Stochastic Look Ahead Commitment

A Computational Perspective

Presented By: Bernard Knueven, National Renewable Energy Laboratory

2021 IEEE Power & Energy Society General Meeting, July 26, 2021
Acknowledgements

• This work was funded by ARPA-E to develop a stochastic look-ahead commitment (SLAC) advisory tool

• Tool would inform system operators managing existing and future grid resources and associated uncertainty
Partners & Team

• MISO
 – Yonghong Chen, Mohammad Faqiry, Anupam Thatte, Long Zhao, Shengfei Yin

• Nexant Inc
 – Roger Treinen, Herminio Pinto, Narsi Vempati

• Arizona State University
 – Junshan Zhang, Vijay Vittal, Trevor Werho, Kory Hedman

• Sandia National Labs
 – Manuel Garcia, Jean-Paul Watson
Uncertainty Management at MISO

Look Ahead Commitment (LAC) commits intra-day fast-start units every 15 minutes with a 3-hour look-ahead and 15- to 30-minute intervals.
Problem Statement

• Formulate and solve a Stochastic Look Ahead Commitment (SLAC) problem analogous to existing deterministic LAC

• Commit units in real-time with 3-hour look ahead under uncertainty
 – Find a set of commitments consistent with different possible evolutions of the grid while minimizing cost in expectation
SLAC Formulation

- Non-anticipatory constraints only apply to generators and time periods we need to decide about “now”
 - (S)LAC is solved every 15 minutes, so some final commitment decisions can be delayed
 - First-stage: immediate commitment decisions; Second-stage: everything else
- This formulation gives a realistic accounting of system flexibility in future time periods, while allowing for decisions on slower-start units to be made now
Scenario Generation

- Developed at Arizona State University (ASU)
- Three sources of uncertainty (wind, load, and NSI) are considered together
- Probabilistic forecasts are created for future time horizon
- The joint distribution between all elements and forecast horizons is constructed using copula theory – to capture spatial-temporal correlations
- Scenarios are sampled in a Monte Carlo fashion
- The algorithm is extremely efficient, can produce 1000 scenarios for MISO on the order of 10 seconds
- To obtain an adequate understanding of the future, 200 scenarios are sampled from the model
- The scenarios are then down-sampled to 40 scenarios using Backwards Reduction (distance-based reduction method)
Deterministic Equivalent Validation

• The team customized, benchmarked, and verified MISO-customized Pyomo models (based on EGRET) against existing LAC results with MISO data

• This deterministic LAC model is the deterministic-equivalent basis for the SLAC model

-15 0 15 30 45 60 75 90 105 120 150 180

MISO State Estimation

MISO 1-period SCED (Reserves: AGC, Spin, Supp, Flex: Transmission; Net Interchange)

Typical intertemporal ramping constraints
Solution Methodology: Key Ingredients

• Customized Progressive Hedging Algorithm (PH)
 – Implemented using \textit{mpi-sppy}, which automates stochastic formulation from deterministic equivalent; allows for deep customization and composition of decomposition algorithms
 – Generator-specific values for \textit{rho}
 • dual-update step & regularization
 – Cleanup / finalization heuristic
 • No need to take PH to convergence
 – MIP solver tuning
 – Scenario-bundled subproblems
 • Stronger dual bounds; fewer iterations for convergence
Progressive Hedging Algorithm

- Embarrassingly parallel – need communication to calculate \bar{x} and check convergence, both can be easily and efficiently done via MPI reductions
- Not guaranteed to converge for non-convex problems, but can be leveraged as a heuristic
- Lagrangian dual bounds can be calculated using w_s: $\min f(x_s, y_s) + w_s x_s$
 - Trivial dual bound is calculated “for free” at iteration 0

PH Iteration 0:
- Solve Scenario Subproblems: $\min f(x_s, y_s)$
- Initialize w’s: $w_s \leftarrow \rho (x_s - \bar{x})$
- Calculate \bar{x}
- Convergence Check: $|x_s - \bar{x}| \leq \epsilon$?
 - Yes: Solution \bar{x}
 - No: Update w’s: $w_s \leftarrow w_s + \rho (x_s - \bar{x})$

PH Iteration k:
- Solve Subproblems: $\min f(x_s, y_s) + w_s x_s + \rho / 2 ||x_s - \bar{x}||^2$
- Calculate \bar{x}
Generator-specific ρ

- The chosen value(s) of ρ drive the entire PH algorithm, serving as both regularization penalty and dual update weight.
- While classical PH uses a single value for ρ, in general ρ can be set on a per-variable basis.
- For SLAC, we chose ρ_g to be proportional to generator g’s production cost, which has proven effective on academic test cases.

Convergence Check

$|x_S - \bar{x}| \leq \epsilon$?

