally published: Göttingen, Musterschmidt-Verlag, 1968.

NPS/DKL Location: GENERAL D781.D6

Alafuzova V. A. [V perevode prinimali ucastie: Belous V. N.; Iskrickaja L. I. u. a.].
Russian translation of “Zehn Jahre und Zwanzig Tage.”

427p.
Note(s): "Pechataetsia po izdaniiu: K. Denits. Nemetskie podbodnye Lodki vo vtoroi
mirovoi voine"--T.p. verso.
Russian translation of “Zehn Jahre und Zwanzig Tage.”

Dönitz, Karl. Podvodnyj Flot Rejcha: [Perevod s Nemeckogo]. Naucno-populjarnoe
Russian translation of “Zehn Jahre und Zwanzig Tage.”

Dönitz, Karl. T. C. M. S. B. Deniz Kuvvetleri K. Büyükamiral Karl Dönitz’in Hâtirati
Turkish translation of “Zehn Jahre und zwanzig Tage.”

Dönitz, Karl. Ten Years and Twenty Days: Memoirs: [translated by R. H. Stevens, in
English translation of “Zehn Jahre und zwanzig Tage.”
NPS/DKL Location: GENERAL D781 .D6

Dönitz, Karl. Ten Years and Twenty Days: Memoirs [translated by R. H. Stevens, in
English translation of “Zehn Jahre und zwanzig Tage.”

Originally published: Berlin: E. S. Mittler, c1939

Mit einem Nachw.: Die Schlacht im Atlantik in der Historischen Forschung 1991 / von
Jürgen Rohwer.

NPS/DKL Location: GENERAL D762.S26 D67 1998

Recorder-transcriber: W. Patrick Meagher.
NPS/DKL Location: FEDDOCS D 221.6/5:D 68

NPS/DKL Location: GENERAL D781 .E37 2005

NPS/DKL Location: GENERAL D781 .E38 1999

Contents: Atlantic shooting gallery -- First time out -- Rendezvous at Cape Farewell -- The hardest Battle -- The running fight -- The climax -- The turning point -- A lucky Escape -- Some new weapons -- Fresh pastures -- The waiting game -- The end of the road -- The end of a dream.
NPS/DKL Location: GENERAL V859.G3 E39 2004

Synopsis: This fascinating book examines the exchange of information and goods by long range submarine voyages between Germany and Japan during the second half of WW2. Known as 'Yanagi' this trade was a high priority to both Axis partners. As the Allies' grip on control of the oceans and air tightened, it became necessary to rely on submarines. This posed an increasingly heavy but necessary burden on tight resources. Thanks to the Author's research, here is the first full account of these operations with descriptions of individual missions be they by German or Japanese submarines and crews. Even by modern standards these were of impressive duration and demanded the highest standards of seamanship and discipline.
NPS/DKL Location: GENERAL D780.F45 2005

Abstract: Operation Paukenschlag, a German U-Boat operation against Allied shipping along the East Coast of the United States and Canada in early 1942, is analyzed from the perspective of the operational level of war. The plan and its execution are examined to provide conclusions and lessons learned for future operational planning considerations. Chapter One provides a short historical summary of the German U-Boat Force and the Battle of the Atlantic. Chapter Two analyzes the operational design of Paukenschlag. Chapter Three discusses the execution of the operation. Finally, Chapter Four offers information from the operation which could be useful for future commanders. This analysis of Operation Paukenschlag shows that an operation conceived, planned, and executed in as short as time as Paukenschlag was, can be successful, provided several critical factors prevail.
Electronic access: http://handle.dtic.mil/100.2/ADA279625

Review: The first comprehensive treatment of World War II S-boats to be published in English, this book provides operational details of the German schnellboot, or motor torpedo boat, in all theaters where they were deployed During the war. With the help of a multitude of maps, photographs, and drawings, Frank chronicles every incident that involved the 53-knot fast attack craft. The author examines the S-boat's effectiveness as an integral part of the German military objectives of the time. This study of the schnellboot's successes and failures offers a first-class account of the surface warship that carried the Offensive to the Enemy longer than any other. → www.amazon.com

English translation of Die deutschen Schnellboote im Einsatz.

Japanese translation of "Die Wölfe und der Admiral."

NPS/DKL Location: BUCKLEY D780 .F7

Italian translation of "Die Wölfe und der Admiral."

English translation of "Die Wölfe und der Admiral."

NPS/DKL Location: BUCKLEY D781 .F7

Frank, Wolfgang. *The Sea Wolves: The Story of German U-Boats at War [translated
English translation of “Die Wölfe und der Admiral.”

French translation of “Die Wölfe und der Admiral.”

Compiler’s note: U-763: Scuttled 29 Jan, 1945 in Königsberg at the Schichau shipyard after being damaged by Soviet bombs; U-1195: Sunk 7 April, 1945 in the English
Channel by depth charges from the British destroyer HMS Watchman. -- http://uboat.net

Biography of the Commander, U-100, rammed and depth charged by the British destroyers HMS Walker and HMS Vanoc.

History of the U 505.
NPS/DKL Location: BUCKLEY D782.U18 G2

Also Published: London: Aurum, 1998.

Chinese translation of “Black May.”

Also published: London: Harper & Row, 1990 as “Operation Drumbeat: Germany's First U-Boat Attack Against the American Coast in World War II.”
NPS/DKL Location: GENERAL D781 .G36 1990
German translation of “Operation Drumbeat.”

German translation of “Black May.”

Synopsis: The history of one of World War II's most successful submarines, U-124, is chronicled in **GREY WOLF, GREY SEA**, from its few defeats to a legion of victories. Kapitanleutnant Jochen Mohr commanded his German submarine and navigated it through the treacherous waters of one of the most destructive, savage wars the world has known.

Electronic access: http://www.contentreserve.com/TitleInfo.asp?ID={CFFFA264-82E1-4E34-86AB-1AD07828F486}&Format=50

Dutch translation of “Grey wolf, grey Sea.”

Contents: Charted U-Boat Positions; Ultra Decrpts; Attack Reports; Torpedo; Prologue; Dirty Politics; Chapter One: Destruction of the U-869. -- Chapter Two: Identification of the U-869. -- Chapter Three: Twisted Tales. -- Chapter Four: Skewed Accounts. -- Chapter Five: Television Static. -- Chapter Six: A Horse of a Different Color. -- Epilogue: The Emperor's New Clothes.

Sinking of the Goya during the evacuation of Klaipeda, Lithuania.

Contents: List of equivalent commissioned-officer ranks (World War II). -- Foreword. -- Prologue -- pt. 1. The scuttling of the SS Columbus, 1939: West Indies Cruise; War clouds gather; We scuttle the Columbus; Distressed seamen; Escape to Japan. -- pt. 2. Homeward bound with the Blockade-runner Anneliese Essberger, November 1940-December 1941; German freighters galore; Anchors aweigh; Across the Pacific; Rendezvous with the Raider Komet; Passing the horn; Searching for the Orion; On the home stretch with the U-106. -- pt. 3. With the gray Wolves in the Polar Sea, 1941-43: An unexpected beginning; Life aboard the U-405; First patrol: Forging the team; Second patrol: Combat!; Third patrol: A formidable Enemy; Fourth patrol: Attack on the PQ-18. -- pt. 4. Final Years, 1943-47: Reporting aboard the U-181; On patrol in the Indian Ocean; Penang, Malaya; Homeward bound; Surrender and Survival; Prisoner of War and repatriation. -- Epilogue. -- Appendices: A. U-Boat characteristics. -- B: U-Boat Far East Operations.

NPS/DKL Location: GENERAL D781 .G53 2003

Chinese translation of “Shooting the War: The Memoir and Photographs of a U-Boat Officer in World War II.”

NPS/DKL Location: GENERAL D782.U18 G64 2005

NPS/DKL Location: GENERAL D779.C2 G74 2004

NPS/DKL Location: GENERAL D764.7.B3 G73 2007

Abstract: Hitler had military, diplomatic and economic reasons for stubbornly clinging to the Baltic coast. Control of the Baltic was essential to guarantee imports of Swedish iron ore and Finnish nickel, both vital to Germany's war economy. Hitler also required domination of the Baltic to maintain the sea route to Finland and ensure the Finns' continued participation in the war. Furthermore, German military leaders, especially in the Navy, regarded control of the Baltic as an effective means to ensure Swedish neutrality and to maintain communications with German troops in Norway. Finally, the German Navy considered domination of the eastern Baltic absolutely essential to provide a testing and training area for new types of technologically-advanced submarines, with which Hitler and Admiral Karl Dönitz planned to turn the tide in the war at sea. As a result of Dönitz's devotion to Hitler and his repeated promises never to give up the fight, Hitler selected Dönitz as his successor.

Abstract: German submarine operations against Allied convoys, during March 1943 is critically analyzed from an operational perspective. The theater commander's operational scheme is dissected for the purpose of identifying lessons which can be applied to the planning and execution of today's theater operations. A brief historical account of the early phases of the war and the events and decisions which preceded the critical convoy battles will be followed by an analysis of the operational scheme employed by Admiral Doenitz. German victory during the spring offensive clearly demonstrated numerous operational successes, a reasonably well conceived operational plan, and proof positive of the potential for a larger scale victory, yet history recorded Germany's ultimate defeat in the Battle of the Atlantic. This analysis identified three significant flaws which led to the German demise; first, strategic guidance and operational means were inadequately reconciled.
Electronic access: http://handle.dtic.mil/100.2/ADA264185

486

Italian translation of "Der "Athenia"-Fall."

Portuguese translation of "Der "Athenia"-Fall."

Rumanian translation of "Der "Athenia"-Fall."

Swedish translation of "Der Athena-Fall."

Halfeld, Adolf. **He Hypothesis "Athenia".** Berlin: Volk u. Reich Verlag, 1939. (To alethes prosopon tes Anglias; Arith. 1). 41p.
Greek translation of "Der Athenia-Fall."

Croatian translation of "Der "Athenia"-Fall."

Abstract: This paper reviews the specific segments of the Battle of the Atlantic that were conducted in and around the Caribbean Sea. The background information explores Germany's political goals and policies in the years prior to the Second World War, and the military situation that resulted. The Battle of the Atlantic is reviewed to determine the reasons for sending U-Boats to the Caribbean theater, which was at the effective limit of their operational endurance. Further, the operational art aspects of the use of
U-Boats in the Caribbean theater and the results they achieved are examined in detail. The subsequent withdrawal of U-Boats from the Caribbean after only eleven months in the theater is specifically evaluated in light of the personal leadership and operational art abilities of the Command in Chief of the U-Boat Arm, Admiral Karl Doenitz. The paper’s conclusion is an evaluation of the title question. Despite the acknowledged tactical success of sinking 400 merchant ships, with the loss of only seventeen U-Boats, the author concluded that the Germans did not exploit all available opportunities that may have allowed them to achieve an even greater operational success in the prosecution of the Battle of the Atlantic.

Electronic access: http://handle.dtic.mil/100.2/ADA297938

Contents: Naval Chronology, WW II: A) 1939; b) 1940; c) 1941; d) 1942; e) 1943; f) 1944; g) 1945. -- U.S. Naval Losses. -- British Submarine Losses. -- Japanese Submarine Losses. -- German Submarine Losses. -- Italian Submarine Losses. -- Principal civilian Officials and Naval Officers in Command, 7 December 1941-2 September 1945.

French translation of “Verdammter Atlantik.”

Hess, Hans Georg, ed. *The Men from U 995: Talks with Former Crew Members of*

Written for the British Admiralty by Fregattenkapitän Günter Hessler, who was given free access to War diaries and other primary sources. Includes corrections and explanations not found in the original text. The many charts and diagrams pinpoint the deployment of each U-Boat on any particular day.
NPS/DKL Location: GENERAL D781 .U33 1989

NPS/DKL Location: GENERAL D781 .H53 1996

As told to Geoffrey Brooks.
 Originally published: London: Leo Cooper, 1996.

Contents: Die Eiserne Särge / Herbert A Werner. -- Feindfahrten / Wolfgang Hirschfeld.

Contents: Beginnings: 1923 to 1940 -- From Blankenfelde to the Bismarck: October 1940 to May 1941 - - The Rote Schloss and the U-boot-Waffe: June 1941 to March 1942 -- Sunshine, Chianti, and ice cream:

NPS/DKL Location: GENERAL D811.H57 A3 2004

English translation of "Embleme, Wappen, Malings deutscher U-Boote 1939-1945."

NPS/DKL Location: GENERAL V859.G3 H6413 1999

NPS/DKL Location: GENERAL D781 .H678 1988

NPS/DKL Location: GENERAL D781 .H688 2002

NPS/DKL Location: GENERAL V859.G3 H68 1987

NPS/DKL Location: GENERAL D781 .H84

Originally published: Barnsley, South Yorkshire: Leo Cooper, 2003

NPS/DKL Location: GENERAL D771 .J238 2001

NPS/DKL Location: GENERAL D781 .J66 2003

NPS/DKL Location: GENERAL D781 .J66 2003

Jones, Geoffrey, Tetsuro Tsuchiya, Wataru Mitsufuji. **Rogun Sakusen no Tasogare.**

King, Joyce E. **Admiral Karl Doenitz: A Legacy of Leadership**. Newport, RI: Naval War College, 1995. (ADA297842). 23p. Abstract: A study of the operational leadership exhibited by ADM Karl Doenitz, Commander in Chief, Submarines, German Navy, during World War II. An examination of his planning, preparation and conduct of the U-Boat war in the Atlantic Theater of Operations against the British, and later, the Americans. His objective of sinking the merchant fleet of the British nearly brought Britain to defeat. He displayed great talent in his dedicated fight for resources, innovative tactics of using wolfpacks, his intensive training program and unique command and control system, of these innovations enabled him to maximize use of his limited resources in the optimum way possible to achieve the strategic and operational objectives in the theater. He was also a master of operational maneuver and shifted his focus and his assets within his theater to take advantage of Allied vulnerabilities. His personal character traits served him well as he inspired trust and unparalleled loyalty from his subordinates. His operational thinking and practice of operational art throughout this campaign remain a relevant model of operational leadership. Electronic access: http://handle.dtic.mil/100.2/ADA297842

English translation of “Vom Original zum Modell: Uboottyp XXI.”

NPS/DKL Location: GENERAL V859.G3 K64 2002

English translation of “Le Mystère de Scapa Flow.”

Abstract: The battle of the Atlantic is perhaps the most pivotal battle of the Second World War. In it, Germany's use of asymmetric warfare, mines and submarines, once again threatened Britain's economic survival. Although Hitler correctly identified Britain's economy as its center of gravity and had success in attacking it through 1943, he failed to demonstrate the strategic vision necessary to achieve a decisive victory in the Atlantic. Hitler failed because he did not grasp the impact that submarine warfare had in WWII, he wanted a quick, decisive victory like Poland, and he underestimated both the will of the British leadership and the industrial capacity of the United States. Allied success in this campaign enabled the successful prosecution of the war on the European continent through the sallyport of England. From an Allied perspective the Atlantic became the proving ground for the advancement of the carrier-based navy and emerging technology, gave Roosevelt a means with which to invigorate an isolationist society, and gave Britain the time she needed to develop and improve measures to fight the asymmetric threat confronting them. This study looks at the battle of the Atlantic in closer detail while examining Hitler's overarching strategic objectives and those in this decisive theater in an attempt to explain why Hitler allowed it to simply run its course.

Electronic access: http://handle.dtic.mil/100.2/ADA378290

Kühn, Volkmar [pseud.] -- see Kurowski, Franz.

Kurowski, Franz. [Also uses the following pseudonyms: K(arl) Alman, Heinrich Bernig, Rüdiger Greif, Franz K. Kaufmann, Volkmar Kühn, Jason Meeker, Gloria Mellina, Joh(anna) Schulz, Hermann Schulze-Dierschau, Heinrich Schulze-Dirschau, Franz Kurowski-Tornau].

Previously published: Berlin; Darmstadt; Wien: Dt. Buch-Gemeinschaft, 1981;

Previously published: Herrsching: Pawlak, 1988].
Originally published: Leoni am Starnberger See: Druffel-Verlag, c1986.

Czech translation of "An alle Wölfe: Angriff!"

Czech translation of “Wolfgang Lüth, der erfolgreichste U-Boot-Kommandant des Zweiten Weltkrieges.”

German translation of “Shadow divers.”

Also published: London: Hodder & Stoughton, 2004 as “Shadow divers: How two men discovered Hitler’s lost Sub and solved one of the Last Mysteries of World War II.”
NPS/DKL Location: GENERAL VA515.U158 K87 2004

De waarigebeurde belevenissen van twee Amerikaanse sportduikers die in 1991 voor de kust van New York een Duitse U-boot met 56 bemanningsleden uit de Tweede Wereldoorlog ontdekten waarover nergens informatie te vinden was.
Dutch translation of “Shadow divers.”

Spanish translation of “Shadow Divers.”

"Prawdziwa Historia nurków, którzy ryzykowali wszystko, by rozwiazac tajemnice z czasów II wojny światowej"--Cover.
Polish translation of “Shadow Divers.”

NPS/DKL Location: GENERAL D785 .L35 1999

NPS/DKL Location: BUCKLEY D756 .L5

Scuttled on 8 May 1945 in the Kattegat West of Göteborg, Sweden; Raised in 1946 and broken up. http://uboat.net/gallery/index.html?gallery=U3503A

French translation of “Regierung Dönitz.”

Japanese translation of “Regierung Dönitz.”

Originally published: Göttingen: Musterschmidt Wissenschaftlicher Verlag, 1951, (c)1950; Originally issued in series: Göttinger Beiträge zu Gegenwartsfragen des Völkerrechts und der Internationalen Beziehungen.

Lundeberg, Philip Karl. American Anti-Submarine Operations in the Atlantic, May
Thesis (Ph.D.) -- Harvard University, 1954.

Abstract: This detailed operational history, based on action reports, ship logs, command summaries, survivors' accounts, after-action analyses and postwar interviews, delineates the course of American anti-submarine operations in the Atlantic from the spring of 1943, when Allied air and surface forces first inflicted heavy losses on the U-Waffe. Thanks to mounting aircraft and escort vessel production in the United States, Anglo-American anti-submarine groups then moved to the offensive, initially in support of North Atlantic convoys and against U-Boats transiting the Bay of Biscay. Prosecution of American efforts was facilitated by Admiral Ernest J. King's establishment of the Tenth Fleet anti-submarine command at COMINCH headquarters in Washington.

Spanish translation of “Gli Squali del III Reich; i sottomarini nazisti nella II Guerra mondiale.”

German translation of “U-Boat: The Secret Menace.”

Dutch translation of “U-Boat: The Secret Menace.”

Also published: New York, Ballantine Books, 1968] as (Ballantine's Illustrated History of
World War II. Weapons Book, no. 1).

Swedish translation of “U-Boat: The Secret menace.”

NPS/DKL Location: GENERAL D772.R63 M35 2005

Originally published: Berlin: E.S. Mittler, c1994 as “Nach Kompass: Lebenserinnerungen eines Seeoffiziers.”

Abridged edition of Die lachende Kuh.

English translation of “Die lachende Kuh.”
NPS/DKL Location: BUCKLEY D782.U15 M5

Originally published: London: W. Kimber, 1955,
English translation of “Die lachende Kuh.”

Metzler, Jost. **Sous-Marin Corsaire** [Trad. de l'allemand par M. Bourcart]. Paris:

Mielke, Otto. "*Alarm ... Tauchen!*: Unterseeboot "U 505". Unterseeboot "U 23."

Mielke, Otto. *Im Kielwasser des Todes: U-Jäger "UJ 1709" - Unterseeboot "U 453".*

NPS/DKL Location: GENERAL CT8.E6 M84 1993

German translation of “Neither Sharks nor Wolves.”

NPS/DKL Location: GENERAL D781 .M85 1999

NPS/DKL Location: GENERAL D782.B4 N3 1997

Portions of this work appeared previously published in Strategy & Tactics magazine.

Originally published: Barnsley, South Yorkshire: Leo Cooper [Pen & Sword], c2002.
NPS/DKL Location: GENERAL D781 .P38 2002

Synopsis: Next to nothing has been written about the U-Boat war in the Indian Ocean. This is the story of a forgotten campaign. The battle began in August 1943, when a German submarine arrived in the Malaysian harbour of Georgetown. In total, nearly fourty U-Boats were assigned to penetrate the Indian Ocean, serving alongside troops of the occupying Imperial Japanese forces. The Japanese allowed U-Boats to use Malaysia as an operational station. From that base, they mixed with Japanese forces on a hitherto unseen scale: A move which spread the U-Boat war throughout the vast Indian Ocean and into the Pacific. Success in this theatre of war held a real chance to swing the tide of battle in North Africa in favour of Rommel, but the Germans essentially did too little too late. The joint action also gave U-Boats the opportunity to penetrate the Pacific Ocean for the first time, attacking shipping off the Australian coast and hunting off New Zealand. Plans were even afoot for an assault on American supply lines. The cooperation' also brought into stark relief the fundamental differences of German and Japanese war aims. After the crews of Italian supply submarines joined the Germans and Japanese, relations between the fighting men of the three main Axis powers were often brutal and almost constantly turbulent. Stories of
U-Boats laden with gold and treasure stem almost exclusively from boats destined to and returning from Japanese-controlled Malaysia, laden with material exchanged between the two major partners of the Triple Axis Alliance. -- http://www.loc.gov/catdir/enhancements/fy0662/2004276198-d.html
NPS/DKL Location: D781 .P39 2004

NPS/DKL Location: GENERAL D781 .P43 2003

Polish translation of “Hitler’s Gray Wolves.”

