Durability of Poly (Methyl Methacrylate) Lenses Used in Concentrating Photovoltaics

David Miller*, Lynn Gedvilas, Bobby To, Cheryl Kennedy, and Sarah Kurtz

3rd International Workshop on Concentrating Photovoltaic Power Plants
Bremerhaven, Germany
2010/10/21 (Thurs)
17:00 – 17:20 (Germany)
9:00-9:20 (US)

*Presenter:
David.Miller@nrel.gov

NREL/PR-5200-49901

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.
Purpose- and Details- of Screen Test at NREL

- Literature ⇒ studies initiated ≥ 20 years ago
- Goal here: characterize the durability of a broad range of contemporary specimens subject to indoor HAST

- Test instrument: ATLAS Ci4000 Weather-ometer (Xenon-arc lamp @ 2.5x UV suns. Chamber @ 60°C/60%RH); *1 exception

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>SPECIMEN TYPES</th>
</tr>
</thead>
<tbody>
<tr>
<td>stock (unpatterned)</td>
<td>11</td>
</tr>
<tr>
<td>linear focus lens</td>
<td>1</td>
</tr>
<tr>
<td>spot focus lens</td>
<td>8</td>
</tr>
<tr>
<td>veteran (fielded) lens</td>
<td>3</td>
</tr>
</tbody>
</table>

- Veteran specimens on tracker in desert site, seldom cleaned (8, 22, 27 yrs)

Test specimens (4.4 x 6.7 cm²)
Details of NREL Screen Test

- **Measurands:**
 - **Periodic**
 - optical appearance (photograph)
 - optical transmittance (hemispherical)
 - mass
 - contact angle (sessile drop, H₂O on 1st surface)
 - **“End of life”**
 - haze (from direct transmittance)
 - prism facet geometry (lenses: section then SEM)
 - surface morphology (SEM or AFM)
 - indentation (Vicker’s hardness, toughness)
 - rheometry (E', E'', T_g)
 - XPS or ESCA (surface chemistry, before & after cleaning)

- **Test schedule:**
 - 0, 1, 2, 4, 6, 12, 18, 24, 30, 36 months
 - ≥8 acceleration factor (irradiance and 24 hour operation)
 - pull 1 of replicates every 12 months
Transmittance is Reduced by Aging

- "Optical Durability" = transmittance as f[t]
- Lambda 900 (Perkin-Elmer) spectrophotometer (w/ integrating-sphere)

Measured transmittance at 0, 6 months for best and worst sheet stock specimens

#1 (least-affected):
- no UV absorber, other additives
- set#1 (YI=0.4)

#11 (most-affected):
- set#11 (YI=28.3)

#8 (increased T):
- loss of additive/chromophore production
- set#8 (YI=5.2)
Effect of H₂O on Transmittance

- Specimens maintained for >1 month in dry box (≤0.1 ppm H₂O) or DI
- Traditional λ’s to estimate H₂O dissolved in polymers: 1.9, 2.7 µm

- Verified in direct- & hemispherical-T measurements
- H₂O solubility (≤2.5 wt.%) primarily affects unharvested IR λ’s
- UV & vis (PV) unaffected; weathering results are not H₂O absorption!
Transmittance is Reduced by Soiling

- Contamination absorbs, scatters, and back-reflects light
- Effect most significant as $\lambda \downarrow$ (Mie scattering: $0.6/n<\pi\varnothing/\lambda<5$)

*Remember also:

- Direct light (CPV) more severely affected than hemispherical (FP-PV)
- Optical durability & soiling affect color balance, e.g. top-cell limited I

Measured transmittance, as-received and after cleaning for 22, 8 year old Fresnel lens specimens

Optical durability $T \downarrow 6-29\%$

$\varphi_PV \downarrow 15, 2, 1\%$

$\varphi_{UV} \downarrow 29, 6, 2\%$
Yellowness Index (YI) Distinguishes Formulations, Aging Methods

- YI (ASTM E313 & E308 [D65 source, 10° observer]) quickly quantifies degradation

- **Range of results, depending on material formulation. Not all the same!**
- **Damage rate indoors/outdoors = 220x for same (unstabilized) material**
- **Suggests synergy between UV, temperature, and/or humidity**

*YI determined from raw hemispherical transmittance measurements (proportional to visual appearance). *Outdoor YI plotted for time only.*
Volatile Species (Mass Loss) Resulting From Aging

- Non-linear asymptotic trend (as great as 1.27%)
- Process of outward diffusion? (Degradation products and/or additives).
- Literature: 4.4% mass loss for chain scission (70 hours @ 300 nm)

Abouelezz and Waters, Studies on the Photodegradation of Poly(Methyl Methacrylate), NBSIR 78-1463, (1978), 1-55.

- If photolysis, then volatile content proportional to cumulative damage

mass loss determined, starting after 1 month indoor aging.
The Expected Correlation Between YI, and UV/ PV Flux

