Performance Evaluation of Distributed Energy Resource Management Algorithm in Large Distribution Networks

Jing Wang, Jianqiao Huang, Xinyang Zhou
National Renewable Energy Laboratory
Jing.Wang@nrel.gov

Paper No: 21PESGM0662
NREL/PR-5D00-80409
Background & Proposed HIL Architecture

- Need to evaluate DERMS Technology in a more realistic environment
- **Requirements**: real-time simulation of large network, software controller runs in fixed time-step, interact with hardware inverters with standard communication protocols.
- Integrated hardware-in-the-loop platform by using HELICS
Implementation

• HELICS Architecture and Hardware Setup
Experimental Results

- Setup configuration
 - 11,000 node distribution feeder (IEEE 8,500 node test feeder and a modified EPRI Ctk7 test feeder)
 - 532 simulated PV in OpenDSS
 - 6 PCCs in OPAL-RT with PHIL testing of 6 DER Racks (90 DER hardware inverters)
 - 2-h from 11:00-13:00
 - Voltage regulation performance

- Baseline and Controlled voltages

- Total PV Active and Reactive Power

- 6.55% curtailment
Experimental Results

PHIL results: DER Rack #1-4

PHIL results: DER Rack #5-6

Results of two selected simulated PV
Conclusions

• This paper presented the performance evaluation of a DERMS control algorithm for fast DER dispatch using an advanced HIL platform.

• HELICS is the key tool to integrate all the software pieces and hardware devices together.

• The experimental tests demonstrate that the DERMS controller functions well in both smooth solar and intermittent solar to maintain system voltages within the target limits.