NPS/DKL Location: GENERAL 781 .P42 2007

NPS/DKL Location: GENERAL D782.U45 P38 2004

NPS/DKL Location: GENERAL D781 .P45 2007

German translation of “U-Boat War Patrol: The hidden photographic Diary of U-564.”

506

German translation of “L'Affaire du Laconia, 12 Septembre 1942.”

English translation of “L'Affaire du Laconia, 12 Septembre 1942.”
NPS/ DKL Location: GENERAL D772 .L23 P3

Portuguese translation of “Mein Weg nach Scapa Flow.”

Spanish translation of “Mein Weg nach Scapa Flow.”

Italian translation of “Mein Weg nach Scapa Flow.”

English translation of “Mein Weg nach Scapa Flow.”
NPS/ DKL Location: BUCKLEY D811 .P9

Latvian translation of “Mein Weg Nach Scapa Flow.”

Prien, Günther. **Mein Weg Nach Scapa Flow** [Die Kt. zeichnete Ilse Lange]. Berlin; Amsterdam; Prag; Wien: Volk u. Reich Verlag, 1944. 151p.

Quinn, John, Alan Reilly and Andrew Smith. **Covering the Approaches: The War**

Roberts, Raymond J. The Leopoldville Trilogy: Survivors of the Leopoldville Disaster; Sequel to Survivors of the Leopoldville Disaster; More Tales of the Leopoldville Disaster. United States: Raymond J. Roberts, 2001. 148, 103, 50p. Cover title./ Includes reprints of two previously published titles: Survivors of the Leopoldville Disaster, 1997; and Sequel to survivors of the Leopoldville Disaster, 1999. On Christmas Eve, 1944 U-486 torpedoed the SS Leopoldville in the English Channel just 5 miles from the port of Cherbourg, France. The troopship was transporting 2235 American soldiers from regiments of the 66th Infantry Division. The ship finally sank 2 1/2 hours later. Everything that could went wrong; calls for help were mishandled, rescue craft were slow to the scene and the weather was unfavorable. 763 American soldiers died that night, making this the worst loss an American Infantry Division suffered from a U-Boat attack during the war. The Allied authorities were embarrassed by the incident and decided to bury the case. Many loved ones were told the men were missing in action although they were already dead by then, later to be classified as killed in action. It was not until 1996 that the files were opened to the public. -- http://www.uboat.net/boats/u486.htm

NPS/DKL Location: BUCKLEY D782 .U16 R6

NPS/DKL Location: GENERAL D781 .R62 1981

Polish translation of “The Golden Horseshoe and Night Raider of the Atlantic.”
Capture of the U-110, recommissioned as HMS Graph.

Hergestellt on demand.

German translation of “The Secret Capture.”

Abstract: The problem addressed is the extent to which the United States Navy used Ultra, or Special Intelligence, in the campaign against the German U-Boats. Information was gathered through published and unpublished sources. Through a chronological approach, United States Navy involvement is traced from entry into the war until its conclusion. Many factors are involved in the final outcome of the war and Ultra is only one. The Battle of the Atlantic was long and gruesome rather than short and spectacular. The United States Navy used Ultra along with technology, tactics, brilliant leadership and courageous men at sea to win the Battle of the Atlantic in World War II. The lessons for the future are clear. If the United States intends to oppose the Soviet submarine force at sea anywhere in the world, then we must maintain the lead in intelligence, tactics and technology. Further, and most importantly, we must strive to regain superiority of forces in those ocean areas where our interests are at stake.
Electronic access: Electronic access: http://handle.dtic.mil/ADA089275

NPS/DKL Location: GENERAL CT32 .R87 1991

Subtitle on cover: Ultima Operación Secreta del Tercer Reich.

NPS/DKL Location: GENERAL D782.U18 H86 2004

German translation of “Silent Hunters.”

German translation of “Silent Hunters.”

Contents: In memoriam Englebert Endrass: Castor mourns Polloxy Erich Topp. -- Karl-Friedrich Merten and the Prussian tradition / Timothy P. Mulligan. -- Ralph Kapitsky: Battle in the Caribbean and the death

NPS/DKL Location: GENERAL D781 .S57 2003

German translation of “Germany's Last Mission to Japan.”

German translation of “Germany's Last Mission to Japan.”

Also published: London: Chatham, 2000
NPS/DKL Location: GENERAL D781 .S43 2000

Czech translation of “Germany's Last Mission to Japan: The Failed Voyage of U-234.”

Originally published: London: W. Kimber, 1952].
NPS/DKL Location: BUCKLEY D782.U2 S3

NPS/DKL Location: GENERAL VA516.F8 S3513 1999

Schulz, Joh [pseudo.] -- see Kurowski, Franz.

Sellwood, Arthur V. Dynamite for Hire; the Story of Hein Fehler. London, W. Laurie,
1956. 264p.

German translation of “U-Boats at War.”

German translation of “Hitler's U-Boat Bases.”

NPS/DKL Location: GENERAL D810.C88 S56 2000

NPS/DKL Location: GENERAL VA516.A1 S56 2002

Showell, Jak P. Mallmann, ed. **The U-Boat Archive Series.** Milton Keynes, Buckinghamshire: The Military Press; Altenbruch, Germany: For U-Boot-Archiv, 2001-
2007.
Produced in conjunction with The Royal Navy Submarine Museum, Gosport, England.

Showell, Jak P. Mallmann. **U-Boat Warfare: The Evolution of the Wolf Pack.**
NPS/DKL Location: GENERAL D781 .S56 2002

Showell, Jak P. Mallmann. **U-Boats at War: Landings on Hostile Shores.**
NPS/DKL Location: GENERAL D781 .S557 2000

Showell, Jak P. Mallmann. **U-Boats in Camera, 1939-1945: Photographs from the International Submarine Archive, Germany.**
NPS/DKL Location: GENERAL V859.G3 S36 1999

Showell, Jak P. Mallmann. **U-Boats Under the Swastika: An Introduction to German Submarines 1935-1945.**
NPS/DKL Location: GENERAL V859.G3 S5

German translation of “U-Boot Commanders and crews 1935 - 45.”

German translation of “U-Boats Under the swastika.”

Showell, Jak P. Mallmann. **Wolfpacks at War.**

Snyder, Gerald S. **Husarenstück in Scapa Flow: D. Versenkung d. "Royal Oak" Durch Günther Prien; Tatsachenbericht** [Dt. Übers. von Klaus Kamberger].
German translation of “The royal oak Disaster.”

NPS/DKL Location: BUCKLEY D772.R63 S58 1978B

Records of 135 ocean Tankers of the Standard Oil Company (New Jersey) and the Panama Transport Company.
NPS/DKL Location: GENERAL D773.S7

NPS/DKL Location: GENERAL D781.S76 1999

NPS/DKL Location: GENERAL D781.S77 1991

NPS/DKL Location: GENERAL V859.G3 S73 1977

517

Contents: 1. Battleships and the GROFAZ; How long would the war Last?. -- 2. Why Teddy?; Family destinies; Recruit and Cadet; A cousin in Samoa; 3. Murwik; A Disastrous Rosenmontag; 'I intend to resign'; Belated revenge. -- 4. Another world; 1WO in the Atlantic; war: 'Stop at once!'; 'Take heart, take heart'. -- 5. Pinned down on the seabed; A Supershot; My 200,000 tons and the Knight's Cross. -- 6. No Kommandant under Twenty-five; Happy Birthday, U-564; The Abwehr is after me; Rum, and off to war. -- 7. Oak Leaves and Kapitanleutnant; Schnapps with Hitler; Across the pond; Scheherezade: Cherchez la femme!. -- 8. On the track of the Enemy; The fourth night; The Diesel-fire; Battle formation in the Periscope!. -- 9. In Columbus' Waters; Between tropical Magic and the wet abyss; The captain's swords; A nasty Accident. -- 10. Ashore after my Fifteenth patrol; From Reichkanzlei to Obersalzberg; 'Submarine Swing' with Eva Braun; Bormann: 'Suhren, I like you more by the minute'. -- 11. What do you mean, how many Submarines have I got?; Attack on the green table; With 27th (Tactical) Flotilla; 'Boats to the Front, Boats to the Front?'. -- 12. Fuhrer of Submarines (Norway); Jutta-Beatrix and the mother-in-law; HQ Narvik; Cowardice in the Face of the Enemy?. -- 13. Belated Projects; Surrender; 'Missions-Hotel' and imprisonment; The Warrior's Return. -- Postscript: A summary of Teddy Suhren's post-war career, by Helmut Herzig, President of the Teddy Suhren Marinekameradschaft, Zweibrucken. -- Appendix: Speech at the First Post-War Reunion of U-Boat men, Hamburg, 1954, as published afterwards in the souvenir booklet of the reunion.

English translation of “Nasses Eichenlaub.”
NPS/DKL Location: GENERAL D781 .S8413 2006

NPS/DKL Location: GENERAL D780 .S96 1994

“..."The decline and destruction of the few remaining capital ships … is fully detailed, as is
the remarkable History of the U-Boat service, which continued to fight at sea right up to the cease-fire in May.” -- Dustjacket

NPS/DKL Location: GENERAL D770 .T35 1994

NPS/DKL Location: BUCKLEY D780 .T2

Tennent, A. J.; (Alan J.), comp. British Ships Lost to German/Japanese Raiders 1939 - 1944. 30 l.

NPS/DKL Location: GENERAL D591 .T47 1989

Trojca, Waldemar. U-Bootwaffe 1939 -- 1945. Gda´nsk: A.J.-Press, 1999-2006. (Encyklopedia Okreńób Wojennych (Encyclopedia of Warships); 10; 11; 12; 13). 4v. Contents: 1. Includes technical data and fates of every U-Boat, its captains and crews; describes the types I, II, Projects of types III, IV, V, VI, and type VIIA & B. -- 2. Contains detailed descriptions of developed versions of type VII U-Boats - VII C/41 and VII C/42, and also anti-aircraft versions, with original shipyard drawings of the U-Boat which was built in the Gdañsk shipyard. Maps of operational squares are also included. 3. Description of production and development of U-Boats in 1943 - May 1945 period, operational service and fates of particular ships. This volume contains very interesting material concerning rockets launched from U-Boats and a separate chapter devoted to aircraft cooperating with them. -- 4. German Submarine forces profile, with emphasis on new Electro-Boote, the Type XXI and
XXIII, as well as Walter prototypes.

Descriptions from http://U-Boat.net

"This book was prepared by the Union War Histories Section of the Office of the Prime Minister of the Union of South Africa."

NPS/DKL Location: GENERAL D779.A4 T9

NPS/DKL Location: FED DOCS AE 1.112/2:2

NPS/DKL Location: GENERAL D790 .V34 1992

NPS/DKL Location: GENERAL UG1373 .V34 2005

Czech translation of “U-Boat ace.”

Contents: Preparation. -- All Beginnings are Difficult. -- The Iron Cross Boat. -- A Night of Long Knives. -

NPS/DKL Location: GENERAL D784.G3 V38 2001

German translation of “U-Boat ace: The Story of Wolfgang Lüth.”

NPS/DKL Location: GENERAL D781.V38 1997

German translation of “Wolf - U-Boot Commanders in World War II.”

Polish translation of “U-Boat ace: The Story of Wolfgang Lüth.”

NPS/DKL Location: GENERAL D780.W3

Contents: Die Eiserne Särge / Herbert A Werner. -- Feindfahrten / Wolfgang Hirschfeld.

NPS/DKL Location: GENERAL V859.G3 W47 1984

NPS/DKL Location: GENERAL V859.G3 W47 2003

NPS/DKL Location: GENERAL D781 .W47 2005

Previously published: Schwedeneck: Wetzel, 1990; Erlangen: Karl Müller Verlag, 1992,
German translation of “U-Boot Tankers 1941 - 1945.”

NPS/DKL Location: GENERAL D781 .W49 1998

German translation of “German Coastal Forces of World War Two.”

NPS/DKL Location: GENERAL D771 .W395 1992

NPS/DKL Location: GENERAL KF7642.F55 W5 1997

Wiedemeyer, Gerhard. **Wölfe der Meere Fahrten u. Heldentaten dt. Unterseeboote**

NPS/DKL Location: GENERAL D781 .W54 1995

NPS/DKL Location: GENERAL D781 .W55 1999

German translation of “U-Boot adventures: Firsthand Accounts from World War II.”

German translation of “Torpedoes in the Gulf: Galveston and the U-Boats, 1942-1943.”

Updated to include newly declassified information: U-234 captured with 10 containers marked “Japanese Army,” containing more than 1,000 pounds of unranium oxide.
NPS/DKL Location: GENERAL QC773.3.J3 W55 1995

"Published to accompany the television series The Battle of the Atlantic, first broadcast on BBC2 in 2002"--verso t.p.

Williamson, Gordon. **Kriegsmarine U-Boats, 1939-45.** Oxford: Osprey, c2002. (New vanguard 51, 55). 2v. Contents: The Type IX: Basic Description of Type, Type IXA, Type IXB, Type IXC, Type IXC/40, Type IXD1, Type IXD1 (Cargo), Type IXD2, Type IXD2/42. -- Flotillas. -- Construction Details. -- Operational Use. -- Armament: Deck Gun, 3.7 cm Flak M/42, 2 cm Flak 30/Flak 38. -- Torpedoes: Directional Control. -- Mines: TM (Torpedominen) A, TMB, TMC, SM (Schachminen) A. -- Rockets. -- The Focke-Achgelis. -- Other Standard Equipment: Radios, Radar, Sound Detection, Alberich, Bold, Aphrodite. -- The Type X. -- The Type XB: Construction Details. -- The Type XXI: Internal Description, Construction Details, Operational Use. -- The Type XXIII: Construction Details. -- The WA201. -- The Type XVIIIB. -- Foreign Submarines: Midget Submarines: The Neger, The Biber, The Molch, The Hecht, The Seehund. -- Bibliography. -- Colour Plate Commentary.

NPS/DKL Location: GENERAL D782.U18 W57 2005

NPS/DKL Location: GENERAL D781.W96 1997

GREEK

INDIAN

IRANIAN
Partial contents: The Iranian Navy. -- Iranian antiship Missiles and Missile craft. -- Iranian Mine warfare capabilities. -- Iranian Amphibious assets. -- Iranian Naval air. -- Iran's Submarine Forces. -- The Role of the IRGC's Naval branch. -- Iran's Naval Force deployments. -- Iran's overall Naval capabilities.
NPS/DKL Location: GENERAL UA853.I7 C633 2005

ISRAELI

Title on t.p. verso: Dakar and the Story of the Israeli Submarines.

Title on t.p. verso: Submarine Diplomacy.

ITALIAN

GENERAL

ITALIAN

WWI

ITALIAN

WWII

Russian translation of “Decima Flottiglia MAS.”

Polish translation from a Russian translation of the original Italian, but Russian original title not found on item.
Polish translation of “Decima Flottiglia Mas.”

Contents: Morskie diavoly / IUnio V. Borgese. -- Nemetskie morskie diversanty / Kaius Bekker.
Russian translation of “Decima Flottiglia Mas” and “... Und liebten doch das Leben.”

(Classics of Naval literature). 262p.
English translation from the original Italian edition “Decima Flottiglia Mas” by James Cleugh, and adapted by the author; with an introduction by Paolo E. Coletta.

Caporilli, Pietro. **Sommegibili in Atlantico**. Roma: Editoriale di Propaganda, 1942. (Collana di monografie sugli eroi del Mare, del cielo e della terra; n. 8). 32p.

NPS/DKL Location: GENERAL D784.I8 C6

Comp note: "Only after the war, it would be discovered that the mysterious battleship was instead the cruiser Milwaukee. Certainly, the attack took place, but the subsequent sinking 'witnessed' by the crew must have been one of those rare cases of collective illusion." The second battleship, a "Mississippi class", was the British corvette Petunia, untouched because the draught was mistakenly computed. Commander Grossi's promotion and M.O.V.M. (Gold Medal for Bravery) were eventually revoked.--
http://www.regiamarina.net/Subs/submarines/barbarigo/barbarigo_us.htm

Contents: Naval Chronology, WW II: A) 1939; b) 1940; c) 1941; d) 1942; e) 1943; f) 1944; g) 1945. -- U.S. Naval Losses. -- British Submarine Losses. -- Japanese Submarine Losses. -- German Submarine Losses. -- Italian Submarine Losses. --Principal civilian Officials and Naval Officers in command, 7 December 1941-2 September 1945.

Lembo, Daniele. **I Sommerrigibili Tascabili Italiani nel Secondo Conflitto Mondiale.** Copiano (PV) [i.e. Pavia, Italy]: Grafica MA.RO, c2006. 93p.

At head of title: Ufficio Storico della Marina Militare.

Rastelli, Achille. **Sommergibili a Singapore: 1943, l'odissea di un Marinaio Friulano**. Milano: Mursia, 2006. (Testimonianze fra cronaca e Storia. 1939-1945: Seconda Guerra mondiale; testimonianze fra cronaca e Storia. Guerre fasciste e Seconda Guerra mondiale). 178p. Testimony, through unpublished letters sent by a young NCO to his family, of the complex situation which left Italian armed forces without orders or directives after the 1943 armistice.

JAPANESE

GENERAL

JAPANESE

WWI

Issued under the auspices of the Keimeikai.

JAPANESE

WWII

NPS/DKL Location: GENERAL D783.7 .B56 2006

NPS/DKL Location: GENERAL D783.6 .B89 1995

NPS/DKL Location: GENERAL D767.92 .B87 1992

NPS/DKL Location: GENERAL V859.J3 C37 1986

Contents: The Samurai's Son. -- The Smallest Subs. -- The First Shot. -- The First Prisoner of War. -- Deadly Distractions and the Battle of Midway. -- The Assassination. -- The Suicide Squads: Kaitens and Kamikazes. -- The War Without End. -- The Puzzle.
NPS/DKL Location: GENERAL D783.6 .C73 2006

NPS/DKL Location: GENERAL D767.2 .F45 2006

Synopsis: This fascinating book examines the exchange of information and goods by long range submarine voyages between Germany and Japan during the second half of WW2. Known as 'Yanagi' this trade was a high priority to both Axis partners. As the Allies' grip on control of the oceans and air tightened, it became necessary to rely on submarines. This posed an increasingly heavy but necessary burden on tight resources. Thanks to the Author's research, here is the first full account of these operations with descriptions of individual missions be they by German or Japanese submarines and crews. Even by modern standards these were of impressive duration and demanded the highest standards of seamanship and discipline.
NPS/DKL Location: GENERAL D780 .F45 2005

NPS/DKL Location: BUCKLEY D805.J3 G6

In February 1942 British Malaya and Singapore had surrendered to the Japanese Army. Over 100,000 British and Empire military personnel had become prisoners as well as thousands of civilians. A few thousand more were escaping to the nearby Netherlands East Indies and from there to Australia, Ceylon or India in any ship that could be found. Many of these ships were lost to Japanese attacks amongst the islands scattered around Sumatra and Java whilst attempting to escape. The Rooseboom under Captain M.C.A.Boon, was taking around 500 passengers (mainly British military personnel and civilians) from Padang to Colombo in Ceylon. On the 1st March 1942 at 11.35pm the Rooseboom was steaming west of Sumatra when it was spotted by the Japanese Submarine I-59 and torpedoed. It capsized and sank rapidly leaving one life boat (designed to hold 28) and 135 people in the water. 80 people were in the lifeboat the rest clung to flotsam or floated in the sea.-- http://en.wikipedia.org/wiki/Rooseboom

German translation of “Three miles down.”

NPS/DKL Location: GENERAL G530 .H219 1999

In late 1994, a salvage operation named Project Orca was launched to try and locate the I-52 and retrieve her valuable cargo of gold. Despite the commissioning of the Russian research ship Akademik Keldysh for the project, and an extensive search, by March 1995 the search had proved to be a failure (Hamilton-Paterson 1998). Very shortly afterwards, however, in May 1995 Paul Tidwell located the wreck 5,240 meters deep, mostly upright. Her conning tower is intact and her hull number is still visible.

Originally published: Shōwa 27 [1952].

English translation of “I-go 58 kitoseri.”
NPS/DKL Location: GENERAL/BUCKLEY D784.J3 H3

English translation of “I-go 58 kitoseri.”

English translation of “I-go 58 kitoseri.”