- Table summarizes the 9 *standard* transmitting stock specimens

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>UNIT</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV photon flux</td>
<td>γ⋅m⁻²⋅s⁻¹</td>
<td>723±3</td>
<td>724±3</td>
<td>721±4</td>
<td>725±3</td>
<td>719±6</td>
</tr>
<tr>
<td>UV energy flux</td>
<td>W⋅m⁻²</td>
<td>14±8</td>
<td>17±8</td>
<td>17±7</td>
<td>17±8</td>
<td>16±9</td>
</tr>
<tr>
<td>IR energy flux</td>
<td>W⋅m⁻²</td>
<td>7±0</td>
<td>7±0</td>
<td>7±0</td>
<td>7±0</td>
<td>7±0</td>
</tr>
<tr>
<td>YI</td>
<td>unitless</td>
<td>-1.2±0.1</td>
<td>0.2±1.4</td>
<td>0.6±1.4</td>
<td>1.2±1.7</td>
<td>3.3±2.9</td>
</tr>
<tr>
<td>λₖₑᵤₜ⁻₀</td>
<td>nm</td>
<td>363±36</td>
<td>369±28</td>
<td>370±28</td>
<td>364±33</td>
<td>379±24</td>
</tr>
<tr>
<td>Δm, MASS LOSS</td>
<td>%</td>
<td>N/A</td>
<td>0.000±0.000</td>
<td>0.408±0.048</td>
<td>0.646±0.059</td>
<td>0.705±0.074</td>
</tr>
<tr>
<td>Θ, CONTACT ANGLE</td>
<td>degrees</td>
<td>N/A</td>
<td>66±1</td>
<td>60±1</td>
<td>58±2</td>
<td>61±4</td>
</tr>
</tbody>
</table>

Contact Angle is Reduced by Aging

- Θ relates to accumulation and retention of particulate matter
- Θ: 66 → 58 → 43° (for unaged → aged → veteran)
- More easily cleaned, but more rapid to accumulate soil
- Partially restored by cleaning at 6 months ... surface accumulation?
Mechanical Damage from Aging: Cracks and Haze

Cracks:
- Radial cracks in domed spot-focus lens (85°/85%RH)
- Cracks could motivate failure on impact; could grow via fatigue

Haze:
- As-received veteran specimens demonstrate haze
- Surface erosion or microcracks detrimental to direct solar flux
Surface Roughness Identifies the Causes of Haze

- 90x90 & 20x20 μm² topography atomic force microscopy (AFM) scans
- Largest features (width/depth): 3850/340, 1540/88, 2350/72 nm
- Veteran specimens:
 - (a) abrasion/erosion,
 - (b) scratches from cleaning,
 - (c) embedded material (Si) in set-B
- Erosion much less significant for mounting ≥ 2 m (less airborne PM).

\[\begin{align*}
R_a - R_{\text{rms}} & \quad 3 \pm 4 \\
R_{\text{pv}} & \quad 66 \\
R_a - R_{\text{rms}} & \quad 116 \pm 149 \\
R_{\text{pv}} & \quad 1,108 \\
R_a - R_{\text{rms}} & \quad 46 \pm 68 \\
R_{\text{pv}} & \quad 1,178 \\
R_a - R_{\text{rms}} & \quad 16 \pm 27 \\
R_{\text{pv}} & \quad 733
\end{align*} \]

(a) set#1
(b) set-B
(c) set-C
(d) set-D

Roughness of unaged stock specimen relative to as-received (but cleaned) veteran specimens (27, 8, 8 years service)
A Summary of Photolysis From the Literature

- Dominant mechanism suggested in literature & suspected here

- Random main chain scission by UV (photolysis) \(\Rightarrow M_w \) therefore \(T_g \) reduced

- \(T_g \) reduced \(\downarrow \sim 5^\circ C \) after 18 years outdoors

- \(M_w \downarrow \) likewise affects mechanical durability: \(K_{IC} \downarrow \Rightarrow \sigma_f \downarrow \ldots \partial a/\partial N \uparrow \)
Innovation for Our Energy Future

Fourier Transform Infrared (FTIR) Spectroscopy

* May identify changes in the molecular structure, but not vulnerability

- Magnitude major peaks reduced, consistent with chain scission
- All major peaks related to ester (C=O), (C-O), or methylene (-CH₂-)
- Technique not recommended for regular diagnosis of PMMA

Surface spectra of unaged and aged specimens (set#11) obtained using FTIR-ATR relative to reference spectrum for PMA monomer.
The Progress Report ... (Summary)

- Transmittance:
 - UV cut-on f, spectral bandwidth compromised by aging
 - Notable IR absorption @ 1415, 1907, 2697 nm from H$_2$O
 - Soiling \Rightarrow trends as in optical durability. (Blue) current limited?
- Y1: This figure of merit may imply a synergy between UV, T, and/or RH
- Mass loss (on order of x%) may result from photolysis
- Θ decreases with time. Formation of water soluble surface layer?
- Erosion, scratching of surface quantified for veteran specimens
- FTIR: changes after 6 months consistent with chain scission... will verify

"Theme": from change in characteristics examined, photolysis suspected from the literature ... will verify in future with “end of life” (12 month) measurements

*Future: Work with a SOG lens? Your participation solicited for round 2!
Acknowledgements

• NREL: Mike Kempe, Daryl Myers, John Pern, Matt Beach, Christa Loux, Marc Oddo, Bryan Price, Kent Terwilliger, Robert Tirawat

• Others: Ralf Leutz, Hans Philipp Annen (Concentrator Optics Inc.), John Wiedner, Michael Longyear, Scott Steele (Arizona Public Service, S.T.A.R. facility)

This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory.

See also:

Questions

• Have you specifically studied the affects of cleaning (abrasion)?
• What about acid rain (the chemistry of outdoor rain)
• What can be learned/said about the (chemistry/additives/mW) most durable formulations
• Is there a change in the refractive index?
• XXX
• XXX
• XXX
• XXX
• XXX
Thermal Decomposition

- Unzipping of main chain in methyl methacrylate (monomer)
- Autocatalytic process (zip length on order of 1000)
- Significant weight loss (vs. minimal for chain scission)

(Chemical structure and text)

- Occurs readily for T>200°C
- Synergistic effect w/ irradiation (UV) ⇒ occurs at T<200°C
- Many classic studies of E_a vs. heating rate, atmosphere
 - O_2 suppresses decomposition

(after Aboulezz and Waters, “Studies on the Photodegradation of Poly(Methyl Methacrylate)”, 1978)