PH Iteration k

Solve Subproblems:

$$\min f(x_s, y_s) + w_s x_s + \rho/2 ||x_s - \bar{x}||^2$$

Calculate \bar{x}

Update w’s

$$w_s \leftarrow w_s + \rho (x_s - \bar{x})$$
Cleanup and Finalization

- In practice, PH can often not be run to convergence
 - Time limitations
 - Non-convex problems have no convergence guarantees
 - Problems with first-stage integer variables are very prone to cycling

- Using PH in practice means setting an iteration limit, and creating a solution out of the result
 - For problems with relatively complete recourse, we can pick an arbitrary subproblem’s solution

- For SLAC, we created a heuristic for reliability
 - If any subproblem, at termination which wants to commit (or not decommit) a generator, and the decision cannot be delayed, we commit that unit
 - Sometimes subproblems are hold-outs due to potential transmission or reserve violations

Convergence Check

\[x_s - \bar{x} \leq \varepsilon ? \]
MIP Solver Tuning

- Most of the computational time in PH is spent solving subproblems or waiting for other subproblems to solve
- For SLAC we turned CPLEX as follows:
 - Leverage Pyomo “persistent” solvers to maintain solver state
 - Tight optimality gap (<0.01%)
 - 30 second time limit; single-thread limit (parallel instances)
 - For iteration 0, set “MIP emphasis” to focus on bound
 - used to calculate a good “trivial” lower bound
 - For all other iterations, set “MIP emphasis” to focus on finding feasible solutions
 - Keeps PH progressing

PH Iteration 0: Solve Scenario Subproblems: \(\min f(x_s, y_s) \)

PH Iteration \(k \): Solve Subproblems:
\[
\min f(x_s, y_s) + w_s x_s + \rho/2 \| x_s - \bar{x} \|^2
\]
Subproblem Bundles

Classical Progressive Hedging

<table>
<thead>
<tr>
<th>Scenario 1</th>
<th>Scenario 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 3</td>
<td>Scenario 4</td>
</tr>
<tr>
<td>Scenario 5</td>
<td>Scenario 6</td>
</tr>
<tr>
<td>Scenario 7</td>
<td>Scenario 8</td>
</tr>
</tbody>
</table>

- Each scenario is its own subproblem
- Maximum parallelization
 - up to one thread per scenario

Progressive Hedging w/ Bundles

<table>
<thead>
<tr>
<th>Scenario 1</th>
<th>Scenario 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 3</td>
<td>Scenario 4</td>
</tr>
<tr>
<td>Scenario 5</td>
<td>Scenario 6</td>
</tr>
<tr>
<td>Scenario 7</td>
<td>Scenario 8</td>
</tr>
</tbody>
</table>

- Each subproblem has multiple scenarios
- Better LD bounds & convergence
 - Individual scenarios tend to “over optimize” for their particular realization
Computational Performance Evaluation

• To assess the impact of SLAC on grid operations, rolling horizon studies were conducted on historical days selected by MISO
 – Some days were “normal operations” and others were “conservative operations” to evaluate SLAC’s potential economic and reliability impact
• As a result, we solved over >1,400 SLAC problems, giving a broad computational perspective
• Hardware: 32-VCPU Linux VM with 256GB RAM
 – 20 threads concurrently, 1 per subproblem
• All times are wall-clock times
SLAC Solution Times

• All wall-clock times are comfortably within 900 seconds
 • In practice LAC is solved every 15 minutes
• Includes reading data from disk, setting up Pyomo models, computing objective value from heuristic, and writing full scenario solutions to disk
 • Pyomo models could be more highly optimized for build-speed
 • Full scenario solution and objective value are not strictly necessary to implement the SLAC solution
 • Further returns to parallelism would be expected with more compute resources
SLAC Solution Quality

- All but 4 of the >1,400 models solved fall within a 0.1% relative optimality gap requirement
- Most (>96%) meet a 0.01% relative optimality gap requirement
- No effort is expended in improving the lower bound given by the initial PH iteration
Intra-Day Rolling LAC Simulation Platform

• The team evaluated Stochastic LAC on a rolling horizon simulation for several test days selected by MISO

• At every 15-minute interval for the day, we solve a variant of the Look-Ahead Commitment (with 3-hour window) and a real-time SCED (with no look ahead)
 - Variants: SLAC; LAC with MISO-Forecast; LAC with ASU-Forecast

• The Production Cost, Reserve Violations, and Transmission Violations for a day are reported by the sum of the SCED values over the day
Days with Production Cost Differences (>0.2%)

- SLAC has significantly increased production costs for three of these dates
 - Day 11, Day 12, and Day 13 see significantly improved reserve violations
 - Day 11 also sees improved transmission violations
- SLAC has significantly decreased production costs for two of these dates
 - Day 14 and Day 15 see 0.25-0.5% production cost savings
Rolling-Horizon Study Summary

- SLAC showed a *reliability benefit* over both MISO- and ASU-Forecast LAC, on most study days, decreasing to eliminating reserve or transmission violation, or both.
- SLAC demonstrated an *economic benefit* over both MISO- and ASU-Forecast LAC on days 14 and 15, decreasing costs 0.25 – 0.5%
- On a few study days, SLAC has similar performance to MISO- and ASU-Forecast LAC (no reliability issues these days)
- MISO-Forecast LAC and ASU-Forecast LAC seem to perform similarly
 - Hypothesis: Not much more to gain from improved/different point forecasting methods
Conclusion

- Stochastic Optimization is a powerful tool for managing uncertainty in grid operations, demonstrating potential economic and reliability improvements over existing practice.
- Decomposition techniques, such as PH, can be customized to be reliable for specific applications. This allows operators to consider many potential future operational scenarios simultaneously; efficiently leveraging increasingly parallel computing resources.