Contents: Naval Chronology, WW II: a) 1939; b) 1940; c) 1941; d) 1942; e) 1943; f) 1944; g) 1945. -- U.S. Naval Losses. -- British Submarine Losses. -- Japanese Submarine Losses. -- German Submarine Losses. -- Italian Submarine Losses. --Principal civilian Officials and Naval Officers in command, 7 December 1941-2 September 1945.

Originally published: Tokyo: Shuppan Kyodosha, 1959 [Shōwa 34].

Abstract: "Operation K" was a plan to use flying boats operating from bases in the Marshall Islands for armed reconnaissance raids on the Hawaiian bases. These aircraft would be refueled by submarines at an atoll west of Oahu to extend their range for the attacks. Only one such attack took place on the night of March 3-4, 1942. Because of cloud cover, the targets were not visible and the Japanese bombers did no real damage. Brilliant intelligence work by U.S. intelligence officers and cryptanalysts thwarted the planned follow-on raids. Denied the knowledge of the location of American aircraft carriers, the Japanese suffered a disaster in the Battle of Midway, the crucial "turning point" in the Pacific War.

Originally published: Tokyo: Kodansha, 2005 [Heisei 17].

Kurzman, Dan. **Fatal Voyage: The Sinking of the USS Indianapolis.** New York:

NPS/DKL Location: REFERENCE VA653.A22 J37 1987

Originally published 1942-1944 by the U.S. Division of Naval Intelligence as ONI 41-421, Index to all Japanese Naval Vessels; ONI 41-42, Japanese Naval Vessels; ONI 220J, Japanese submarines; and ONI 225J, Japanese landing operations and equipment.

NPS/DKL Location: GENERAL D768.W44 1992

NPS/DKL Location: GENERAL D774.E45 W55 2004

KOREAN

Report Date: 14 JUN 1996.

Abstract: The threat of the North Korean submarine force, with its obsolete submarines, may easily be dismissed by a capable navy. For the Joint Task Force (JTF) Commander in a major regional conflict (MRC) involving North Korea, however, this submarine force could affect many operational level decisions. The Falkland Islands war showed that a Small, tactically ineffective submarine force could impact the operational commander's decisions just by being at sea and unlocated. In a Korean MRC, the North Koreans could do the same, except the North Korean submarine force is several times larger. From open source literature on U.S. Antisubmarine Warfare (ASW) methods and littoral ASW problems, the North Koreans can learn how to best keep the submarines unlocated. Using these lessons, the North Koreans can develop a submarine employment plan that can impact the JTF Commander's decisions involving operational design and operational function, such as movement, maneuver, protection, and logistics. In a worst case, the North Korean submarine threat could make all maritime operations so risky as to virtually suspend use of the seas in the Korean region until the threat is eliminated. The only effective way to counter this threat is to neutralize the submarines before they leave port. Failing in this, it becomes a time consuming and asset intensive operation to regain control of the sea or to provide protection for those ships in threatened areas.

Electronic access: http://handle.dtic.mil/100.2/ADA312031

Wu, Wei rong. **Wu Qi Xi Tong Quan Shou Qi Guan Li He Xin Yao Xiang Zhi Shi Zheng Yan Jiu = Yi Hai Jun Qian Jian Hou Qin Wei Li =Case of Submarine Logistics**. Tao yuan xian: Zhuan zhe, 2006, 94 l.

Thesis (M. A.) – National Defense University, 2006. ??

A Study of Total Life Cycle System Management for the ROC Navy; Case of Submarine Logistics.

PERUVIAN

POLISH

GENERAL

WWII

PORTUGUESE

RUSSIAN/SOVIET

GENERAL

Swedish translation of “Hostile Waters.”

Swedish translation of “Hostile Waters.”

NPS/DKL Location: VA575.K14 H83 1997

German translation of “Hostile Waters.”

Hebrew translation of “Hostile Waters.”

Japanese translation of "Hostile Waters."

NPS/DKL Location: REFERENCE V859.S65 J67 1989

Contents: Kniga posviashchaetsia svetloii pamiati rossiiskikh podvodnikov vsekh pokolenii v kanun 100-letnego iubleia podvodnogo plavaniia Rossii.

In Georgian.

Contents: Chast’ 1; Chast’ 2.

NPS/DKL Location: GENERAL V859.R8 S49 2005

Originally published: As “Podvodnik I”

RUSSIAN/SOVET

NUCLEAR

Cherkashin, Nikolai. *Povsednevnaia Zhizn' Rossiiskikh Podvodnikov*. Moskva:

Originally published:

NPS/DKL Location: GENERAL VK1282 .R8 F589 2004

NPS/DKL Location: GENERAL V857.5 .H83 2002

German translation of “K-19: The widowmaker.”

English translation of “Problemy bezopasnosti pri ekspluatatsii i utilizatsii atomnykh Podvodnykh Lodok.”

NPS/DKL Location: GENERAL TD898.13.R8 K78 2001

Mormul’, Nikolai. Atomnye, Unikal’nye, Strategicheskie: Zapiski Ispytatelia

NPS/DKL Location: GENERAL VA65.S394 O44 2007

"Spetsial’nyi al’manakh 'Taifun’"

"A book by the Center for Arms Control, Energy and Environmental Studies at the Moscow Institute of Physics and Technology; The English-language edition supported by the Security Studies Program at the Massachusetts Institute of Technology."
English translation of “Strategicheskoe iadernoe vooruzhenie Rossii."
NPS/DKL Location: GENERAL UA776.R37 R87 2001

NPS/DKL Location: GENERAL V858 P63 2004

Abstract: This thesis examines the 1986 Chernobyl accident and its consequences as the basis for an analysis of the possible dimensions of the nuclear catastrophes that could occur during the dismantlement process of Russia's Northern Fleet nuclear submarines. It assesses the potential demographic, ecological, and economic consequences of a nuclear accident. Given the systemic problems at Russian nuclear facilities, the risks of a catastrophic event in the poorly maintained and operated submarine yards housing over 100 operating nuclear reactors are significant. A major nuclear accident at these facilities could cause damage to the environment of global proportions. This thesis considers the potential environmental impact of a nuclear accident during the nuclear submarine dismantlement process and discusses the environmental damage that has already occurred as a result of Soviet and Russian practices. This thesis also evaluates the risk of diversion of nuclear materials to proliferators or terrorists. Lastly, this thesis examines how the United States, the European Union, and perhaps others could assist Russia in reducing the environmental and proliferation risks in this dismantlement process.
NPS/DKL Location: THESIS S64443
Electronic access: http://handle.dtic.mil/100.2/ADA378654

Spasskii, Igor Dmitrievich. Pervyi vek Podvodnogo Flota Rossii. Sankt-Peterburg:

RUSSIAN/SOVIET
WWI

RUSSIAN/SOVIET

WWII

NPS/DKL Location: GENERAL D779.S65 A2313

Gagin, V. *Sovetskie Atomnye Podvodnye Lodki: [k 300-letiui Rossiiskogo Flota].*

Grishchenko, Petr Denisovich. **Moi Druz’ia Podvodniki**. 1966. 139p.

Izmailov, Semen. **Taina Podvodnoi Lodki: Istoriiia Odnoi Sistemy**. Haifa?: S.n.,
Also entitled BATTLE OF THE BALTIC: The Wars 1918 -- 1945 in amazon.com

The Story of Izrail´ Fisanovich.

(Geroicheskoe proshloe nashei rodiny). 136p.

(Podvodnoe korablestroenie: Proshloe, nastoiaschee, budushchee; vyp. 5). 60p.

Contents: Introduction. -- Theater of Operations. -- The First Four Years. -- The Kriegsmarine. -- District and Escort Forces. -- Naval Control of Shipping. -- The Handelsmarine. -- Closing Down. -- Conclusion. -- Appendices. -- Bibliography.

French translation of “V glubinakh poliarhhpykh morei.”

English translation of “V glubinakh poliarhhpykh morei.”

English translation of “V glubinakh Poliarhhpykh morei.”

NPS/DKL LOCATION: GENERAL D764.3.L4 K76 2004

NPS/DKL Location: GENERAL VA593 .L45 1987

"A Project of Air Force report prepared for the United States Air Force."

Abstract: The Soviets have conducted submarine operations in Swedish waters continuously since World War II. Although the evidence of these violations of Sweden's territorial waters is incomplete, Swedish authorities indicate that foreign submarine operations were carried out infrequently and at irregular intervals during the 1960s and into the late 1970s. The scope and character of Soviet operations in Sweden changed in or around 1980, however, becoming much more frequent, penetrating the heart of Sweden's coastal defense zones, and involving the use of multiple submarines, mini-submarines, and combat swimmers operating in a coordinated manner. This report examines the strange case of Soviet submarine operations in Swedish waters since 1980. It discusses the nature of these operations as well as related activities being carried out on Swedish soil, the political and strategic context within which these operations have evolved, the objectives that apparently underlie these activities, and the continuity in Soviet civil-Military decisionmaking on the submarine question.

NPS/DKL LOCATION: GENERAL VA593 .M33 1990

Continues: Vertikal'noe vsplytie.

Continued by: Rabochaia glubina: Zapiski Podvodnika.

Title on t.p. verso: With no way out: Story of "Struma.

Title onp. facing t.p.: "Fugariti fara scapare, Vasul Struma.

NPS/DKL Location: GENERAL V859 .S65 P64 1990

"Rohwer was the first to uncover the Submarine records with the Break-up of the Soviet Union. A Russian Submarine [SC 213] commander Lt Denezhko was given a "medal" for his "heroic" action of killing all these defenceless people."
Electronic access: http://www.dangoor.com/73page120.html

Contents: Crew readiness. -- Preparations for the Cruise. --The Cruise. -- Fire!. -- "Damage Control alarm!". Surfacing. -- Signal No. 6 (distress Signal). -- "Connect up to the stationary emergency breathing System!". -- Who discharged the air-foam fire extinguisher System?. -- List Control. -- Fire in compartment
five. -- "Shut high-pressure air Subgroup valves!". -- Reconnaissance by the Division Commander. -- Secret Documents - to the rescue chamber!. -- The First Victims. -- The fight Against listing continues. -- "No flooding!". -- "Explosions observed!". -- "Prepare to abandon ship!". -- The life rafts. -- The rescue chamber. -- The results of this analysis. -- The Assault of the pundits. -- Conclusions. -- Appendix I - Roll call of sailors lost on the Submarine Komsomolets. -- Appendix II - "Design peculiarities" of the Submarine Komsomolets.

First complete English translation of "Tragediia Podvodnoi Lodki "Komsomolets."

NPS/DKL Location: GENERAL VA575.K66 R6613 2006

English translation of "Asupra câtorva tragedii mici petrecute în cadrul unei tregedii mari numită "Struma".
"The translation into English is based on the full version on [sic] the paper published in Romanian Studia et acta Historia [sic] Iudeorum [sic] Romaniae, University of Jassy, vol. 4, Buscharest 1999"--P. [1].

Sinking of the refugee ship Struma in the Black Sea, February 23, 1942.

Sinking of the refugee ship Salvador 1940.

Comp. note: In 1945 S-13 sank the liner Wilhelm Gustloff on January 13 and on February 10 the German hospital ship General von Steuben, both part of Operation Hannibal, Germany's Dunkirk. The death toll was at least 14,000. [http://en.wikipedia.org/wiki/Soviet_submarine_S-13; http://www.wilhelmgustloff.com/welcome.htm]

German translation of “V Vodach Sedoj Baltiki.”

Travkin comanded the K-52 [http://www.wlb-stuttgart.de/seekrieg/anf/sowj_u-operationen.ost.htm]

Travkin, Ivan Vasil´evich. **Vsem Smertiam Nazlo**. 3-e izd, dop. Moskva: Voenizdat,
Title from a popular November 1941 poem/song "Zhdi menia". --
http://rkkaww2.armchairgeneral.com/Multimedia/ww2/comments/war_lyrics/Wait.txt

Tributs, Vladimir Filippovich. Podvodniki Baltiki Atakuiut; Voennye Memuary.

Tripol'skii, A., A. Koniaev, F. Vershinin, I. Romanenko, N. Tokarev, V. Savchenko, A.
Poskonkin, F. Ratus. Baltiitsy: Geroi Sovetskogo Soiuza [redaktor A.I. Kornilov].
Moskva: Voenmorizdat, 1941. 192p.

Trofimova, Stella Aleksandrovna and Boris Ivanovich Abakshin. Podvudnye Zalpy.

Trusov, Grigorii Martynovich. Podvodnye Lodki v Russkom i Sovetskom Flote. Izd.
2., ispr. i dop. Pod red. V. IA. VeresoVA Leningrad, Gos. soiuznoe izd-vo sudostroit.

(Boevye korabli mira). v.1-
Contents: V. 1: Pervym russkim moriakam-Podvodnikam posviashchaetsia.

Tully, John M. Russia's Submarine Force: Determinants and Prospects. Monterey,
Abstract: This thesis analyzes the factors likely to shape the future of the Russian submarine force. It examines key events affecting this force since the collapse of the Soviet Union in 1991, and explores the determinants of these events. The Russian Federation inherited a huge submarine fleet from the Soviet Union. Due to the changing conditions in the world and in Russia, its future status is in doubt. The thesis begins by analyzing the development and roles of the Soviet submarine force. It then considers the four most significant factors that have affected the submarine force since 1991: 1) Russia's poor economic performance, 2) Russia's changing national security requirements, 3) competition from the other military services for a limited defense budget, and 4) changes within the military and society. The thesis concludes that the Russian submarine force is unlikely to undergo a major revival. The most probable scenario involves a smaller and less capable force. The most influential factors may be Russia's economic performance and the military reform plans of Russian President Vladimir Putin and Defense Minister Sergey Ivanov.
NPS/DKL Location: THESIS T9315
Electronic access: http://handle.dtic.mil/100.2/ADA392080

45p.

Varner, Roy and Wayne Collier. A Matter of Risk: The Incredible Inside Story of the
CIA's Hughes Glomar Explorer Mission to Raise a Russian Submarine. London:

SOUTH AFRICAN

SPANISH

Sweden will Conduct Joint Submarine Exercises with the United States of America

The Swedish armed forces will conduct joint submarine exercises with the United States of America. A Gotland-class submarine with Swedish military personnel will conduct joint exercises with the US Navy for a year. The submarine will be stationed on American naval bases on both the west- and the eastcoast.

The purpose of the Swedish participation is to increase the capability to cooperate in international peace support operations with the armed forces of other countries. The cooperation will also have positive synergy effects for the development of submarines and sensors and the continuous cooperation within the field of materiel development. The exercises will commence during the first half of 2005.

Ministry of Defence.

TAIWANESE

Abstract: Under the Bush Administration, U.S.-China-Taiwan relations have undergone a number of changes. Initially, the new Administration seemed to abandon the long-standing U.S. policy of "strategic ambiguity" on Taiwan in favor of "strategic clarity" that placed more emphasis on Taiwan's interests and less on PRC concerns. Among other things, President Bush publicly stated that the United States would do "whatever it takes" to help Taiwan's defense -- a position more support ive of Taiwan than had been articulated by previous U.S. presidents. In April 2001, the President also approved a Substantial sale of U.S. weapons to Taiwan, including Kidd-class destroyers, anti-submarine \P-3 "Orion" aircraft, and diesel submarines. The White House also was more accommodating to visits from Taiwan officials than previous U.S. Administrations, and permitted visits from Taiwan's president in 2001 and 2003, and from Taiwan's vice president and defense minister in 2002. Political trends in Taiwan have raised anxieties about its future and the implications for U.S. policy. Some are concerned that a Continued emphasis on "Taiwan identity" may lead to ethnic polarization and conflict. Others are concerned about the implications that these trends have for a possible declaration of Taiwan independence, which Beijing has vowed to "pay any Price" to prevent. In recent months, political developments in Taiwan appear to be causing the Bush Administration to dial back its earlier enthusiasm for supporting Taiwan. U.S. officials now appear to be balancing criticisms of the PRC military buildup opposite Taiwan with periodic cautions and warnings to the effect that U.S. support for Taiwan is not unconditional, but has limits. This issue brief tracking the situation in Taiwan will be updated as events warrant.
Zhang, Jia rong (Gong cheng ke xue). **Qian Jian Ya Li Ke Jie Hou Zhi Pi Lao? Duo Fen Xi = The Fatigue Analysis for the Pressure Hull of Submarine.** Taipei, Taiwan: National Taiwan University, 2006. 60p.
Thesis (Master) -- National Taiwan University, 2006.
Dissertation: Shuo shi lun wen -- Guo li tai wan da xue gong cheng ke xue ji hai yang gong cheng xue yan jiu suo.

Zhang, You hong (Yohon-Chang). **Qian Jian Yun Dong Shu Xue Mou Shi Zhi Jian Gou Yu Mou Ni = On a Mathematical Model of Submarine Maneuvering Motions and Simulation.** Taipei, Taiwan: National Taiwan University, 2006. 147 l.
Thesis (Master) -- National Taiwan University, 2006.
Dissertation: Shuo shi lun wen -- Guo li tai wan da xue gong cheng ke xue ji hai yang gong cheng xue yan jiu suo.

TURKISH

YUGOSLAV

SPECIAL TOPICS

CONFERENCES ON LIMITATION OF ARMAMENT

WASHINGTON DC 1921-1922

Thesis (Ph.D.) -- Princeton University, 1923.

Contents: Invitations to the powers. -- Agenda. -- List of delegations and their personnel. -- Minutes of the plenary sessions. -- Minutes of the Committee on Program and Procedure with respect to limitation of armament. -- Minutes of the Committee on Limitation of Armament. -- Minutes of the Committee on Program and Procedure with respect to Pacific and Far Eastern questions. -- Minutes of the Committee on Pacific and Far Eastern Questions. -- Appendix, consisting of the treaties and resolutions. -- Index.

NPS/DKL Location: GENERAL JX1974.7 .C7 WASHINGTON

Abstract: From 1923 to 1940 the U.S. Navy held Twenty-one major exercises, known as “Fleet Problems.” While only part of annual fleet training, these exercises differed from routine maneuvers and gunnery exercises. All available fleet units were integrated into a single major action…. Concepts such as dive-bombing, independent submarine operations, antisubmarine warfare, and amphibious operations were explored in a medium that stressed the thinking of naval officers as how best to fight a naval war with modern weapons.

"Presents the American version of the Conference [on the limitations of armaments]"-p.vi.

NPS/DKL Location: RARE BOOKS JX1974.5 .K6

Originally presented as the author’s thesis.

NPS/DKL Location: GENERAL JZ5615 .L47 2003

National Council for Prevention of War (U.S.). *The United States Navy Since the Washington Conference; Comparison with the Navies of Great Britain, Japan, France, and Italy; the Facts Derived from United States Naval Sources.* Washington, DC, National council for prevention of War, 1927. 26p.

Originally telecast in 1986 as a NHK television program: Dokyumento Showa.

Scheer, Reinhardt. Amerika und die Abrüstung der Seemächte. Berlin, A. Scherl, g.m.b.h., c1922.

LONDON NAVAL CONFERENCE (1930)

Originally presented as the author's thesis (Ph.D.) -- Oxford University, 1982.

English translation of v. 1 of “Saionji Ko to seikyoku.”
NPS/DKL Location: GENERAL DS888.2.H2

NPS/DKL Location: GENERAL JZ5615.L47 2003

Documents on Japanese foreign policy, summaries of the proceedings of the London Naval Conferences.

LONDON NAVAL CONFERENCE (1935)

Naval Conference of 1935.

NPS/DKL Location: GENERAL D742.J3 P44 1974

CONVOYS

GENERAL

Thesis (Ph.D.) -- University of Maine at Orono, 1980.

Abstract: This study was undertaken to determine why the "ancient practice of convoy" was not universally adopted until well into World War I and why it was not adopted sooner in World War II despite its proven success under modern conditions against the submarine version of the guerre de course in World War I. The major conclusions of the study are as follows. Since the last decade of the Nineteenth century, Captain Alfred Thayer Mahan, United States Navy, has had more influence worldwide on the formulation of national policies and naval strategy in general and the protection of shipping in wartime in particular than any other individual in modern times. Specifically, his conclusions regarding the superiority of "capital ships," the decisiveness of "big battles," and the "irregular secondary ... inconclusive ... {and} indecisive" nature of commerce destroying have been accepted almost without question as the foundation upon which navies have been built and employed. Conversely, his strong support of convoying as being superior to hunting for marauders has been virtually ignored.

NPS/DKL Location: GENERAL VK15 .B68

NPS/DKL Location: GENERAL TL716 .B76 1993

CONVOYS

WWI

Bone, David W. *Merchantmen-at-Arms; the British Merchants' Service in the War.* London, Chatto & Windus, 1919. 259p.

Thesis (Ph.D.) -- University Of South Carolina, 1993.

Abstract: Written by a former merchant mariner, the dissertation aims to show that convoying was substantially effective in reducing merchant shipping losses in the Atlantic and contiguous sea areas during the 1917-18 convoy period. Among the conclusions reached is that convoying was a vitally significant factor in allowing the Allies to keep their sea lanes open and thereby prosecute their war effort to a successful conclusion by transporting foodstuffs, military supplies, and troops sufficient to that end.

NPS/ DKL Location: GENERAL D581 .S74 2004

CONVOYS

WWII

GENERAL

By Warren Armstrong [pseud.]

Thesis (PH.D.) -- Carleton University, 1996. 339 l.

Abstract: Canadian naval aviation during the Second World War and post-war period has, for the most part, been ignored in the scholarship. This is especially true in the case of the helicopters. This dissertation is an examination of the origins of rotary-wing aircraft and the development of the helicopter carrying destroyer escort from the Canadian perspective.

NPS/DKL Location: FEDDOCS D 201.38:C 73/NO.4

NPS/DKL Location: GENERAL V182 .H38 2000

Chiefly brief vessel Histories; includes vessel movements and statistics.

Contents: Dreams of glory -- All the ships at sea -- Stormy Waters -- Reporting for duty -- war crimes -- The Battle of Saipan -- Valor at sea -- Torpedo run -- The Russian gauntlet -- The Submarine parade -- The helping hands -- The leaky lifeboat -- Passage to India -- Invasion Forces -- Hurricane at sea -- The darkest Days -- The cigarette salesman -- Not covered! -- They earned our respect -- Last man to stand -- The quest for justice -- Man on a Mission -- Healing the wounds.
NPS/DKL Location: GENERAL VK23 .H47 2004

Abstract: This dissertation narrates the events that took place in the Mediterranean theater from Italy's entry into World War II through the surrender of the last Axis forces in North Africa.

Abstract: In the early development of naval aviation, advocates of the new technology anticipated that the airship would play a significant role in the projection of air power by the fleet. World War I proved that the gigantic rigid airship was a vulnerable tactical bomber, but the United States Navy remained anxious to develop these craft as long range scouts. After a period of experimentation and design improvements, the rigid airship evolved into an aircraft carrier in the sky. By carrying aloft a fleet of airplanes, the rigid airship expanded its previous mission capabilities. Unfortunately, though promising, this collaboration of lighter-than-air and heavier-than-air technology was abandoned when American rigid airships proved disaster-prone in unstable weather. On the other hand, the non-rigid airship, developed in the shadow of the glamorous rigid, by World War II proved to be a versatile and utilitarian aircraft. The blimp was particularly useful in convoy escort missions, anti-submarine operations, minespotting, and air-sea rescue. American blimps were deployed on four continents during the war, and successfully escorted some 89,000 transport ships.

NPS/DKL Location: GENERAL D771.L49 2003

Originally published: Liverpool: Sea Breezes, 1965 as “Empire Ships of World War II.”

Contents: ‘Not what it could or should be’: Britain’s shipping situation. -- ‘Beyond our power without your help’: Britain’s Battle of the Atlantic. -- ‘But Westward, look, the land is bright’: American shipping assistance from Neutrality to Belligerency, March 1941-November 1942. -- Roosevelt’s promise: ‘Your requirements will be met’. -- The Casablanca Conference and its Aftermath: A ‘most curious misunderstanding. -- Reaping the whirlwind: The Perils of impending Victory. -- Postscript and conclusions.

NPS/DKL Location: GENERAL D753 .S55 1996

CONVOYS -- WWII

ARCTIC

Introduction also in English.

Added TP Title: Arctic Convoys in the mood for Glen Miller

English translation of "Convoi vers l'URSS."

Boldov, A. V. **Severnye Konvoi: Issledovaniia, Vospominaniiia, Dokumenty.** Vyp. 2.

Bryzgalov, V. V. et al. **Konvoi: Issledovaniia, Vospominaniiia, Bibliografiia, Dokumenty.**

Campbell, Ian, Sir and Donald Macintyre. **The Kola Run; a Record of Arctic Convoys, 1941-1945.**
Originally published: London, Muller, c1954.

Carse, Robert. **A Cold Corner of Hell; the Story of the Murmansk Convoys, 1941-45.**
NPS/DKL Location: GENERAL/BUCKLEY D771 .C2

Carse, Robert. **Lifeline; the Ships and Men of our Merchant Marine at War.**
NPS/DKL Location: GENERAL/BUCKLEY D773 .C17

Carse, Robert. **There Go the Ships.** London: Jarrolds, 1943. 87p.

Edwards, Bernard. **The Road to Russia: Arctic Convoys 1942.**
Contents: The fate of Convoys PQ13 and PQ17 bound from Iceland to Northern Russia as well as the
westbound Convoy QP13. Attacked relentlessly by aircraft and U-Boats, the former lost a total of thirty
ships while QP13 ran into a British minefield off Iceland, losing seven vessels.
NPS/DKL Location: GENERAL D770 .E394 2002

Evans, Mark Llewellyn. **Beneath the Midnight Sun: The Allied Arctic Convoys in World War II.**
Indiana, PA; Indiana University of Pennsylvania, 1996. 156 I.

Evans, Mark Llewellyn. **Great World War II Battles in the Arctic.** Westport, CT:

Summary in English; some essays translated from English.

With a new preface by Malcolm Llewellyn-Jones.
First issued by the Historical Section of the Admiralty as a confidential study for use within the Royal Navy in 1954."--Pref.

NPS/DKL Location: BUCKLEY D811 .H5

Originally published: London: Kimber, 1956 as “Through the Waters.”
Extracts and photos at http://www.world-war.co.uk/scylla_story.php3

NPS/DKL Location: GENERAL D771 .I7

Russian translation of The Destruction of Convoy PQ 17.

Gütersloh: Bertelsmann-Club; Stuttgart: Europ. Bildungsgemeinschaft; Wien:
Buchgemeinschaft Donauland; Zug/Schweiz: Buch- u. Schallplattenfreunde; Berlin;
German translation of The Destruction of Convoy PQ 17.

Abstract: The Arctic convoys that took vital supplies at enormous risk to Russia during the Second World War did so within range of Germany's Luftwaffe, surface ships and U-Boats. These convoys were watched over by Bletchley Park codebreakers and intelligence officers, through decrypts of the German Enigma coding machine. In particular, these decrypts were closely involved in three of the key actions of the Arctic battles, the sinking of the battlecruiser Scharnhorst, the destruction of the battleship Tirpitz and the disastrous PQ17 convoy. This book examines the Ultra decodes, and for the first time lists the key details in these events in chronological order, detailing the role of the decrypts in a virtual minute-by-minute breakdown of how the signals were used in these key actions.
"Top Secret U -- Most Secret source -- MSS Ultra CS"--Cover illustration of original classification, now declassified.

Contents: 1 Allies of a Kind. -- 2 All Aid to Russia-Now!. -- 3 The Political Imperative. -- 4 A Matter of Duty. -- 5 'Convoy is to Scatter'. -- 6 A Bloody Business. -- 7 Fighting Back. -- 8 New Year Triumph. -- 9 The Arctic Life. -- 10 Difficult Decisions. -- 11 'Admiralty Appreciates Scharnhorst is at Sea'. -- 12 'To the Last Shell'. -- 13 'The Lone Queen of the North'. -- 14 Victory. -- 15 Conclusions and Reflections.
NPS/DKL Location: GENERAL D770.K43 1978

German translation of "Night of the U-Boats."

Spanish translation of “The Battle of the Atlantic.”

French translation of “The Battle of the Atlantic.”

NPS/DKL Location: GENERAL D770 .M2

Icelandic translation of “The Battle of the Atlantic.”

NPS/DKL Location: GENERAL D771 .P43 2002

Spanish translation of "Stalin's gold.

NPS/DKL Location: GENERAL VA458.E34 P46 1982B

NPS/DKL Location: BUCKLEY D771 .P6 1988

"The whole thing is a most unsound operation with the dice loaded against us in every direction" -- T.p./ "First Sea Lord, Admiral of the Fleet Sir Dudley Pound to Chief of Naval Operations, Fleet Admiral Ernest King, 18 May 1942" -- T.p.

Russian translation of “The Russian Convoys.”

Schofield, Brian Betham. **Geleitzugschlachten in der Hölle des Nordmeeres (The

588
German translation of “The Arctic Convoys.”

NPS/DKL Location: D771 .S3

German translation of “Arctic Victory.”

Dutch translation of “Northern Escort.”

Other Titles: Victoria Crosses of the Second World War.
Partial contents: 33. Russian Convoy Robert Sherbrooke
On 31 December 1942 off North Cape, Norway in the Barents Sea, Captain Sherbrooke in HMS Onslow was senior officer in command of destroyers escorting an important convoy for North Russia, when he made contact with a vastly superior enemy force—the cruiser Hipper and the pocket battleship Lutzow.
Four times the enemy tried to attack the convoy but was forced back each time. Early in the action Captain Sherbrooke was seriously wounded in the face and temporarily blinded. Nevertheless he continued to direct the ships under his command and even when the next senior officer had assumed control, he insisted on receiving all reports of the action until the convoy was out of danger. His actions—and the Nazi ships’ failure to neutralize the convoy despite its superior force—are pivotal for Hitler's order to scrap the Kriegsmarine in the beginning of 1943.

http://en.wikipedia.org/wiki/Robert_St_Vincent_Sherbrooke

Convoy QP-11; Recovery of HMS Edinburgh's cargo of gold.

Polish translation of “The Arctic Convoys, 1941-1945.”

Appendix I: Chronological list of convoys.
NPS/DKL Location: GENERAL D764 .W73 2005

CONVOYS -- WWII

ATLANTIC

NPS/DKL Location: GENERAL DS770 .A3

Abstract: Wartime service of merchant mariner employed by the Anglo-Saxon Petroleum Co., Ltd., the English marine arm of the Royal Dutch Shell Group, on tankers converted to merchant air craft carriers, and in convoys, during the Second World War.

Bailey, Chris Howard. The Royal Naval Museum Book of the Battle of the Atlantic:

NPS/DKL Location: GENERAL V765 B73 2007

NPS/DKL Location: GENERAL V182 B87 1999

Abstract: On December 19, 1945, the Canadian government approved in principle the formation of the Royal Canadian Naval Air Service. The origins of Canadian naval aviation, however, can be traced to the fortunes of the Royal Canadian Navy in its battle for the convoys during 1942, and its drive to gain operational control of the ships. Furthermore, the history of the Royal Canadian Naval Air Service was inextricably intertwined with the navy's desire to obtain a balanced fleet, in which aircraft carriers were deemed to be an integral component. Canadian naval aviation during the Second World War has, for the most part, been ignored in the scholarship.

Cover title: Atlantic convoy notes by a convoy commodore.

Duskin, Gerald and Ralph Segman. If the Gods are Good: The Epic Sacrifice of HMS Jervis Bay. Annapolis, MD: Naval Institute Press, c2004. 270p.

NPS/DKL Location: GENERAL D771 .E392 2002

NPS/DKL Location: GENERAL D773 .G53 1992

NPS/DKL Location: GENERAL D771 .G7

NPS/DKL Location: GENERAL D770 .G76

NPS/DKL Location: GENERAL V182 .H37 1998

NPS/DKL Location: GENERAL D754.P8 H47 2004

German translation of “Wolfpack: The U-Boot War and the Allied Counter-Attack, 1939-1945.”

NPS/DKL Location: GENERAL D770 .J67 2002

"By arrangement with Amber Books Ltd."

NPS/DKL Location: BUCKLEY D810.T8 K37 1998

German translation of “Convoy: Merchant Sailors at War, 1939-1945.”
NPS/DKL Location: GENERAL D770.K43 1978

NPS/DKL Location: GENERAL D810.S7 M371 1990

NPS/DKL Location: GENERAL D771.M65

German translation of “Convoy.”

German translation of “Convoy.”

Thesis (Ph.D.) -- University Of New Brunswick, 1983.
Abstract: The Royal Canadian Navy played an important role in the Battle of the Atlantic, but little is known of the background of Canada's naval war. Generally, historians treat Canada and the RCN as benign elements: Suppliers of men and ships, and little more. As a result, general histories of the Battle almost totally ignore one of the major participants. It is this distortion of history which the thesis attempts to redress. Before the war the RCN never considered trans-Atlantic anti-submarine escort of convoys
and initially developed its auxiliary fleet for inshore work. However, in the spring of 1941 the Navy was forced to commit its auxiliary fleet to the ocean escort of trade convoys.

Milner, Marc. **North Atlantic Run: The Royal Canadian Navy and the Battle for the Convoys.** Toronto; Buffalo; Annapolis, MD: University of Toronto Press; Naval Institute Press, c1985. 326p.

Originally published: Toronto; Buffalo: University of Toronto Press; Annapolis, MD: Naval Institute Press, 1985

Originally published: Toronto; Buffalo: University of Toronto Press; Annapolis, MD: Naval Institute Press, 1985

Contents: Re-Learning the Lessons. -- Happy Time for U-Boats. -- Allies for Britain. -- Havoc in the Atlantic. -- Unhappy Times for U-Boats. -- Twilight of the U-Boats.

English translation of “Les loups de l'amiral.”

NPS/DKL Location: GENERAL D771 .O27 1998

Italian translation of “La bataille de l'Atlantique.”

German translation of “La bataille de l'Atlantique.”

NPS/DKL Location: BUCKLEY D770 .R2

NPS/DKL Location: GENERAL D770 .R2 1999

NPS/DKL Location: BUCKLEY CT18.E9 A2

English translation with revisions of “Geleitzugschlachten im Marz 1943.”
NPS/DKL Location: GENERAL D771 .R67

English translation with revisions of “Geleitzugschlachten im Marz 1943.”

"Die englische Ausgabe ist dort erscheinen unter dem Title "The critical Convoy-Battle
of 1943".

Partial contents: 10. Saga of the Jervis Bay Edward Fogarty Fegen
Sole escort for 37 merchant ships in Convoy HX-84 from Halifax, Nova Scotia to Britain, when the convoy encountered the Admiral Scheer, the Captain of Jervis Bay, Edward Fegen, ordered the convoy to scatter and closed with the German Warship. The 11-inch guns of the German ship easily outranged Jervis Bay and she was sunk with the loss of 190 crew. However, while Admiral Scheer went on to sink five merchant ships out of the convoy, Jervis Bay's sacrifice bought enough time for the convoy to scatter, and the remaining ships escaped. -- http://en.wikipedia.org/wiki/HMS_Jervis_Bay

NPS/DKL Location: GENERAL D773 .W285 2004

NPS/DKL Location: GENERAL D770 .W3

NPS/DKL Location: GENERAL D772.J4 W37 2006

NPS/DKL Location: GENERAL D770 .W44 2006

Abstract: *The Royal Canadian Navy in World War II played a role second only to that of the Royal Navy in the Battle of the Atlantic, the German assault on the ocean trade routes. Required to act independently*
because of the nationalistic policies of the government of Mackenzie King, and to provide for its own high
technology needs as a result of the Royal Navy's failure to allocate adequate equipment, the RCN was
forced to attempt to develop from an almost non-existent prewar infrastructure a system of supplying its
evacuee vessels with the necessary electronic detection systems and anti-submarine weaponry.

CONVOYS -- WWII

MALTA/MEDITERRANEAN

Contents: The Base at Malta in the 1920s. -- The Failure to Strengthen Malta's Defences, 1930-5. --
Malta in the Abyssinian Crisis, 1935-6. -- Prelude to War, 1936-9. -- Final Preparations for War. -- The
Threat of Invasion. -- The Initial Onslaught. -- The German Intervention in the Mediterranean in 1941. --
Malta's Contribution to 'Crusader'. -- The 1942 Siege of Malta. -- Malta's Contribution to the Recovery of
North Africa. -- Conclusion.
Based on author's Doctoral thesis (University of London), 2002, The place of Malta in
British Strategic policy 1925-1943.

Bradford, Ernle Dusgate Selby Bastion im Mittelmeer: D. Belagerung Malts: 1940 -
German translation of Siege: Malta 1940-1943.

Contents: A distant day. -- Islanded in time. -- The divided sea. -- Thunder afar. -- Parochial and other
matters. -- The Germans Intervene. -- Full fury. -- Island, desert, and sea. -- Voices. -- Spring forty-one. --
War and weather. -- On another island. -- The besieged strike back. -- The hot summer. -- Aspects of
War. -- The fall of the Year. -- Individuals. -- Striking Force. -- A hard Winter. -- New Year 1942. -- Raids
and rain. -- Awaiting invasion. -- Convoy. -- April forty-two. -- A volcano in eruption. -- A change of
Balance. -- Bread of adversity. -- Heat of the day. -- Preparations. -- Nine Days to Santa Marija. --

Originally published: London, Muller, 1959 as "Red duster, white ensign; the Story of
Malta and the Malta Convoys."

NPS/DKL Location: GENERAL D811 .C6

Gordon, Donald see Cameron, Ian [pseudonym].

NPS/DKL Location: IN PROCESS

Synopsis: This is an account of what it was like to command a destroyer during World War II. Spanning 1942 to 1945, Hill commanded HMS Ledbury during the tragedy of Arctic convoy PQ17 and played an outstanding role in Operation Pedestal. The pressures of command and the strain of years of continual fighting are conveyed here. Originally published: London: Kimber, 1975; London: Mayflower, 1979.

Kemp, Paul. **Malta Convoys, 1940-1943.** London; New York: Arms & Armour Press,
NPS/DKL Location: GENERAL D766 .L485 1999

Contents: 1. La Storia / Riccardo Nassigh. -- La battaglia dei convogli. -- Documentazione fotografica. -- 2 consists of papers presented at a conference held March 22, 1993, Naples, Italy.

Payne, Donald Gordon see Cameron, Ian [pseudonym].

NPS/DKL Location: GENERAL D771 .P42 2004

NPS/DKL Location: GENERAL D763.M3 S5

Italian translation of “Pedestal: The Malta Convoy of August, 1942.”

NPS/DKL Location: GENERAL D763.M3 S66 1996

NPS/DKL Location: GENERAL ON ORDER??

Other Title: Victoria Crosses of the Second World War.
Partial contents: 14. Malta Submariner Supreme Malcolm Wanklyn
On 24 May 1941 in the Mediterranean, south of Sicily, Lieutenant-Commander Wanklyn, commanding HM Submarine Upholder on her seventh patrol, torpedoed an Italian troopship (the 18,000 ton former liner Conte Rosso) which was with a strongly protected convoy. As the submarine's listening equipment was broken the approach to the attack was made entirely using the periscope without going deep and approaching the convoy by navigating towards the sounds of the propellers.--

Wragg, David W. **Malta, the Last Great siege: The George Cross island's Battle for Survival, 1940-43.** Barnsley, South Yorkshire: Leo Cooper, 2003. 244p.

CONVOYS -- WWII

PACIFIC

CUBAN MISSLE CRISIS

NPS/DKL Location: GENERAL E841 .A3

Spanish translation of “Essence of Decision: Explaining the Cuban Missile Crisis.”

NPS/DKL Location: GENERAL E183.8.R9 A5

Japanese translation of “Essence of Decision: Explaining the Cuban Missile Crisis”

NPS/DKL Location: GENERAL E183.8.R9 A5 1999

NPS/DKL Location: GENERAL UA23 .W48 1989

Beer, Robert M. *The U.S. Navy and the Cuban Missile Crisis*. Annapolis MD, US Naval Academy School, 1990. (ADA227065; USNA-TSPR-165). 205p. Abstract: This study examines the traditional interpretation of the 1962 Cuban Missile Crisis and the Navy's quarantine of the island. An impressive literature on the Cuban Missile Crisis has been compiled, but most accounts draw heavily on the memoirs of former Kennedy insiders, especially Robert Kennedy and Arthur Schlesinger, Jr. Based on recently declassified records and interviews with participants, this study corrects some of the misinterpretation of naval operations, reveals new evidence about U.S. intelligence, and throws into doubt the Kennedy/Schlesinger account. Based on intelligence gleaned from communications intercepts, Kennedy was alerted in early June to Soviet Premier Khrushchev's plan to deploy ballistic missiles in Cuba. This intelligence was confirmed by the Subsequent Soviet sealift effort, communications, intercepts, and CIA agents on the island. Yet, Kennedy did little to prepare his administration to deal with the dilemma. He moved forcefully to restrict intelligence on the buildup, but did nothing to prevent it. Kennedy moved only in mid-October when he had irrefutable photographs of the missiles. He imposed a limited naval blockade around Cuba and coerced the Soviets to remove the missiles through frantic back-door diplomacy. This included a trade for American Jupiter missiles in Turkey. This study considers several issues related to the development of intelligence before and during the crisis, command and control of naval operations, and the Navy's ASW operations. NPS/DKL Location: MICROFORM ADA227065

Berkoff, Russ H. *Artificial Intelligence and Foreign Policy Decision-Making*. Monterey, CA: Naval Postgraduate School, 1997. (ADA340985). 170p. Thesis (M.S. in Defense Analysis) -- Naval Postgraduate School, December 1997. Abstract: With the advent of a global information society, the US will seek to tap the potential of advanced computing capability to enhance its ability to conduct foreign policy decision making. This thesis explores the potential for improving individual and organizational decision making capabilities by means of artificial Intelligence (AI). The use of AI will allow us to take advantage of the plethora of information available to obtain an edge over potential adversaries. Another purpose of this thesis is to give guidance to the software community as to what policymakers will need in order to improve future decision making processes. The third purpose is to encourage government and private sector decision makers to allocate adequate resources to actualize the potential of AI. The method of analysis this thesis uses is to examine US foreign policy decision making on the cognitive or individual, group, and organizational levels. Using the Cuban Missile Crisis and the Yom Kippur War as test beds for critical analysis, identification of both decision enhancing and impeding functions is accomplished. Finally, a counterfactual analytic framework, using an AI model, tests the likely influence of AI on decision making. The results Substantiate the value of AI as both a decision making enhancer and an impediment reducer for the policymaker. Additional conclusions are derived that improve the decision making system and its processes by means of introducing an AI capability. Electronic access: http://handle.dtic.mil/100.2/ADA340985

"The text conveys ... the crisis itself and of the January 1992 conference held in Havana"--Foreword.

"This book contains the background, political context, proceedings, and interpretation of a conference on the Cuban Missile Crisis of October 1962, held in Havana, Cuba, 9-12 January 1992"--P. [3].

Contents: What can Intelligence tell us about the Cuban Missile Crisis, and what can the Cuban Missile Crisis tell us about Intelligence? / James G. Blight and David A. Welch -- US Intelligence in the Cuban Missile Crisis / Raymond L. Garthoff -- Soviet Intelligence and the Cuban Missile Crisis / Aleksandr Fursenko and Timothy Naftali -- Cuban Intelligence and the October Crisis / Domingo Amuchastegui -- Organizing for Crisis Intelligence - lessons from the Cuban Missile Crisis / James J. Wirtz -- Perception, Intelligence errors and the Cuban Missile Crisis / Beth A. Fischer -- The Cuban Missile Crisis and Intelligence performance / James G. Blight and David A Welch.

Blight, James G. and David A. Welch. *On the Brink: American and Soviets*

NPS/DKL Location: GENERAL F1776.3.S65 B65 2002

NPS/DKL Location: GENERAL U104 B78 1991

NPS/DKL Location: GENERAL/INTELL E841.B76 1991

Contents include an extensive collection of deck logs and communications of US ASW forces tracking the Soviet submarines was assembled by William Burr and In the Depths of the Sargasso Sea / Aleksei F. Dubivko.
Electronic access: http://www.gwu.edu/~nsarchiv/NSAEBB/NSAEBB75/index2.htm

NPS/DKL Location: GENERAL E841.C131 1989

NPS/DKL Location: GENERAL E841.C845 1992

The Cuban Missile Crisis, 1962: 40th Anniversary Conference’, Havana, Cuba, 11--13 Oct. 2002, co-sponsored by The National Security Archive at George Washington University in partnership with Brown University’s Watson Institute for International Affairs and Cuban institutions. The conference was the latest in a series of critical oral history meetings on the Cuban missile crisis and generated worldwide headlines by gathering US, Russian and Cuban veterans of the 1962 Cuban missile crisis for two days of discussions in Havana.

Ditzler, Brent A. This thesis addresses one dimension of 'naval diplomacy', namely submarine naval diplomacy. It examines the suitability and/or desirability of employing submarine forces for naval-diplomatic purposes. It reviews the historical record of 'underwater gunboat diplomacy', the particular aims that its practitioners have sought to achieve, and it examines the opportunities and constraints for the assignment of submarines for future naval diplomacy purposes.

Contents: The Crisis.--Eyeball to eyeball, by S. Alsop and C. Bartlett.--Righteous realpolitik, by R. Hagan.--The lost opportunity, by D. Lowenthal.--Responsible brinksmanship, by H. Pachter.--In Defense

NPS/DKL Location: GENERAL E841 .D6

NPS/DKL Location: GENERAL E840 .E88 1985

Contents: The Crisis in memory. -- The palms of spring. -- The Missles of October. -- K v. K. -- The thorn in the flesh. -- The rockets hit home. -- Only one will Face the bull. -- And who will blink?. -- No very good war. -- All of them?. -- How far the brink.
NPS/DKL Location: GENERAL E841 .F68 2004

NPS/DKL Location: GENERAL E841 .F69 2000

NPS/DKL Location: GENERAL E841 .F86 1997

NPS/DKL Location: GENERAL E748 .G27 2001

NPS/DKL Location: GENERAL E841 .G37 1989

NPS/DKL Location: GENERAL E841 .G72 1970

Hensley, James V. *Intelligence, National Policy and the Cuban Missile Crisis*. Newport, RI: Naval War College, 1971]. 48p.
NPS/DKL Location: GENERAL E841 .H46 1971

NPS/DKL Location: GENERAL E841 .H55 1996

NPS/DKL Location: GENERAL E841 .H83 2002

Kennedy, Robert F. *Qian Xuesen Shi Jian Shi Mo Ji.* Chu ban. Taibei Shi: Qun lun
Chinese translation of “Thirteen Days.”

NPS/DKL Location: GENERAL E183.8.R9 K32

Contents: Tuesday morning, October 16, 1962. -- The President knew he would have to act.-- A majority opinion for a blockade. -- It was now up to one single man. -- The important meeting of the OAS. -- I met with Dobrynin. -- The danger was anything but over. -- There were almost daily communications with Khrushchev. -- Expect very heavy Casualties in an invasion. -- This would mean wa.r. -- Those hours in the cabinet room. -- The President ordered the ex comm. -- Some of the things we learned. -- The importance of placing ourselves in the other country's shoes.

Spanish translation of “Thirteen Days.”

Polish translation of “Thirteen Days.”

NPS/DKL Location: GENERAL JX4471 .L47 1981

NPS/DKL Location: GENERAL/INTELL D849 .L425 1994

Revised English translation of “En el ojo de la tormenta.”

NPS/DKL Location: GENERAL E841 .L3513 2001

NPS/DKL Location: GENERAL UA23 .A335 V.1 NO.1

Abstract: The author presents a soldier’s perspective of the operational implications of instant access to the battlefield by civilian leaders in Washington. It also suggests steps that might be taken to assure constructive collaboration between military and civil authorities, leaving each group to make its ownessential contribution to success in the nation’s military undertakings around the world.
Electronic access: http://www.carlisle.army.mil/ssi/pubs/display.cfm/hurl/PubID=309
NPS/DKL Location: GENERAL UA23 .M37 1998

NPS/DKL Location: GENERAL E841 .K4655 1997

NPS/DKL Location: FEDDOCS PREX 3.2:M 69
NPS/DKL Location: GENERAL/INTELL E841 .U35 1992

Title In English: Cuban Samba of the Foxtrot Quartet.

Collection of articles, essays, etc. translated from the Russian.

Munton, Don and David A. Welch. The Cuban Missile Crisis: A Concise History.

Contents: Introduction. -- Kennedy, apocalyptic power, and Cold War backdrop. -- Enter Cuba. -- Cuba: Cold War. -- competition and containment by stealth. -- Politics of a "perfect Failure": Bay of Pigs invasion. -- Blowback and Berlin. -- Cuba: "Top priority in the United States government-all else is secondary". -- August 1962: Spotting the Buildup, planning for the worst. -- Thirteen Days on the brink of war: Cuban Missile Crisis. -- Nuclear Dimension. -- Conclusion -- Biographies: Personalities behind the Cuban Missile Crisis. -- Primary Documents of the Cuban Missile Crisis.

NPS/DKL Location: GENERAL E841 .N37 2001

Contents: The heyday of the new Strategy: The Cuban Missile Crisis and the confirmation of coercive diplomacy / James A. Nathan. -- The Cuban Missile Crisis: An overview / Raymond L. Garthoff. -- Reconsidering the Missile Crisis: Dealing with the Problems of the American Jupiters in Turkey / Barton J. Bernstein. -- The View from Washington and the View from nowhere: Cuban Missile Crisis historiography and the epistemology of decision making / Laurence Chang. -- The traditional and revisionist Interpretations reevaluated: Why was Cuba a Crisis? / Richard Ned Lebow. -- Thirteen months: Cuba's perspective on the Missile Crisis / Philip Brenner. -- President Kennedy's decision to impose a blockade in the Cuban Missile Crisis: Building consensus in the ExComm after the decision / Elizabeth Cohn. -- Before "the Missiles of October": Did Kennedy plan a Military strike Against Cuba? / James G. Hershberg.--. The Kennedy-Krushchev letters: An overview / Philip Brenner.

Electronic access: http://www.gwu.edu/~nsarchiv/nsa/publications/cmc/cmc.html

NPS/DKL Location: GENERAL/INTELL JZ6374 .P74 2005

Electronic access: http://www.history.navy.mil/faqs/faq90-5.htm

Electronic access: http://www.history.navy.mil/faqs/faq90-5.htm

Contents: Background To Crisis. -- The Soviets Act: Operation Anadyr. -- An Autumn Of Discontent. -- Week One: How To Respond. -- Week Two: How To Defuse. -- Aftermath and Conclusion.

Originally presented as the author's thesis (M.A.)--University of Tulsa, 1989. 236 l.

NPS/DKL Location: GENERAL E841 .Y68 1990

ENIGMA -- ULTRA -- MAGIC -- CRYPTOGRAPHY

Previously published as “Secret Service.”

NPS/DKL Location: GENERAL JN329.I6 A53 1986

Balano, Randy Carol and Craig L. Symonds, eds. **New Interpretations in Naval History: Selected Papers from the Fourteenth Naval History Symposium, held at Annapolis, Maryland, 23-25 September 1999.** Annapolis, MD: Naval Institute Press, 2001. 430p.

Ewing, Alfred Washington. **The Man of Room 40; the Life of Sir Alfred Ewing.** London & Melbourne, Hutchinson & co. ltd., 1940. 295p. In 1919, Room 40 was run down and merged with the British Army's intelligence unit MI1b to form the Government Code and Cypher School (GCCS), later housed at Bletchley Park During World War II and Subsequently renamed Government Communications Headquarters (GCHQ) and relocated to Cheltenham. -- http://en.wikipedia.org/wiki/Room_40

Gannon, Paul. **Colossus: Bletchley Park's Greatest Secret.** London: Atlantic, 2007. London: Atlantic, 2006. 562p. Contents: PART ONE -- INTERCEPTION: Wireless War One; Codes and Ciphers; Between the Wars; Wireless War Two; A Window on a War; NoMo; 'If the Wind Meets It'; Knockholt. -- PART TWO -- DECRYPTION: 'Hqibpexezmug'; Fishing the Depths; Herring and the Cat's Whiskers; 'Hier ist so traurig'; Making the Difference; The Robinson Family; Inventing the Electronic Computing Machine; 'Colossus Arrives Today'; Fish Dialects; Fish - Landing the Catch; A Day in the Life of Fish I; A Day in the Life of Fish II; The Technology and Organization of Fish; Transatlantic Fisheries; Siginstitutionalization; Colossus - The Legacy; Epilogue. -- PART THREE -- APPENDICES: A The Baudot Code with Shift Function; B The Vernam Cipher; C Extended Example of 'The First Break'; D Structure of the Lorenz Schluesselzusatzgeraet SZ40/42; E The Delta Technique; F Robinson: Block Diagram of Major Function Units; G Non-machine Problems Identified During the Heath Robinson Period; H Basic Functional Sub-systems of Colossus; I Annotated Printout of Colossus 3 run 23/10/44 (Stickleback); J Colossus 'Processing Tree'; K Sturgeon and Thrasher; L Bream Message Types and Examples - Early 1944; M Some Jellyfish Messages from May and June 1944; N Cribs Used on Dragon; O Whiting Decode, 5 February 1945; P 'Hitler as seen by Source'; Q Newmanry Staffing. Originally published: London: Atlantic, 2006.

Contents: Organization of Hut 3. -- In the beginning. -- Getting organised. -- War begins. -- Military Section. -- Air Section. -- Naval Section. -- Duty Officers. -- Signals Section. -- Special liaison units. -- The German Book Room. -- Liaison Section. -- General Intelligence. -- Hitler's Secret weapons. -- Enter the Americans.
"Top Secret U -- Most Secret source -- MSS Ultra CS"--Cover illustration of original classification, now declassified.

In 1919, Room 40 was run down and merged with the British Army's intelligence unit MI1b to form the
Government Code and Cypher School (GCCS), later housed at Bletchley Park during World War II and subsequently renamed Government Communications Headquarters (GCHQ) and relocated to Cheltenham. -- http://en.wikipedia.org/wiki/Room_40

NPS/DKL Location: BUCKLEY CT8.A45 J2

NPS/DKL Location: GENERAL/INTELL D810.S7 J731

Kozaczuk, Wladyslaw. **Enigma How the German Machine Cipher was Broken, and How It was Read by the Allies in World War Two** [edited and translated by Christopher Kasparek]. Frederick, MD: University Publications of America, c1984. (Foreign Intelligence Book series). 348p. English translation of “Wkręgu Enigmy.” NPS/DKL Location: GENERAL/INTELL D810.C88 K6813 1984

NPS/DKL Location: GENERAL/INTELL D810.C88 L37 2003

ADM001577. Presented at the RTO HFM Symposium on "The Role of Humans in Intelligent and Automated Systems," held in Warsaw, Poland, 7-9 Oct 2002. Published in report number RTO-MP-088

Abstract: Christine Large, who has been Director at Bletchley Part since 1998, describes how human ingenuity and, in particular, the Poles' early contribution, led to breaking a seemingly insoluble Problem: The Enigma machine. She speaks in reference to Dillwyn Knox's seminal meeting with Marian Rejewski and the collaboration between men and machines that flowed thereafter. Some human factors that can lead to vital "breaks" are highlighted. Bletchley Park's current role in Anglo-Polish diplomatic relations, including a joint public information campaign instigated as a result of the film, "Enigma," is explained.

Electronic access: http://handle.dtic.mil/100.2/ADA422371

Abstract: An account of the American use and misuse of information gained as a result of decipherings of Japanese codes, the events directly attributable to those decipherings, and the military and political circumstances involved.

Also Published: London: Hutchinson, 1982.

NPS/DKL Location: GENERAL/INTELL D810.C88 L66

German translation of “Ultra goes to War, the Secret Story?”

Japanese translation of “The Other ULTRA.”

German explanations for Allied successes. -- Determined answers: Structural Problems in German Signal Intelligence. -- A long-standing anxiety: Allied communications Security. -- Enter the machines: The Role of Science and machines in the cryptologic war. -- Conclusion: Ending the era of Security.

NPS/DKL Location: GENERAL/INTELL D810.C88 R37 2006

"The chapters ... arose out of a conference held at the Royal United Services Institute for Defence Studies, London, in September 1984"--Pref.
Co-sponsor the Consortium for the Study of Intelligence"--Pref.

Abstract: The problem addressed is the extent to which the United States Navy used Ultra, or Special Intelligence, in the campaign against the German U-Boats. Information was gathered through published and unpublished sources. Through a chronological approach, United States Navy involvement is traced from entry into the war until its conclusion. Many factors are involved in the final outcome of the war and Ultra is only one. The Battle of the Atlantic was long and gruesome rather than short and spectacular. The United States Navy used Ultra along with technology, tactics, brilliant leadership and courageous men at sea to win the Battle of the Atlantic in World War II. The lessons for the future are clear. If the United States intends to oppose the Soviet submarine force at sea anywhere in the world, then we must maintain the lead in intelligence, tactics and technology. Further, and most importantly, we must strive to regain superiority of forces in those ocean areas where our interests are at stake.
Electronic access: http://handle.dtic.mil/ADA089275

Hebrew translation of “Enigma: The Battle for the Code.”

NPS/DKL Location: INTELL D810.C88 S43 2000

Thesis (M.S.) -- Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1981.

NPS/DKL Location: GENERAL D810.C88 S56 2000

Contents: THE CIPHER OF MARY QUEEN OF SCOTS: The birth of cryptography, the Substitution Cipher, and the invention of Codebreaking by frequency analysis. -- THE ANONYMOUS CODEBREAKER: The Vigenère Cipher, why cryptographers seldom get credit for their breakthroughs, and a tale of buried treasure. -- THE MECHANIZATION OF SECRECY: The Zimmermann telegram, the Enigma machine and how cryptography changed the courses of World Wars I and II. -- THE LANGUAGE BARRIER: The impenetrability of unknown languages, the Navajo Code talkers of World War II, and the decipherment of Egyptian hieroglyphs. -- ALICE AND BOB Go PUBLIC: Modern cryptography, the solution to the so-called key-distribution problem, and the secret history of nonsecret encryption. --
PRETTY GOOD PRIVACY: The politics of privacy, the future of cryptography, and the quest for an uncrackable Code.

Contents: Cipher of Mary Queen of Scots. -- Le Chiffre indechiffreable. -- Mechanization of Secrecy. -- Cracking the Enigma. -- Language barrier. -- Alice and Bob go public. -- Pretty good privacy. -- Quantum leap into the future.

NPS/DKL Location: GENERAL D810.C88 S44 1994

NPS/DKL Location: GENERAL D810.C88 S44 1997

“Regrettably, with the passing of Major Hugh Skillen, the moderator of the Symposia & editor of these journals, this is positively the last Enigma Symposium”. -- Biblio.com http://www.biblio.com/details.php?dcx=13328641&aid=frg

“At head of cover title: The Codebreaker's War.”
NPS/DKL Location: GENERAL/INTELL D810.C88 S65 1993
NPS/DKL Location: GENERAL/INTELL D810.C88 S656 2001

NPS/DKL Location: INTELL D810.C88 S66 1999

"This book accompanies the television series Station X"--T.p. verso.
NPS/DKL Location: GENERAL D810.C88 S65 1998

radio Intelligence units in India and Ceylon, Southeast Asia Theater, February-March 1945; KEEPING
THE SECRET: GY Watch Office, 2/7/41 Navy Codebreaker George Linn on Pearl Harbor messages. --
NARRATIVE, Combat Intelligence Center, Joint Intelligence Center, Pacific Ocean Area, Capt. W. J. Holmes,
USN, on plotting center serving 14th Naval District and CinCPac, 1941-1945. -- History of the Special
Branch, MIS, war Department, 1942-1944 Organization of the Special Branch, Military Intelligence
Service, to coordinate the Army's communications intelligence. -- Memorandum for General Bissell Col.
Carter W. Clarke, Special Branch, on Army-Navy agreements regarding ULTRA, 4 March 1944. -- History
of the Operations of Special Security Officers Attached to Field Commands, 1943-1945 On the rapid and
Secure dissemination of ULTRA intelligence to operating commands. -- Special Security Officer, SWPA
Memoranda for Col. Clarke and Col. Alfred McCormack on the functions of the Special Security Officer
sent by the war Department, August 1943-March 1944; JAPANESE INTELLIGENCE: Enemy Analysis of
traffic, November 1944. -- ULTRA Supplement to Report of Study of Communications of Twenty-First
Bomber Command Japanese accuracy in predicting U.S. Bombing Raids in the Marianas, n.y.; THE
SURRENDER OF JAPAN: Japanese reaction to German defeat description published by the Pacific
Strategic Intelligence Section, Commander-in-Chief U.S. Fleet and Chief of Naval Operations, 1945. --
Ruso-Japanese relations (April-May 1945) Japanese concerns about Soviet intentions since the
abrogation of the neutrality pact. -- Preliminary Report to Pacific Order of Battle Conference, 15 August
1945 on disposition and strength of Japanese ground forces. -- Japan's Surrender Maneuvers events
leading up to and immediately following Japan's surrender, July-August 1945.

NPS/DKL Location: GENERAL D810.S7 L49 1988

Summary: Codebreaker in the Far East is the first book to describe how Bletchley Park and its Indian
and Far Eastern outposts broke a series of Japanese codes and cipher systems of dazzling variety and
complexity. Their achievements made a major contribution to the Allied victory in Burma, and probably
helped to shorten and win the war, perhaps by two or three years. Alan Stripp gives his first-hand account
of the excitement of reading the enemy's mind, of working against the clock, hampered by one of the
world's most daunting languages and the knowledge that they were facing an unyielding and resourceful
enemy who had never known defeat.

Contents: Contents: PART ONE: TOURS OF DUTY: Cambridge, Bedford and Yorkshire; Bletchley
Park; Marching Orders; Delhi; Naini Tal, Agra and Abbottabad; Bangalore, Singapore and Cambridge. --
PART TWO: JAPANESE PUZZLES: Japanese Codes and Ciphers: What were they like?; What did they
tell us?; How were they sent?; How were they intercepted?; How were they broken?; What is so Special
about Signals Intelligence?; Loose ends; Traffic analysis; The index; Interrogation; Japanese
cryptographic security; The Japanese as codebreakers; The Japanese language; The Chinese
Telegraphic Code; Japanese language courses; Glossary of technical terms; Cover-names. -- PART
THREE: A TANGLED WEB: Clandestine groups and their signals; General Slim and Signals Intelligence;
Phuket island; Deception in the Burma campaign.

NPS/DKL Location: GENERAL/INTELL D810.C88 S76 1989

Syrett, David, ed. The Battle of the Atlantic and Signals Intelligence: U-Boat
Situations and Trends, 1941-1945. Aldershot, Hants, England; Brookfield, VT, USA:
Published by Ashgate for the Navy Records Society, c1998. (Publications of the Navy

NPS/DKL Location: GENERAL/INTELL D810.C88 B37 1998
NPS/DKL Location: GENERAL D810.C88 B37 2002

Contents: V. 1. Allied communication Intelligence and the Battle of the Atlantic. -- v.2. U-Boat Operatons. -- v. 3. German Naval communications Intelligence. -- v. 4. Technical Intelligence from Allied C.I.
"Released by the Department of the Navy, Naval Security Group Command Headquarters."

NPS/DKL Location: GENERAL D810.C88V27

Japanese translation of "Deadly Magic."

Contents: Introduction - 3 September 1939: Churchill returns to the Admiralty; Germany unready; the first shot sinks the Athenia; replay of the 'Lusitania factor'; Britain adopts convoy. -- PART ONE THE FIRST BOUT AND THE INTERVAL: The First Round, 1914-1918: The blackest month ever, Germany embraces the Submarine; Britain panics; the Submarine as retaliation for the British blockade; British Intelligence; sinkings mount; Germany vacillates; unrestricted warfare; the Greatest `ace'; the Crisis; convoy; aircraft; the lessons. -- Disarmament Fails, 1919-1933: Versailles; Revolution in Germany; Soviet ambivalence; Western equivocation; the German Navy adjusts; the Great Submarine fraud; the German Navy revives; the British Navy declines; the American Navy awakes; Naval arms 'limitation'; Asdic; Naval aviation; 1933 as a turning-point. -- Rearmament Proceeds, 1933-1939: Hitler; Secret Submarine School; illegal Rearmament; Versailles breached; Naval agreements; Karl Donitz; the Z-plan; Britain Rearms; and America; Isolationism; FDR; convoy plans; British Intelligence; and German; Intelligent British; Admiral Found; escorts; the road to war. -- PART TWO THE MAIN EVENT: September 1939 to June 1940: Convoys Start: German Navy unready; British Navy old; air; mines; Royal Oak; Graf
Spee; Norway; Prime Minister Churchill; Iceland; Blitzkrieg; Enigma; Alan Turing; the B-dienst; torpedo Crisis; Asdic; air; disguised ships; French Bases ‘Operation Catapult’; convoy System; USA natural; Roosevelt and Churchill; Germany rampant; Losses at sea. -- June 1940 to March 1941: Donitz in Brittany; Britain at bay; disguised Raiders; Mediterranean closed; Canada helps; ‘No surrender’- US aid; ‘destroyers for Bases’; Secrets for sale; Lend-Lease; Anglo-American rapprochement; the Happy Time of the German aces; Battle of Britain; wolf-packs; escort-groups; Western Approaches; the Gap; surface Actions; Luftwaffe; Loss of three aces; Intelligence; life in the Submarine arm; Radar, HF/DF- Tactics; Condors; ‘clear the ports’; Losses at sea. -- April to December 1941: Germans move West; Greenland; USN opens fire; constant shifts in attack; British ransack U110; Canada and end-to-end convoy; Hood and Bismarck sunk; Rodger Winn; Turing rebels; supply-ships sunk; Hitler invades USSR; Roosevelt and Churchill meet; Russian convoys; Liberator Bomber; American Losses; Canadian Problems; German Tactics; air-cover; ‘Johnnie’ Walker; Atlantic; British home Front; Japan strikes; US at war; B-dienst; Losses at sea. -- January to July 1942: Admiral King; The Second Happy Time; US Naval Build-up; but no convoys in US Waters; haemorrhage of shipping; the Channel Dash humiliates the Royal Navy; Ultra Fails; B-dienst flourishes; Canada as middleman; refuelling at sea; Winn in US; Interlocking Convoy System; Germans move south; US Shipbuilding; air-threat to Submarines; Admiral Tovey’s Revolt; Tirpitz; St Nazaire; Spitzbergen; PQ17 Disaster-Losses at sea. -- July 1942 to May 1943: Donitz warns-the airgaps; Laconia; disguised Raiders beaten; Russian convoys; Losses at sea; Canadian Disasters; ‘Operation Torch’; Admiral Horton at Western Approaches; Bay Offensive Radar; Ultra returns; Donitz succeeds Raeder; TM1 Disaster; Casablanca Conference; Canada sidelined; good news from Russia; the Great Crisis of the Campaign; four climactic convoys; the pendulum swings against Germany; airpower; Canada’s First C-in-C; US Tenth Fleet; Donitz Retreats. -- June 1943 to May 1945: Germany down but not out; war on the milch-cows; Donitz fights on; Submarine Revolution; the Schnorchel; the struggle against Radar; rival Technologies; Shipbuilders’ victory; the Azores; the US air ‘horse-trade’; row over carriers; long death of Tirpitz; Scharnhorst sunk; Pound dead; acoustic Rodger Winn; Turing rebels; supply ships sunk; torpedoes; ‘Johnnie’ Walker rampant; the Last wolf-pack; after D-day; Retreat to Norway. new boats at sea; surrender; the final reckoning.

NPS/DKL Location: GENERAL/INTELL D810.C88 W44

NPS/DKL Location: FEDDOCS D 1.2:EN 4

NPS/DKL Location: GENERAL CT23.A854 W563 1984

NPS/DKL Location: INTELL D810.S7 W7 1974

NPS/DKL Location: GENERAL D810.S7 W7

NPS/DKL Location: GENERAL D810.C88 W57 1988

NPS/DKL Location: GENERAL D810.C88 W58 1993

NPS/DKL Location: GENERAL D810.C88 W67 2001

Woytak, Richard A. *On the Border of War and Peace: Polish Intelligence and

FALKLAND ISLANDS WAR, 1982

Contents: Chronology -- Background to war: Tango and tea dance: Argentine and British misperceptions -- Warring sides: Race to the islands: Argentina and Britain deploy their Forces -- Outbreak: 'Gotcha!' The sinking of the Belgrano -- The fighting: From 'Bomb Alley' to Mt Harriet -- Portrait of a Soldier: Comrades and companeros -- The world around war: Preparing for the Third World War -- Portrait of a civilian: An islander's ordeal: The Diary of John Smith -- How the war ended: The mind of Menendez -- Conclusion and consequences: Thatcher's triumph: It was a famous victory.
NPS/DKL Location: GENERAL F3031.5 .A528 2002

Papers presented at a conference held at the Royal Military Academy, Sandhurst, June 2002.

Barker, Nicholas. Beyond Endurance: An Epic of Whitehall and the South Atlantic

NPS/DKL Location: GENERAL F3031.5.B37 1982

Description: For five years before the Falklands War, Hugh Bicheno was one of the top British spies in Argentina. As such, he gathered hard, corroborated intelligence on Argentine intentions over the Falklands - which the British establishment then chose to ignore. The reasons behind this British decision, and its disastrous and inevitable consequences in the South Atlantic, are the main story of this book. There were three main players in the war, each of them trying to overcome their own cultural baggage. The Argentinians were riddled with guilt: After years of fighting a morally repugnant campaign against its own people, the Argentine military saw a war for the Malvinas islands as a perfect opportunity to win back their self-respect. The hands of the Americans were also bloody from the likewise dirty wars they had sponsored and abetted in Central America. For Britain, baffled by the parlous state of the country at the beginning of the 1980s, the defence of the Falklands was a gesture towards their long-gone imperial splendour.

Originally published: Barnsley, South Yorkshire: Leo Cooper; Oxford: ISIS, 2002 as Falkland Islanders at War.

Abstract: Soldiers, sailors, and airmen must always think, plan, and practice for the unknown. No matter how realistic the conduct of exercises and training, it is impossible to simulate combat. Wars invariably expose deficiencies in peacetime planning. Before World War I, most soldiers planned and practiced for a war of maneuver and the offensive, yet the Western Front rapidly evolved into a static battle of attrition. Prior to 1914, admirals planned and trained to fight massive and decisive fleet actions on the model of Trafalgar and Tsushima; four years of conflict witnessed only one such action--the Battle of Jutland--and it did not prove decisive. New weapons systems--aircraft, warships, and fighting vehicles--continually enter inventories. Escalating costs have led to the extensive modification of weapons systems to maintain fighting effectiveness. Sometimes peacetime 'fixes' can be found in innovative tactics and operational concepts. Actual combat compresses the adaptive process. Britain's experience during the South Atlantic war perhaps illustrates this process at its most extreme. Literally overnight, Britain was faced with a war for which it had no plans. Failures in the British intelligence community had led to a total lack of strategic warning. Britain's military Forces were mainly configured to fight in Europe in conjunction with powerful allies.

NPS/DKL Location: GENERAL F3031.5 .B68 1985
Electronic access: http://handle.dtic.mil/100.2/ADA158354

NPS/DKL Location: GENERAL F3031.5 .B76 1987

NPS/DKL Location: GENERAL V767 .B7965 2003

NPS/DKL Location: GENERAL UA11.5 .R44 1985

Abstract: This essay examines the British sea-based aviation in support of two modern amphibious Campaigns: The British campaign in Norway in 1940 and the Falkland Islands War in 1982. Expeditionary maneuver warfare (EMW) operations and sustainable littoral power projection will require versatile and flexible sea-based airpower to establish local air superiority over the fleet. Whereas land-based aircraft
can attack fleets from great distances, current land-based fighters cannot protect the fleet from attack without extended aerial refueling. When air superiority cannot be maintained over the fleet, as evidenced in Norway and the Falklands, Naval Forces become prey to land-based airpower. Power projection from the sea occurs as a result of maintaining local air superiority, not in spite of it. Until a space-based system capable of providing air superiority for ships at sea is fielded, 'Legacy Platforms' such as aircraft carriers and their embarked air wings, despite their high cost, will remain essential Naval Warfare Platforms. Further, however, and perhaps of greatest importance to this study, amphibious forces ashore cannot rely on aircraft carrier (sea-based) air support if a credible land-based aircraft or missile threat to supporting aircraft carriers exists.

Electronic access: http://handle.dtic.mil/100.2/ADA403993

NPS/DKL Location: GENERAL F3031 .C34 1982

NPS/DKL Location: GENERAL F3031.5 .C53 1996

NPS/DKL Location: GENERAL F3031.5 .F34 1985

Presentada originalmente como tesis (M.A.) en University of North Carolina at Chapel Hill, 1993./"Setiembre 2003."
Área: Ciencia política.

NPS/DKL Location: GENERAL U42 .C59 1990

English translation of “Conflicto malvinense y Crisis nacional.”
NPS/DKL Location: GENERAL F3031.5 D3213 1984

Contents: Limpet colonies -- Mapping British Antarctica -- Anglo-Argentine friction: Education, meat and Trade -- From Scott to Fuchs -- Managing the 'Antarctic Problem' -- Football, foot and mouth and the Falklands -- Kith and kin: Race, nationalism and the Falkland Islands -- Dots on the map -- Fighting for the Falklands -- Preserving the South Atlantic Empire.

Abstract: In 1982 Argentina and the United Kingdom faced an unwanted war for the sovereignty over the Malvinas, Georgias and Sandwich del Sur Islands. A 149 years territorial conflict, developed into a high-intensity war only few days a minor incident had occurred in a remote and isolated place called Leith, in Georgias del Sur. The study analyzes and evaluates the information from first sources available in 2002, but discarding opinions, false information or misinterpretations from other authors. The study describes the evolution of the conflict, the daily development of the crisis generated in Georgias based on their protagonists' testimonies and documents. It seeks to determine the real facts, decisions, and declarations that led two friendly nations to war. Twenty years ago, the forces were marching south in order to solve an old issue over the disputed archipelagos. Today, as in the past, the central issue of sovereignty remains unsolved due to British intransigency. It is time to learn the real lessons of this unwanted, misunderstood war.
Electronic access: http://handle.dtic.mil/100.2/ADA404419

NPS/DKL Location: GENERAL F3031.5 .F67 1999

Contents: V. 1. The origins of the Falklands War. -- v. 2. War and diplomacy.
NPS/DKL Location: GENERAL F3031.5 .F744 2005

"Project on avoiding Nuclear War: Managing Conflict in the Nuclear age; Rand/UCLA Center for the Study of Soviet International Behavior."
NPS/DKL Location: GENERAL F3031.5 .F753 1982

NPS/DKL Location: GENERAL/INTELL F3031.5 .F75 1991

NPS/DKL Location: GENERAL F3031.5 .G35 1987

Spanish translation of “The Sinking of the Belgrano.”

Kipp, Jacob W. Naval art and the Prism of Contemporaneity: Soviet Naval Officers and the Lessons of the Falklands Conflict. College Station, TX: Center for Strategic Technology, Texas Engineering Experiment Station of the Texas A&M University System, 1983. (Stratech Studies series; SS83-2). 39 l.

Abstract: (U) Soviet Naval officers perceive the Falkland Islands War as one manifestation of increasing rivalry among capitalist states of different levels of development. This circumstance suggests greater Soviet efforts to undermine the U.S. alliance system and to increase its Problems of coalition
management. Two other trends which the Falklands seemed to confirm are: The emergence of the possibility of resource wars between the North and South, and the increased reliance of the West upon an 'oceanic strategy'. Both trends will be used to promote the growth of the Soviet Navy. Another ground for Soviet Naval officers' satisfaction with the Falklands Conflict was precisely what can be learned about trends in warfare at sea. The Falklands Conflict offers major dividends to its naval and military researchers. The research apparatus of the General Staff of the Soviet Armed Forces are now making a sustained effort to reshape their perceptions about modern warfare on the basis of the lessons derived from the Falklands Conflict. Judging by the articles in Morskoi sbornik, this effort will be professionally competent, extensive and sustained. While Soviet military thinkers warn that it is necessary to take into account the peculiarities of all such local wars, they nonetheless see them as having 'an importance for the perfection of military theory'. The Falklands Conflict, like other local wars, will allow them to perfect their conception of modern warfare, i.e, 'that they are grasped through the prism of contemporaneity. Keywords: Naval Tactics; Air Defense; Logistics support; Amphibious landings; Surface to surface missiles.

NPS/DKL Location: MICROFICHE ADA194241

"Reprinted with permission of Greenwood Publishing Group" -- cover.

Abstract: Remarks on sea-based airpower, submarine, and antisubmarine warfare operations in the Falklands War of 1982. A review of the lessons learned regarding these operations as interpreted by the navies of the United States, Great Britain, and the Soviet Union. Commentary by the author with respect to these lessons learned and implications for the naval planner.
NPS/DKL Location: MICROFICHE ADA217549

Contents: A Strategic assessment of the Falklands War / S. Robert Elliot. -- Lessons to be learned from the Falklands War / David A. Charters and Norman Friedman. -- The high tech Battlefield / George Lindsey. -- High tech Defence production and Canada's Industrial Base / Harry Halton. -- Creating the mindpower Base of high tech / Gordon MacNabb. -- The impact of high tech on Military manning / Terrence Liston. -- The impact of high tech on armed forces organization design / John Fulton. -- Summation / George Bell.

Strategic Issues Research memo: 01 Aug 1983.
Abstract:: (U) This memorandum explores the lessons of the Malvinas/Falklands War of 1982 for the United States and Latin America. Central to the discussion is an analysis of the motivating factors of the principal actors. The policy implications apply to US military policy, diplomacy, posture toward military governments, arms transfers to Latin America, territorial disputes, and the potential for conflict, and the agenda for inter-American security.
NPS/DKL Location: MICROFICHE ADA138949

Abstract: This monograph analyzes the 1982 war between the United Kingdom and Argentina over possession of the Falklands in regard to several of the foundations of military theory. It uses this recent campaign which combines air, land, and sea forces armed with modern technologies as a case study of the applicability of traditional military theory to modern warfare. The monograph first reviews the general political background leading up to the outbreak of hostilities on 2 April 1982, then summarizes the salient military events of the war. Next it offers analyses of how politics and military action were interrelated throughout the campaign, how tactics, operations, and strategy interacted during the course of the war, and where the centers of gravity were situated for the opposing forces. It concludes with an overview as to the applicability of traditional military theory to this particular campaign. The monograph concludes that the war in the Falklands was a unique opportunity to contrast two widely divergent approaches to warfare, one which paid heed to military theory and the doctrinal implications that the stem from it and one which ignored many of its foundations.
NPS/DKL Location: MICROFICHE ADA186670

Translation of Marine-Rundschau (Germany, F.R.) B 20113 E p122-128 Mar 83.

NPS/DKL Location: GENERAL F3031.5 .M53 1985

Final Report 2 April-15 June 82.
Abstract: *(U) This entry in the special Bibliography series presents periodical coverage on the 2 April-15 June 1982 Falkland (Malvinas) Islands War. The short, hot war coupled centuries old amphibious tactics with modern technology. A tentative chronology and a list of British island possessions are included. (Author)*

NPS/DKL Location: MICROFORM ADA123845

English selections from Malvinas: La clave del Enigma.
NPS/DKL Location: GENERAL F3031.5 .O5513 1995

NPS/DKL Location: GENERAL JX4084.F34 P47 1983

642

Contents: 1 The Historical Perspective. -- 2 Crisis in the South Atlantic. -- 3 Invasion of the Falklands and South Georgia. -- 4 Occupation. -- 5 The British Response. -- 6 Approach to Battle, 8 to 20 May. -- 7 The Landings and Beachhead, 21 May to 3 June. -- 8 The Battle of Goose Green, 28 May. -- 9 The Left Flank - 3 Commando Brigade, 27 May to 11 June. -- 10 The Right Flank - 5 Infantry Brigade. -- 11 The Bold Move, 5 to 8 June. -- 12 Port Pleasant - 8 June. -- 13 The Outer Defence Zone, 11 to 12 June. -- 14 The Battles of Mount Tumbledown and Wireless Ridge, 12 to 14 June. -- 15 Phase Three - Mount William and Sapper Hill, 14 June. -- 16 Postscript. -- Appendix Author's Kit List.

Segunda parte COMO: Las batallas del almirante Menendez. -- Otra guerra no querida. -- El denominador comun. -- La partida esta igualada. -- La fabula de los Lagartos. -- Infalibilidad militar y aceite hirviendo. -- Las mentiras de los ingleses. -- El hombre y el Personaje. -- El triunfo del 1° de mayo. -- Las proezas del Pucara. -- ¡A temblar, ingleses!. -- Un culto a la verdad. -- El trago amargo. -- El Problema Principal. -- La muerte de Garcia Cuerva. -- Las Confesiones. -- El busto de Beethoven. -- "No me doy cuenta de que estamos en guerra". -- El concepto de transicion. -- Ideologismo militar. -- El unico idioma. -- Las circunstancias pasajeras. -- El almirante Invierno. -- Seguimos ganando. -- Dos guerras distintas. -- La carta al soldado. -- La flota se hunde. -- Ahora estan acorralados. -- La verdad y la suerte. -- El mensaje de Garcia. -- ¿Hostigamiento o repliegue Combatiendo?. -- La guerra de las galaxias. -- Pruebas al canto. -- La palabra prohibida. -- Las condiciones de Menendez. -- Dios, patria, hogar.

EPILOGO: Las Malvinas terrenales. -- Bajo el paraguas. -- Ultimo tango en Londres. -- Del 24 de marzo al 2 de abril.

Buenos Aires: Editorial Legasa as "La última batalla de la Tercera Guerra Mundial."

Zellem, Edward B. Clausewitz and Seapower: Lessons of the Falkland Islands War. Maxwell AFB, AL: Air Command & Staff College, 1999. (AU/ACSC/237/1999-03; ADA398885). 49p. Abstract: This paper explores the hypothesis that although Clausewitz has been criticized for not specifically addressing naval warfare in his seminal work On War, Clausewitzian principles are in fact not only applicable, but highly relevant to the modern conduct of war at sea. The 1982 Falkland Islands conflict between Great Britain and Argentina will be used as the framework to examine this hypothesis. As the largest and most significant series of naval engagements since World War II, the Falklands War provides a rich database of both traditional and nontraditional lessons learned about the conduct of war at sea. This paper begins with a brief discussion of critiques of Clausewitz and his apparent lack of focus on the naval element of warfare. It will be followed by a historical review of significant events leading up to, and during the Falkland Islands War. Key events in the war will then be reviewed and examined within a framework of Clausewitzian principles. The motives, key assumptions, military strategy, and tactics of Great Britain and Argentina will be discussed within the context of the Clausewitzian dictum that war is the continuation of politics by other means. Selected specific events in the campaign will then be addressed in terms of Clausewitzian principles of war to determine their relevance or irrelevance to modern naval strategy and campaigning. Electronic access: http://handle.dtic.mil/100.2/ADA398885

JUTLAND

NPS/DKL Location: BUCKLEY D582.J8 B2

NPS/DKL Location: GENERAL D582.J8 B37/BUCKLEY D582.J8 B36

NPS/DKL Location: GENERAL D582.J8 B4

NPS/DKL Location: GENERAL D582.J8 B73

NPS/DKL Location: GENERAL VF520 .B76 2005

Contents: Introduction: North Sea Fleet Operations, 1914 to Jutland. -- Jutland: Preliminaries and Forces Engaged. -- First Conflict Between the Fleets. -- Action Between Capital Ships: First Phase 1548-1654; Damage to Capital Ships 1548-1654. -- Action Between capital ships: Second phase 1654-1815; Damage to capital ships 1654-1815. -- Action Between capital ships: Third phase 1815-1900; Damage to
capital ships and armoured Cruisers 1815-1900. -- Action Between capital ships: Fourth phase 1900-
1945; Damage to capital ships 1900-1945. -- Last daylight contacts: 1945-2130. -- Action Between capital
ships: Fifth phase 2019-2039; Damage to capital ships and pre-dreadnoughts 2019-2039; Condition of
Seydlitz and Lützow -- Events During the night 2130 31 May-0300 1 June -- Events of the morning of 1
June, and return to base; Bringing in the Seydlitz: Damage to the Ostfriesland; Repair of capital ships. --
Summary and discussion.
NPS/DKL Location: GENERAL D582.J8 C35 1986

NPS/DKL Location: GENERAL DA88.5 1805 C52 1985

NPS/DKL Location: GENERAL D582.J8 C63 1977

French translation of "The Fighting at Jutland: The Personal Experiences."

Originally published: Glasgow: MacLure, Macdonald, 1921.
NPS/DKL Location: BUCKLEY D582.J8 F5 1921

Russian translation of “Bitwa Jutlandzka, 1916.”

NPS/DKL Location: GENERAL D582.J8 F9
NPS/DKL Location: GENERAL D582.J8 F9

German translation of “The Battle of Jutland.”

Italian translation of “The Battle of Jutland.”

Subsequently published: Published: London: Cassell, 1934.
NPS/DKL Location: GENERAL D582.J8 F7 1920

German translation of “The Riddle of Jutland.”

NPS/DKL Location: GENERAL D582.J8 G4

NPS/DKL Location: GENERAL D582.J8 G43

NPS/DKL Location: BUCKLEY D580 .G4

NPS/DKL Location: GENERAL D582.J8 G68 1996

Great Britain. Admiralty. La Battaglia dello Jutland, Resoconto Ufficiale Inglese
The war broke out before delivery during the trials. Even though the Turkish crew had arrived to collect her, the British Government took over the vessel for incorporation into the Royal Navy. At the same time the British also took over a second Turkish battleship, a King George V vessel being built by Vickers - The Reshadieh which was renamed HMS Erin. Such an action was allowed for in the contracts, as then-First Lord of the Admiralty Winston Churchill did not want to risk the ships being used against the British, but it had consequences. The takeover caused considerable ill-feeling in Turkey, where public Subscriptions had partially funded the ships. The battleships had cost £4 million pounds but the British refused the refund the payments. This proved an important factor in turning Turkish public opinion against Britain, especially as the Turkish Navy had been pro-Britain - the Army having been pro-German. It helped put Ottoman Empire into the war on the side of Germany and the Austro-Hungarian Empire against the Triple Entente of Britain, France and Russia (29 October 1914). --

http://en.wikipedia.org/wiki/HMS_Agincourt_%281913%29

French translation of "The Truth About Jutland."

The war broke out before delivery during the trials. Even though the Turkish crew had arrived to collect her, the British Government took over the vessel for incorporation into the Royal Navy. At the same time the British also took over a second Turkish battleship, a King George V vessel being built by Vickers - The Reshadieh which was renamed HMS Erin. Such an action was allowed for in the contracts, as then-First Lord of the Admiralty Winston Churchill did not want to risk the ships being used against the British, but it had consequences. The takeover caused considerable ill-feeling in Turkey, where public Subscriptions had partially funded the ships. The battleships had cost £4 million pounds but the British refused the refund the payments. This proved an important factor in turning Turkish public opinion against Britain, especially as the Turkish Navy had been pro-Britain - the Army having been pro-German. It helped put Ottoman Empire into the war on the side of Germany and the Austro-Hungarian Empire against the Triple Entente of Britain, France and Russia (29 October 1914). HMS Agincourt formed part of the First Battle Squadron at the Battle of Jutland, which she survived unscathed firing several broadsides without damage. -- http://en.wikipedia.org/wiki/HMS_Agincourt_%281913%29

German translation of “The Grand Fleet.”

NPS/DKL Location: BUCKLEY D581 .J42 1919

French translation of “The grand Fleet, 1914-1916; its creation, development, and work.”

NPS/DKL Location: BUCKLEY D581 .J42

NPS/DKL Location: GENERAL V53 .K44 1989

Kipling, Rudyard. **Sea Warfare.** Annapolis, MD: Naval Institute Press, c2002.
(Classics of Naval literature). 222p.

NPS/DKL Location: GENERAL D582.J8 L4

NPS/DKL Location: BUCKLEY D582.J8 M2

NPS/DKL Location: GENERAL D582.J8 U6 1920

NPS/DKL Location: BUCKLEY D581.P75

NPS/DKL Location: BUCKLEY D581.P74

NPS/DKL Location: BUCKLEY D581.P75

French translation of “Scapa Flow 1919.”

Ruge, Friedrich. **Scapa Flow 1919: La Fin della Flotta Tedesca**. Milano: Mursia, 1980. (Biblioteca del Mare; 198; Biblioteca del Mare; Guerra sui mari; 32). 217p.
Italian translation of “Scapa Flow 1919.”

English translation of “Scapa Flow 1919; das Ende der deutschen Flotte.”

NPS/DKL Location: BUCKLEY D581 .S28

NPS/DKL Location: GENERAL D582.J8 T37 1995

NPS/DKL Location: GENERAL D582.J8 U6

NPS/DKL Location: BUCKLEY D581 .W9
NPS/DKL Location: GENERAL D582.J8 Y38 2000

MIDGET SUBMARINES, KAITEN & FROGMEN

Originally published: Barcelona: Luis de Caralt, 1958
Spanish translation of “Achtung: K-männer.”

French translation of “Achtung: K-Männer”.

Russian translation of “Und liebten doch das Leben.”

Contents: Morskie diávoly / IUnio V. Borgese. -- Nemetskie morskie diversanty / Kaiius Bekker.
Russian translation of “Sea Devils” and … “Und liebten doch das Leben.”

NPS/DKL Location: BUCKLEY D781.B5

Russian translation of "Decima Flottiglia Mas."

Contents: Morskie diaovaly / Iunio V. Borgese. -- Nemetskie morskie diversanty / Kaiius Bekker.
Russian translation of "Decima Flottiglia Mas."

English translation of "Decima Flottiglia Mas."
German translation of “Decima Flottiglia mas.”

NPS/DKL Location: GENERAL DS558.92 .B67 1990

English translation of “Nageurs de Combat.”
NPS/DKL Location: GENERAL D780 .B8

Russian translation of "Nageurs de Combat."

English translation of “Nageurs de Combat.”

NPS/DKL Location: GENERAL V63.K38 B87 2004

Abstract: Many underwater operations that were once carried out by divers can now be carried out more
efficiently and with less risk with Remotely Operated Vehicles (ROVs). This is the first ROV how-to manual for those involved with smaller observation class ROVs used for surveying, inspection, observation and research purposes. As ROV technology becomes increasingly efficient and affordable, their use is rapidly spreading throughout a myriad of industries, everything from aquaculture to port and harbour security to underwater crime scene investigation, marine salvage, deep sea archaeology and commercial diving even deep sea rescue missions are handled by ROVs. Any industry involved with underwater investigation and surveying will inevitably rely on these machines. The ROV Manual is the first user guide to provide complete training and knowledge on ROV operations for engineers, technicians or underwater recreational enthusiasts, whether working inland or offshore. *The first book to focus on observation class ROV underwater deployment and usage in real conditions for industrial, commercial, scientific and recreational tasks *A complete user guide to ROV operation with basic information on the usage of underwater robotics and navigation equipment to obtain mission results quickly and efficiently *Ideal for anyone involved with ROVs whether in research, business or leisure underwater activities, or for heavier offshore projects, complete with self-learning questions and answers.

NPS/DKL Location: GENERAL TC1662 .C47 2007

Contents: The Samurai's Son -- The Smallest Subs -- The First Shot -- The First Prisoner of War -- Deadly Distractions and the Battle of Midway -- The Assassination -- The Suicide Squads: Kaitens and Kamikazes -- The War Without End -- The Puzzle.
NPS/DKL Location: GENERAL D783.6 .C73 2006

NPS/DKL Location: GENERAL D780 .C86 2005

De Felice, Sole. La Decima Flottiglia Mas e la Venezia Giulia, 1943-1945. Roma: S.

X-Craft Raid”; and London: Macdonald and Co., as “Against All Odds.”

Gallagher, Thomas Michael. **Senk "Tirpitz"!”** [oversatt av Sigurd Valvatne].
Swedish translation of “The X-Craft Raid.”

NPS/DKL Location: GENERAL D772.T5 G2

Czech translation of “x-craft Raid.”

NPS/DKL Location: GENERAL VG87 .H69 1993

Hutton, Joseph Bernard. **Frogman Spy, the Incredible Case of Commander Crabb.** New York, McDowell, Obolensky, 1960. 180p.
NPS/DKL Location: GENERAL DA592 .H8 1960A

Isono, Yasuko. **Ai to Shi 768-jikan: Ningen Gyori "Kaiten" Tokubetsu Kogeki**
Based on Yamaguchi Hosō television program: Shishatachi no yuigon: Kaiten ni chitta gakutohei no kiseki, and the diary of Minoru Wada.

NPS/DKL Location: GENERAL D771 J33 2006

German translation of “Underwater Warriors.”

NPS/DKL Location: GENERAL D780 K46 2003

NPS/DKL Location: GENERAL V857 K36 1996

Contents: A fighting ship is born -- Too late for war -- A ship and crew prepare for war -- Ward goes to sea -- First shot of the war -- Assault from the sky -- A Difficult December -- Liberty -- First Year at war -- Ward becomes an APD -- In the South Pacific at Last -- Amphibious Operations begin -- New Britain and New Guinea -- Leyte -- Destiny's date repeated -- Epilogue.
NPS/DKL Location: GENERAL D774.W24 K66 2006

NPS/DKL Location: FEDDOCS D 201.39:F 92

Lembo, Daniele. *I Sommerrigibili Tascabili Italiani nel Secondo Conflitto Mondiale*. Copiano (PV) [i.e. Pavia, Italy: Grafica MA.RO, c2006. 93p.

NPS/DKL Location: GENERAL D794.5.L83 1985

Mainichi Shinbunsha hen. *Ningen Gyoorai: Kaiten Tokubetsu Kogeki Taiin no Shuki*. 662

663

Neuhauzer, A. *Bi-Metsulot Mifrats Si'am: Parashat tivu`a ha-shayetet ha-Britit be-Milhemet ha-`olam ha-sheniyah, be-10.12.41*. Tel-Aviv: Hotsa`at Yaron Golan, 1999. 159p. Title on t.p. verso: Deep in Siam Bay

NPS/DKL Location: GENERAL D794.5 .P36 2006

"Target A, Pearl Harbor’s most Secret Weapon"p.72-115.
NPS/DKL Location: GENERAL DS890.Y25 P6 1965

351p.
Originally published: London: Heinemann, 1965 as “Admiral of the Pacific, the Life of Yamamoto.”

208p.
NPS/DKL Location: BUCKLEY VM983 .P9

Subtitle on spine: Shirarezaru Teikoku Kaigun tokushu senkotei hishi 2.

Synopsis: They blasted trails of destruction from Cadiz to Crete, from Alexandria to Gibraltar, leaving in their wake the sunken hulls & twisted wreckage of dozens of ships of the Allied Naval Forces. They were the men of the Italian Navys 10th Light Flotilla, the original frogmen who, in WW II, introduced a new concept of undersea warfare into the ongoing history of naval conflict. This book tells the Frogmen story as it has never before been recorded. Parts are in the attested & taped words of the sea-going warriors themselves; parts drawn directly from British & Italian Navy Archives, all accurately documented.--Publisher.

Shean, Max. **Corvette and Submarine.** Claremont, WA: M. Shean, 1992. 275p. Transferred from the corvette Bluebell to X-craft, he took part in the raids on Tirpitz, Bergen and in the Far East.

NPS/DKL Location: GENERAL D792.J3 S43 2005
See chapters 32-35, Rearranging the Firmament, Metal Implement Number Six, Enter the Kaiten, A Pillar of Smoke by Day, pp. 403-433.

Wrecked by British X-craft XE-1 and XE-3 in the Strait of Johore.

NPS/DKL Location: GENERAL D779.I8 S64 1991

These courageous men were part of Operation Rimau (Malay for tiger) which would use the latest one-man Submarines - Sleeping Beauties - developed by Royal Navy scientists in Britain and yet to be tested in combat.

Other Titles: Victoria Crosses of the Second World War.
Partial contents: 41. Midget Sub Versus Tirpitz / Donald Cameron, Basil Place
On 22 September 1943 at Kåfjord, North Norway, Lieutenant Cameron, commanding Midget Submarine X.6, and another lieutenant (Basil Charles Godfrey Place) commanding Midget Submarine X.7, carried out a most daring and successful attack on the German Battleship Tirpitz. The submarines had to travel at least 1,000 miles from base, negotiate a minefield, dodge nets, gun defences and enemy listening posts. Having eluded all these hazards they finally placed the charges underneath the ship where they went off an hour later, doing so much damage that the Tirpitz was out of action for months. -- http://en.wikipedia.org/wiki/Donald_Cameron_%28VC%29
67. Midget Sub In Singapore / Ian Fraser, James Magennis
On 31 July 1945 in the Straits of Johor, Singapore, Lieutenant Fraser, in command of XE-3, attacked the Japanese heavy cruiser Takao, after making a long and hazardous journey through mined waters. Fraser slid the submarine under the Takao, which lay over a depression in the sea bed, and his diver Acting Leading Seaman James Joseph Magennis went out to fix the limpet mines to the bottom of the ship. The XE-3's two side-charges then had to be released, but the starboard charge stuck and Magennis climbed
out again and after a nerve-wracking five minutes released the charge. XE-3 then made for home.
Magennis was also awarded a Victoria Cross, and Fraser became a lieutenant-commander. --
http://en.wikipedia.org/wiki/Ian_Edward_Fraser

NPS/DKL Location: GENERAL D780 .W3 1950

Spanish translation of "Midget Submarine."

Also published: London: Transworld, 1955; London: George G. Harrap, 1964; London,
Published in the United States as “The Midget Raiders.”

Spanish translation of “Above us the waves.”

Norwegian translation of “Above us the waves.”

Published in England as “Above us the waves.”

Published in England as “Above us the waves.”
NPS/DKL Location: BUCKLEY D784.G7 W2

German translation of “Above us the waves.”

German translation of “Combat Frogman.”

Yokota, Yutaka. **Aa Kaiten Tokkotai.** 46 [1971].

Yokota, Yutaka. **Aa Kaiten Tokubetsu Kogekitai.** 1968. 294p.

Q-SHIPS/COMMERCE RAIDERS/HILFSKREUZER

See also **ANTI-SUBMARINE WARFARE (ASW)**

Synopsis: In 1915, Harold Auten was one of the first officers selected for Q-Ship service, along with Gordon Campbell. As one of the pioneers, he helped develop the Q-Ship’s designs and tactics. His third command, HMS Stock Force was involved in a fierce encounter with a U-Boat off Start Point in July 1918. Although the submarine survived, the Q-ship did not, foundering on tow. For this action Auten was awarded the Victoria Cross. "Q-Boat Adventures" was the first book to be published about the Q-Ships and made Auten into a household name. The tales described therein remain as exciting today as in 1919 when the world first read of the brave exploits of the decoy ships.

Brading, A. C. P. *And so to Germany.* Ilfracombe, Stockwell, 1966. 71p.

Auxiliary Cruiser Pinguin.

French translation of “Gespenstkreuzer HK 33.”

NPS/DKL Location: BUCKLEY D772.P5 B8

NPS/DKL Location: GENERAL/BUCKLEY D581 .B65 1999

Synopsis from 2002 edition: Gordon Campbell remains one of the Royal Navy's greatest heroes. His exploits as the most successful Q-ship captain of World War I made him into a household name. His mystery ships, Farnborough, Pargust and Dunraven fought the most gruelling duels with German submarines, sinking three of them. Campbell developed the desperate tactic of deliberately allowing himself to be torpedoed to lure the U-Boats to surface, where the Q-ship's hidden guns could then open fire. As the war progressed, the enemy became more difficult to deceive, Dunraven being sunk by a U-Boat that escaped destruction. No less than five Victoria Crosses were awarded to him and his men, with Campbell also winning the DSO with two bars. This book tells the tales of the most courageous of naval men, those who served in Campbell's Q-ships.

NPS/DKL Location: BUCKLEY D593 .C16

Cruiser Widder HK3

NPS/DKL Location: BUCKLEY D770 .C4

NPS/DKL Location: GENERAL/BUCKLEY D580 .C4

NPS/DKL Location: BUCKLEY D581 .C4

NPS/DKL Location: GENERAL D581 .C5 1972

Abstract: Lacking adequate antisubmarine warfare tactics and technologies to combat the German unrestricted submarine campaign during the Great War, the Allies turned to deception or "ruse de guerre" as a means to counter the U-Boat menace. Armed decoys, known as Q-ships, manned by naval crews and outfitted with hidden guns, were introduced to deceive, trap, and destroy U-Boats. Registering early
kills, Q-ships served as a valuable deterrent and had a demoralizing effect on previously bold U-Boat crews. Q-ships successfully filled Britain's void in antisubmarine warfare through 1917. By 1918, the Q-ship campaign ground to a halt when these intrepid decoys lost their usefulness through frequency of use and lost surprise. This paper examines the employment of Q-ships in the Allied maritime strategy during the Great War, focusing on the requisite elements and specific tactics associated with this unique form of deception. Significant engagements are examined to assess the effect Q-ships had against U-boat and their overall impact during the course of the war. (26 refs.).

Electronic access: http://handle.dtic.mil/100.2/ADA425342

Q-Ship Baralong and U-41.

English translation of "Kormoran", der Hilfskreuzer, der die "Sydney" versenkte."

NPS/DKL Location: GENERAL D771 .D84 2001

Duskin, Gerald and Ralph Segman. If the Gods are Good: The Epic Sacrifice of HMS Jervis Bay. Annapolis, MD: Naval Institute Press, c2004. 270p.

Abstract: The fascinating story of two very different German surface raiders and the havoc they caused amongst Allied shipping in the Second World War. One was the 8-inch gun cruiser Admiral Hipper, fast, powerful and Navy-manned; the other a converted merchantman, Hansa Line's Kandelfels armed with a few 5.9s, crewed largely by reservists, and sailing under the nom de guerre of Pinguin. Contrary to all expectations, the amateur man-of-War reaped a rich harvest and went out in a blaze of glory. Her purpose-built sister, on the other hand, was hard-pressed to make her mark on the War and ended her days in ignominy.

French translation of “The Tenth Fleet.”

NPS/DKL Location: GENERAL D771 .E39 2001

NPS/DKL Location: GENERAL D771 .F22

NPS/DKL Location: GENERAL D783 .F22

NPS/DKL Location: GENERAL D771 .G38 2002

Hoyt, Edwin Palmer. *Swan of the East; the Life and Death of the German Cruiser*
Abridged from The Last Cruise of the Emden.

Heidelberg, Phil. F., Diss. v. 20. März 1959 (Nicht f. d. Aust.)

NPS/DKL Location: GENERAL D771 .J238 2001

Jaeger, Gérard A. Luckner ou le Roman Vrai d'un Corsaire du XXe Siècle.

English translation of "HMS Fidelity."

English translation of “Die Kaperfahrten des kleinen Kreuzers Emden.”
NPS/DKL Location: BUCKLEY D582.E6 L6313 1988

Includes rev. ed. of v. 2 and latest printings of other volumes.
NPS/DKL Location: GENERAL/ BUCKLEY D773 M8

680

NPS/DKL Location: GENERAL VA513 .P45 1994

English translation of “Schiff 16.”

Finnish translation of “Schiff 16.”

Italian translation of “Schiff 16.”

Dutch translation of “Schiff 16.”

Russian translation of “The German Raider Atlantis.”

Arabic translation of “Schiff 16.”

Rogge, Bernhard and Wolfgang Frank. **Sous dix Drapeaux** [Trad. de l’allemand par R.
French translation of “Schiff 16.”

English translation of “Schiff 16.”

Roll, Hans Ulrich. Als Meteorologe auf dem Hilfskreuzer "Pinguin"

English translation of “Die Deutschen Hilfskreuzer, 1895-1945.”
NPS/DKL Location: BUCKLEY/GENERAL VA513 .S3313 1979

NPS/DKL Location: THESIS S41763

NPS/DKL Location: GENERAL D772.A73 S53 2003

NPS/DKL Location: GENERAL D581 .S74 2004

French translation of “Count Luckner, the Sea Devil.”

French translation of “Lauterbach of the China Sea.”

Dutch translation of “Count Luckner, the Sea-Devil.”

Tischer, Heinz. Die Abenteuer des Letzten Kapers: Eine Hilfskreuzergeschichte
über 200 Foto-Dokumenten; [Hilfskreuzer Thors Reise in die Katastrophe].

Hebrew translation of “The Last corsair.”

Czech translation of “The Last corsair:.”

German translation of “The Kaiser’s Pirates.”

NPS/DKL Location: GENERAL D772.J4 W37 2006

English translation of “Vagabunden auf See.”

Winter, Barbara. **Duell vor Australien: Hilfskreuzer Kormoran Gegen Kreuzer**
German translation of “H.M.A.S. Sydney.”

SUBMARINE CHASERS/TORPEDO BOATS

NPS/DKL Location: GENERAL/BUCKLEY D773.B9

PERIODICAL ARTICLES

CUBAN MISSILE CRISIS

Russian researcher Alexander Mozgovoi has published, for the first time in the history of Russian Navy, a book of reminiscences about the actions of Soviet submarines during the 1962 Caribbean crisis...linked with the “Anadyr” operation to deploy Soviet missiles and nuclear warheads for them on Cuba. The book, entitled "The Cuban Samba Quartet of "Foxtrots"", is devoted to the participation of submariners ...who had displayed remarkable courage and heroism while discharging their military duty.

ENIGMA -- ULTRA -- MAGIC -- CRYPTOGRAPHY

MARITIME STRATEGY

Gorton, Steven. “Thoughts on the Falkland Islands War,” *U.S. Naval Institute*

SUBMARINES

GENERAL

Boyne, Peter B. "In The Beginning...There Was Special Projects!" *Submarine Review* 116-118 April 2002.

Breemer, Jan S. “Where Are the Submarines?” *U.S. Naval Institute Proceedings*

Fages, Malcolm. "Forward...From Under the Sea," Undersea Warfare 1:4-8 Fall 1998.

Frick, R.E. “The Submarine Building Program,” *Submarine Review* 35-44 October
1995.

“Harnessing Technology is the Key to Sub Force's Strength,” C4I News 1 July 29, 1998.

"In the Near Future We Will Deal Within International Communities with the Subject of Submarine Rescue [Interview with Yuri Kormilitsin, General Designer of Conventional Submarines in the Rubin Design Bureau].” Naval Forces 21:34-36+ 2000.

December 1997.

Electronic access: http://www.btinternet.com/~philip/torps.htm

Kuhlmann, Dietrich. “Submarine Strike Comes of Age,” Undersea Warfare 2:7-8
Spring 2000.

Naval War College CASE STUDIES Part II: Strategic Thought and Practice in the Modern Security Environment; VI. THE FIRST WORLD WAR, 1914-1918: TOTAL WAR AND STRATEGIC ASSESSMENT

Naval War College CASE STUDIES Part II: Strategic Thought and Practice in the Modern Security Environment; VII. THE FIRST WORLD WAR, 1914-1918: TOTAL WAR AND STRATEGIC ASSESSMENT

Newton, George B. “Don't Forget the Arctic,” Submarine Review 91-100 April 2001.

Pearson, Jeff. “Have We Crossed the Line?” Submarine Review 97-99 April 1999.

Pekelney, Richard and Terry Lindell. “A Short History of the ARMA Gyrocompass,”
Submarine Review 100-106 October 1999.

"Saving the Industrial Base or Saving Face?" *Naval Forces* 14:4 1993.

Schultz, Fred L. “An Interview with Captain Edward L. Beach Jr., U.S. Navy (retired): 'We'll go around the World,'” *Naval History* 17(1):20-23 February 2003

Scott, Richard. “Coming Up from the Deep, In from the Cold,” *Jane's Navy*

Seife, Charles. “Souped-Up Archimedes Equation Torpedoes Submarine Paradox,”

“Shall the Submarine Be Outlawed?” U.S. Naval Institute Proceedings 45(9):1625 September 1919.

Smith, William D. “U.S. Submarines Need Better Satellite Communications,” Space

Electronic access: http://www.mediacen.navy.mil/pubs/allhands/jun00/pg6m.htm

“Subs Introduced to Command and Weapons Control Systems,” *Jane’s International*

Thompson, Richard. “Strategic Implications of the New World Order for the U.S.

"Type 212s on a Med Cruise," Military Technology 50-53 March 1996.

“Undersea Warfare (Classified) Monterey, California, USA 7-10 April,” Jane’s Defence Weekly 1 January 1, 1997.

Walker, William B. “Here are the Submarines...Where are the Tactics?” U.S. Naval Institute Proceedings 120(7):26-30 July 1994.

Wilbur, Charles H. “Remember the San Luis!” U.S. Naval Institute Proceedings

SUBMARINES

BY COUNTRY

AMERICAN

In 1943 and 1944, Adm. Blanchard was commanding officer of the Submarine Albacore, which sank the Japanese Aircraft carrier Taiho with a single Torpedo on June 19, 1944, in the First phase of the Battle of the Philippine Sea, which also was known as "The Great Marianas Turkey Shoot."

Brooks, Linton F. “Pricing Ourselves Out of the Market: The Attack Submarine

Drew, Christopher. “Adrift 500 Feet Under the Sea, a Minute Was an Eternity [USS San Francisco]," *NEW YORK TIMES* A1 May 18, 2005.

Graham-Rowe, Duncan. “HMS Elusive,” New Scientist 162(2187):5 May 22, 1999. Abstract: If some reports are to be believed, China can now pinpoint the position of British and American nuclear Submarines, but experts shay that China won't be able to make much use of the data they've stolen.

ARGENTINIAN

AUSTRALIAN

Electronic access: http://www.divernet.com/cgi-bin/articles.pl?id=3946§ion=&action=display&show=AE2

AUSTRIAN

BRITISH

Fry, Roger. “HMS Totem and the Cowichan Talisman,” Ships Monthly 34(10):32-34
October 1999.

Graham-Rowe, Duncan. “HMS Elusive,” New Scientist 162(2187):5 May 22, 1999. Abstract: If some reports are to be believed, China can now pinpoint the position of British and American nuclear Submarines, but experts shay that China won't be able to make much use of the data they've stolen.

CANADIAN

CHILEAN

755
DUTCH

EGYPTIAN

FRENCH

GERMAN

GERMAN -- GENERAL

Keil, Robin. “Taking the Challenge [Interview with Captain M. Borchert, Commander Submarine Flotilla, German Navy],” *Naval Forces* 18:10+ 1997.

“U-Boot Historie von Enthusiasten fur Enthusiasten=Submarine History from Enthusiasts for Enthusiasts” -- Cover.
Electronic access: http://www.luftfahrtverlag-start.de/index.html [German]
Electronic access: http://www.luftfahrtverlag-start.de/EHomepage/ehomepage.html [English]

GERMAN -- WWI

Carney, R. B. “The Capture of the U58,” *U.S. Naval Institute Proceedings* 60(??):1401-1404 ?? 1934

"German Cruising Submarines of 1917 Type,” *U.S. Naval Institute Proceedings* 43(4):779 April 1917.

"German Submarine Designs (1918),” *U.S. Naval Institute Proceedings* 44(10):2363 October 1918.

"Larger German Submarines (1918)," U.S. Naval Institute Proceedings 44(4):370 February 1918.

Welsch, O. “Die deutsch-türkische Flotte und deutsche U-Boote vor Gallipoli,” Marine-Rundschau.43(??):639 -- 654 ????.

GERMAN -- WWII

"German Sub Found in Gulf Waters [cover]; Joint Effort Yields World War II Relic,” *MMS Today* 6-7 Summer 2001.

Langdon, R.M. "Live Men Do Tell Tales (U-582 and Peleus)," *U.S. Naval Institute Proceedings* 587, 17.

Oskar Kusch was executed by a firing squad on 12 May 1944 in Kiel-Holtenau. In 1996 Kusch’s legal record was finally wiped clean, and in 1998 the city of Kiel erected a memorial and renamed a street in his honor not far from the military range along the Kiel Canal where he had been shot 54 years before. http://www.uboot.net/men/kusch.htm

Salvarezza, Michael and Christopher P.Weaver. “The Last German U-Boat to Sink an American Ship in World War II Was Herself Sent to the Bottom,” World War II 13:20+
February 1999.

Syrett, David. “Communications Intelligence and the Sinking of the U-1062: 30

GREEK

INDIAN

INDONESIAN

IRANIAN

IRISH

ISRAELI

Baumgartner, Henry. “The Sub That Vanished; Israeli Submarine INS Dakar,”

Charalambous, Charlie. “Discovery of Israeli Submarine Dakar "More Exciting" Than

Dettweiler, Thomas K., Steve Abdalla and David Brown. “Bringing the INS Dakar

“Israel Offers Cash Reward For Information On Lost Sub,” Seattle Post-Intelligencer

Johnson, Donna. “Role of Image Processing in the Search for the I.N.S. Dakar,”
MTS/IEEE - Riding the Crest into the 21st Century, September 13-September 16
1999, Seattle, WA, USA, p 234-236.

Kesary, Michael and Ifiach Fogelson. “The Israeli Submarine DOLPHIN,” Naval Forces

Kinzer, Stephen. “Israel Is Advertising for Clues to a Sub Lost in 60's,” New York
Times [Late Edition (East Coast)]:1.20 October 11, 1998.

Segal, Naomi. “Hope of Finding Lost Sub Dashed,” Ethnic Newswatch 5 April 21,
1996.

Susser, Leslie. "Brief Encounter: With Mike Eldar, on the Finding of the Dakar
Last year the government blocked publication of Eldar's book on the Dakar, and the
police questioned him on charges of aggravated espionage for allegedly seeking to
publish classified material. Now that the Dakar has been found, Eldar hopes that the
government and military will be more open with the families of the lost Seamen and with
the public, and will lift the ban on his book.

December 1998.

Wilson, Graham. “The Loss and Discovery of the Israeli Submarine DAKAR,” Journal
of the Australian Naval Institute 26:30-32 (January/March 2000.
ITALIAN

"Italy's Progress In Submarine Navigation (1908)," U.S. Naval Institute Proceedings 34(2): 719 June 1908.

JAPANESE

KOREAN

Bermudez, Joseph S., Jr. “Submarine was on Mission to Spy on South,” Jane’s Defence Weekly 4 September 25, 1996.

MALAYSIAN

PAKISTANI

More than 20 people were injured in the blast, including 12 other French citizens employed by the Direction des Constructions Navales, a Defence ministry shipBuilder involved in a joint France-Pakistan Submarine Project.

POLISH

RUSSIAN/soviet

Handler, Joshua. “Submarine Safety - The Soviet/Russian Record,” *Jane's

Electronic access: https://www.cia.gov/library/center-for-the-study-of-intelligence/csi-publications/csi-studies/studies/95unclass/Montgomery.html

Electronic access: http://www.ihr.org/jhr/v12/v12p371_Ries.html

NPS/DKL Location: MICROFORM ADA137392

“Whisky on the rocks,” http://www.compunews.com/s139/sp2.htm

SINGAPORE

SOUTH AFRICAN

Heitman, Helmoed-Romer. “Contracts Secure South Africa's Submarine Programme,”

SWEDISH

TAIWANESE

TURKISH

ANTISUBMARINE WARFARE (ASW)

Alexander, R. J. “Can We Really Afford Surface ASW Ships? (ProfNote),” *U.S. Naval Institute Proceedings* 100(8):107 August 1974.

"Battling the Subs - World War II,” All Hands 59-63 April 1958.

Bowling, R. A. “The Negative Influence of Mahan on Anti-Submarine Warfare,” Journal

Crawford, Jeffrey D. and Fletcher L. Sawyer. “ASW Measures of Effectiveness,” *Vitro*

Curtis, J.J.M. “Quarterback for the Helo ASW Team (ProfNote),” U.S. Naval Institute Proceedings 100(9):119 September 1974.

Dorsey, Jack. “Navy to Hone Hunting Skills on Swedish Sub,” The Virginian-Pilot B2 March 24, 2005

Hardwick, C.D. “NAE Convair 580 Aeromagnetics Program,” Quarterly Bulletin of the

Powers, George and James Henson. “ATE in the Field Supporting Airborne ASW Avionics Avionics P-3 STYLE,” AUTOTESTCON '83 (Fort Worth, TX, USA)p.12-17 1983.

“U.S. Navy Opt to Train With Swedish Sub,” The Vancouver Province A10 October 25, 2004

797

SUBMARINE CHASERS AND PATROL BOATS

"The U.S. Navy's 345 Patrol Boats (1917),” U.S. Naval Institute Proceedings

GENERAL

400 Years of Subs
http://www.pbs.org/wgbh/nova/lostsub/history.html

The Battle of the Atlantic
(from the World at War website)
http://www.theworldatwar.com/feature1.htm

The Battle of the Atlantic January 1942 - May 1945
(in the World War II Multimedia Database)

The Battle of the Atlantic [in WWII], by Dr. Gary Sheffield
http://www.bbc.co.uk/history/worldwars/wwtwo/battle_atlantic_01.shtml

The First Battle of the Atlantic, by Dr. Gary Sheffield
http://www.bbc.co.uk/history/worldwars/wwone/battle_atlantic ww1_01.shtml

Greg Goebel's The Invention of the Submarine
http://www.vectorsite.net/twsub1.html

Greg Goebel's The Submarine In World War I
http://www.vectorsite.net/twsub2.html

Kockums Submarines (not just Swedish anymore)
http://www.submarines.com/Submarines/submarinesmain.html

La Seconde Guerre Mondiale: La Bibliographie
Histoire Maritime, Militaire et Civile
http://www.guerre-mondiale.org/Bibliographie/Navale.htm

Punching the Convoys Through: “Hunter-Killers” in the Atlantic, 1943-1945
The Tenth Fleet and F-21
http://www.mariner.org/atlantic/gg01.htm

Sound Surveillance System (SOSUS)
http://www.globalsecurity.org/intell/systems/sosus.htm

SubArt.net-International Submarine Art Gallery
http://www.subart.net/

Submarine World Network (mostly U.S. Links)
http://www.rontini.com/
World War II Unit Histories & Officers
http://www.unithistories.com/

Warships of the World (By Country’s Fleet)

Warships on the Web
http://web.ukonline.co.uk/aj.cashmore/index.html

World War II in the Pacific
http://www.ww2pacific.com/

SUBMARINE WEBSITES BY COUNTRY

AMERICAN

The Submarine (Official U.S. Navy Site)
http://www.chinfo.navy.mil/navpalib/ships/submarines/

The Submarine Center
http://www.geocities.com/Pentagon/Quarters/9000/

DANFS Online: Submarines
http://www.hazegray.org/danfs/submar/

Search for World War II submarine USS Grunion
http://www.submarinebooks.com/News.htm
http://www.ussgrunion.com/

FULL FATHOM FIVE: The U. S. Submarine War Against Japan
Cutaway View & Specifications

- Shark Class (SS 174)
- Salmon Class (SS 182)
- Sargo Class (SS 188)
- Tambor Class (SS 198)
- Gato Class (SS 212)
- Balao Class (SS 285)
- Tench Class (SS 417)

http://www.geocities.com/Pentagon/1592/boats.html

Sid Harrison's Website The Details!
http://www.sid-ss.net/details.htm
Through the Looking Glass: A Historic Look at Submarines
http://www.rddesigns.com/legends.html

United States Navy Submarine Fleet
http://www.subnet.com/fleet/fleet.htm

United States Submarine Veterans of World War II
http://www.ussubvetsofworldwarii.org/

USS Wahoo lost in 1943 has been found!
http://www.submarinebooks.com/News.htm

WWII submarine USS Snook believed found!
http://www.submarinebooks.com/News.htm

AUSTRALIAN

Submarine Service Fact File

Discovery of the AE2 off Gallipoli in the Sea of Marmara

Report on the Discovery of the AE2

BRITISH

BriTsub
http://www.britsub.net/

Royal Navy Submarines
http://members.iinet.net.au/~eadej/

British Submarines of World War II
http://web.ukonline.co.uk/chalcraft/wtv/www2sm2wtv.html

Royal Navy Submarine Museum
http://www.rnsubmus.co.uk/welcome.htm

The Royal Navy, History, Ships and Men.
http://www.solarnavigator.net/the_royal_navy.htm

Royal Navy Submarine Service
http://www.royal-navy.mod.uk/static/pages/146.html

SUBMARINE LOSSES 1904 TO PRESENT DAY
CANADIAN

Canadian Navy Victoria Class
http://www.navy.dnd.ca/mspa_fleet/vic_overview_e.asp

Canadian Navy of Yesterday and Today
http://www.hazegray.org/navhist/canada/

CHILEAN

Chilean Navy
http://www.armada.cl/p4_ingles/site/edic/base/port/home.html

CHINESE

Chinese Defence Today: Submarines
http://www.sinodefence.com/navy/sub/

DUTCH

Submarines of the Royal Netherlands Navy 1906-2000
http://www.dutchsubmarines.com/

Official Walrus (2) website
http://home.wanadoo.nl/hrms-walrus/

FRENCH

The French Navy's Submarines In July 1939
http://perso.wanadoo.fr/bertrand.daubigny/FSS39uk.htm

GERMAN

Chronik des Seekrieges 1939 -- 1945
http://www.wlb-stuttgart.de/seekrieg/chronik.htm

Deutsche U-Boote 1935-1945
http://www.u-boot-archiv.de

Grey Wolf
http://www.u-boot-greywolf.de
Midgets at the Verkehrsmuseum in Speyer, Germany
http://www.uboat.net/gallery/index.html?gallery=MidgetA

Munich Submariners Association 1926
http://www.uk-muenchen.de/literatur/lit_index.htm

U-505 - the only German submarine captured by the U.S. Navy During World War II
http://www.msichicago.org/exhibit/U505/index.html

U-Boat Archive: Photographs and Records of the U-Boat War
http://www.uboatarchive.net

The U-Boat War 1939-1945, with U-Boat War in World War One
http://uboatwar.net/

U-Boat.net
http://uboat.net/

The U-Boat Bases in France

W-bootwaffe & Kriegsmarine History
http://uboottwaffe.net/

ISRAELI

Israel Submariners Association
http://www.dolphin.org.il/

ITALIAN

Italian Submarines in World War Two
http://64.224.13.60/Subs/index.htm

Submarines of the Italian Navy
http://www.sommergibili.com/

I Sommergibili Italiani
http://www.regiamarina.net/arsenals/arsenal/ships_it/Subs_it.htm

JAPANESE

Submarines of the Imperial Japanese Navy
http://www.combinedfleet.com/ss.htm
POLISH

The Polish Navy 1918 - 1945 /A Short Story/
http://www.computerage.demon.co.uk/navy/index.html

RUSSIAN/soviet

Union Of Soviet Socialist Republics/Russia--Strategic Missile Submarines
http://www.johnstonsarchive.net/nuclear/wrjp1251h-ussr.html

SINGAPORE

The Riken Project
http://www.kockums.se/News/oldnews/riken.html

TURKISH

Welcome to the History of Turkish Submarines
http://www.geocities.com/Pentagon/Bunker/7704/

MIDGET SUBMARINES

Fine Scale Models
http://www.walruscarpenter.com/midget.html

WWII SUBMARINE HISTORY

Bases Sous-Marines - Sous-Marins et U-Boote - La Bataille de l'Atlantique
http://perso.wanadoo.fr/sous.marin/index.htm

The Bosun's Website
http://www.bosun.net/index.html - home

FleetSubmarine.com The American fleet submarine may arguably be called the most successful naval weapon of World War II
http://www.fleetsubmarine.com/

Under Water Warfare, The Struggle Against the Submarine Menace, 1939 -1945
http://www.ahoy.tk-jk.net/macslog/UnderWaterWarfare.html
WWII SUBMARINE STATISTICS

Statistics - Submarine Fleets over the 1939-1945 War
http://www.ahoy.tk-jk.net/Underwater/30Statistics-SubmarineFle.html

Q-SHIPS/COMMERCE RAIDERS/"AUXILIARY CRUISERS"

Auxiliary cruiser/Allied merchant cruisers of World War I & World War II/German auxiliary cruiser raiders of World War II
http://encyclopedia.thefreedictionary.com/Auxiliary%20cruiser

Q-Ships (Anti-Submarine vessels disguised as merchant vessels)
http://www.history.navy.mil/docs/wwii/Q-ships.htm

List of U.S. Navy Q-Ships During World War II
http://www.history.navy.mil/faqs/faq111-1.htm

Hilfskreuzer (Auxiliary Cruiser / Raider)
http://www.bismarck-class.dk/hilfskreuzer/hilfskreuzer_menu.html